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Abstract: Variability plays an important role in the self-organized interaction between 
vegetation and its environment, yet the principles that characterize the role of the 
variability in these interactions remain elusive. To address this problem, we study the 
dependence between a number of variables measured at flux towers by quantifying the 
information flow between the different variables along with the associated time lag. By 
examining this network of feedback loops for seven ecosystems in different climate 
regions, we find that: (1) the feedback tends to maximize information production in the 
entire system, and the latter increases with increasing variability within the whole system; 
and (2) variables that participate in feedback exhibit moderated variability. Self-
organization arises as a tradeoff where the ability of the total system to maximize 
information production through feedback is limited by moderate variability of the 
participating variables. This relationship between variability and information production 
leads to the emergence of ordered organization. 
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1. Introduction 

Interaction between vegetation and its growth environment through the transfer of energy, matter 
and momentum leads to self-organized feedback. This is facilitated by the variability of the component 
processes that interact and are continually evolving [1]. Yet, ascertaining the precise role of the 
variability in this feedback dynamics remains an open question [2]. Towards this goal, using 
observations of moisture, energy, and carbon fluxes from seven Fluxnet towers [3] covering a range of 
climate gradients, we measure the predictive information provided by one variable to the dynamics of 
another to characterize their dependency. Information is the reduction in the uncertainty of one 
variable due to the knowledge of another. We measure the strength and time lag of directional 
information flow between two variables using Transfer Entropy [4]. The conjugation of the 
asymmetric information flows, in both magnitude and lag, between all pairs of variables describes an 
information flow process network [5,6]. The present work complements earlier work for characterizing 
ecosystems and their environment as interacting networks of flow of energy and matter [7–10]. These 
earlier work characterized a flow network by measuring the mutual information, and the evolution of 
the network through the change in this mutual information. These measures were arrived at through 
long-term averages used in the study. The approach presented here is distinct and enhances the earlier 
effort by considering information as reduction in predictive uncertainty of one variable due to the 
knowledge of another variable that is lagged in time. This allows us to consider short-time lags in the 
process interaction. Further, the time asymmetry is explicitly incorporated in the identification and 
characterization of the processes network resulting in asymmetric information flow between 
component processes.  

The methodology used here was put forth by [5,6], and it was demonstrated using a single flux 
tower dataset. In this study we use observations of climate and ecological variables from seven Fluxnet 
towers chosen to represent a range of ecosystems and climate zones (Figure 1). This allows us to draw 
generalized conclusions that were not possible with the study of single site. We use the half-hour 
averaged “level 4” flux tower data product that is standardized, quality-controlled and gap-filled to 
achieve the highest level of data quality and facilitate cross-comparison between flux tower  
sites [11–14]. The collection V of variables studied are near-surface air temperature (Θa, °C), estimated 
gross ecosystem respiration (GER, µmol CO2 m−2 s−1), soil temperature in the surface layer (Θs, °C), 
estimated gross ecosystem productivity (GEP, µmol CO2 m−2 s−1), latent heat flux (γLE, W m−2), vapor 
pressure deficit (VPD, Pa), soil moisture (θ , m3 / m3 ) sensible heat flux (γH, W m−2), total incoming 
shortwave radiation (Rg, W m−2), and precipitation (P, mm).  

We use multiple year datasets from each site covering the range from 2002 (or earlier, depending on 
the site) to 2007. Our study is performed using the five-day periodic anomaly, such that each value is 
rendered as a deviation from the five-day mean value that occurs at the same time of the day. This 
allows us to remove the dominant diurnal cycle and study the propagation of fluctuations through the 
feedback coupling. Any month that has too few data points to produce a robust estimate of the transfer 
entropy is dropped from the study [5,6]. 
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Figure 1. The seven Fluxnet study sites used in the study, including Atqasuk (ATQ, North 
Slope of Alaska), Audubon Research Ranch (ARR, Arizona Semi-Arid Grassland),  
UCI 1964 Burn Site (UCI, Canadian Boreal Forest), Bondville Original Site (BV1, Illinois  
Corn & Soybeans), Goodwin Creek (GCR, Mississippi Semitropical Hardwood Forest), 
Kennedy Space Center Scrub-Oak (KSC, Florida Semitropical Marine Scrub), and Tonzi 
Ranch (TZR, Mediterranean Central California). The gradient of mean annual precipitation 
from wet (>1,000 mm/yr shown in green) to dry (<100 mm/yr shown in red) shows the 
diversity of climate variability captured by the selection of Fluxnet sites. The insets show 
the normalized (zero mean and unit standard deviation) variation of mean annual patterns 
of monthly precipitation, enhanced vegetation index (EVI) from MODIS, and m

VTST  (see 
Table 1 for a summary of climate data for each site) (vertical tick marks are 0.5 standard 
deviation increments above and below the mean and horizontal tick marks indicate the 
month of the year).  
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Table 1. Climatological data and results summarized for each Fluxnet site studied. 

Fluxnet Site Code 
Mean Annual 
Precipitation 

(mm) 

Mean Annual 
Evapo-

transpiration 
(ET) 
(mm) 

Mean 
Annual Air 

Temperature 
θa(C) 

ET 
Response 

Adaptation 
Factor, c 

Thermal 
Offset 

Adaptation 
Temperatur

e, θa (K) 
Atqasuk ATQ 112 178 −8 0.881 9 

UCI (1964 Burn Site) UCI 202 261 2 2.601 19 
Audubon Research 

Ranch ARR 389 290 17 1.284 −8 

Tonzi Ranch TZR 574 405 17 0.805 −9 
Bondville (original site) BV1 839 603 11 0.294 −14 
Kennedy Space Center 

(Scrub oak) KSC 1,120 808 22 0.580 −6 

Goodwin Creek GCR 1,494 690 17 0.554 −7 

2. Methods 

The methodology uses Shannon’s information Entropy [15], which is the summation across the 
marginal probability function p(x) of all discretely defined states x of time series variable Xt as: 

H (Xt ) = − p(x)log(p(x))
x

∑       (1) 

We use the transfer entropy [4]   T ( Xt
( i) → Xt

( j ) ,τ )  to measure the reduction in the entropy of the 
current state of a measured variable ( )j

tX due to the knowledge of prior state τ time steps earlier in 
another variable ( )i

tX , which is in addition to the information provided by the immediate prior history 
of ( )j

tX . This is estimated using the joint and conditional probabilities as:  

  
T ( Xt

( i) → Xt
( j ) ,τ ) = p(

xt
( j ) ,xt−∆t

( j ) ,xt−τ∆t
( i )

∑ xt
( j ) ,xt − ∆t

( j ) ,xt −τ∆t
( i) ) log

p(xt
( j ) | (xt − ∆t

( j ) ,xt −τ∆t
( i) ))

p(xt
( j ) | xt − ∆t

( j ) )
   (2) 

We use the normalized form T` = T / log(m) where log( m ) is the upper bound in the estimate of 
entropy   H ( Xt

( i) )  for ( )i
tX  using m discrete bins for the estimation of the probability distribution 

function. We set the number of discrete states for all variables at m = 11 defined between the lower and 
upper observed values of the time series variable Xt (see [5] for a justification for this choice). Noting 
that transfer entropy is asymmetric both in strength and lag, it provides a two-way measure of 
information flow, or coupling strength. The information flow process network consists of the 
asymmetric pair wise transfer entropy between the ith and jth variable from the set of nV observed 
variables and can be represented as an adjacency matrix  A(i, j,τ ) = T `( Xt

( i) → Xt
( j ) ,τ )  [5]. Process 

networks are computed for each of thirty-six sub-daily time lags between half an hour and eighteen 
hours. This range captures the primary scales of interaction between the atmospheric boundary layer 
(ABL) and the terrestrial processes [16]. Estimation and methodological issues, including robustness of 
the method in presence of noise, and validation using noisy chaotic data are discussed in [5,6].  
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One may choose to analyze all variables in the network V, or a subset S ⊆ V that characterizes a 
subsystem consisting of Sn  variables. We use several metrics to measure flow of information [5,6]. 
The mean relative entropy for a subsystem S ⊆ V consisting of  nS ≤ nV  variables is computed as:  

( )1 ( ) / log( )m i
S t

i SS

H H X m
n ∈

= ∑       (3) 

The mean gross information production

 

TS
[+] of a subsystem S, is defined as: 

[ ]

,

1( ) ( , , )S
i S j VS V

T A i j
n n

τ τ+

∈ ∈

= ∑       (4) 

It measures the average predictive information provided by the subsystem S to all nodes in the 
process networks, and therefore it is a measure of the coupling strength, or control, of the subsystem S 
to the rest of the system. We obtain the mean total system transport TSTm

V as a special case of ][+
ST  

when VS = . An increase in TSTm
V is an indicator of increased feedback between system components. 

3. Results 

We find that the average information production 

 

TSTV
m  for the entire system V increases linearly 

(not shown) along with that of the gross ecosystem productivity, [ ]
GEPT + . The latter shows significant 

variation in the annual patterns across the different sites, and peaks during months that have relative 
abundance of both moisture and energy (Figure 2). We also noticed that the information production is 
more strongly related to the latent heat flux than to precipitation. The seasonal patterns show 
interesting behavior in each of these ecohydrologic systems. For example, the Mediterranean climate at 
TZR site in California experiences increased information production for GEP during the spring season 
when latent heat is high due to the combination of increasing solar energy and available moisture from 
spring rains, but it plummets during the dry summer. The late summer monsoon in the Arizona desert 
(ARR site) results in an increase in information production following a small peak in spring and a quiet 
early summer. A strong midsummer peak in information production occurs in the eastern and northern 
ecohydrologic systems during the growing season (Alaska ATQ, Manitoba UCI, Illinois BV1), with 
the duration of the summer peak corresponding to the length of the growing season. By contrast, the 
hot and humid sites in Mississippi (GCR) and at Kennedy Space Center (KSC) experience less of a 
summer increase in information production since they have more steady year-round warmth  
and moisture.  

We also found that the dependence of   TGEP
[+] (0.5h) on the latent heat flux LEγ  and the air temperature 

aΘ for all sites can be collapsed to single curves provided we account for the site specific 

dependencies. These take the form   TGEP
[+] (0.5h) = c ⋅α ⋅γ LE  (R

2=0.63, Figure 3a) and 

  TGEP
[+] (0.5h) = β(Θa + Θa

` + k)λ  (R2=0.54, Figure 3b) where α (=1.88 x 10−4 mm−1 month−1), β  (=1.8 x 

10−7 K−1 month−1), and λ (=2.78) are site independent parameters.  



Entropy 2010, 12              
 

 

2090 

Figure 2. Mean annual phase diagrams for   TGEP
[+] (0.5h)  for all seven sites. The size of each 

circle scales in proportion to 

 

TGEP
[+] (0.5h) , and relates ecosystem information production to 

the mean monthly latent heat flux (γLE) and air temperature (Θa) at each site. The month 
and arrow on each subplot indicate the timing of the annual peak in 

 

TGEP
[+] (0.5h)  and the 

direction of chronological rotation of the phase diagram at that point (clockwise or 
counterclockwise). Regardless of climate and ecosystem type the peak ecosystem 
information production coincides with the maximum latent heat production indicating that 
the moisture and energy balance controlled by vegetation growth mediates the feedback 
between all system components. 
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Figure 3. For all sites information production 

 

TGEP
[+] (0.5h)  (a) as a function of latent heat 

flux follows   TGEP
[+] (0.5h) = c ⋅α ⋅γ LE , and (b) as a function of air temperature follows 

  TGEP
[+] (0.5h) = β(Θa + Θa

` + k)λ  (see Table 1). The whole system mean information 
production for all time lags

 

TSTV
m(τ = 0.5h...18h)  increases rapidly with increase in the 

entropy of the system as   TSTV
m(τ ) = a(τ )(HV

m )b  (each point on the figures represents results 

for one month at one site and time lag). 

 



Entropy 2010, 12              
 

 

2092 

The best-fit constant  k is empirically estimated as −243 K, where 243 K is just below the lowest 
recorded temperature in the dataset. The site dependent empirical constant c and `

aΘ  (Table 1) are 
termed the “evapotranspiration response adaptation factor” and “thermal offset adaptation 
temperature.” The former captures the property that information production in humid ecosystems  
(e.g., BV1) responds more slowly to increased moisture (lower c ) as compared to drier regions  
(e.g., ARR), while the latter captures the behavior that ecosystems in colder regions (e.g., UCI, ATQ) 
begin producing information at much lower temperatures (higher `

aΘ ) than more temperate ecosystems 
(e.g., GCR, BV1). Therefore, colder and drier ecosystems are adapted to achieve higher levels of 
information production, that is, increased coupling, per unit of water or energy use. In other words, 
each ecohydrologic system is adapted to produce information, i.e., process coupling, in a unique way, 
such that drier and colder systems have a more intense and immediate response to smaller amounts of 
moisture and energy. These results are computed using “global” bounds of variability, such that the 
minimum and maximum bounds on each variable X are those of the entire long-term dataset across all 
sites. In this case, this means that entropies are computed relative to the full spectrum of variable states 
encountered over the entire observation period for the site. 

The mean total system transport m
VTST increases with the average entropy of the system as 

  TSTV
m(τ ) = a(τ )(HV

m )b
 (Figure 3c). The coefficient ( )a τ  ranges from a minimum of 0.065 at τ =14 h, 

to a maximum of 0.09 at τ =1 h (note that   a(τ = 0.5h) is only a time step smaller than that of 

  a(τ = 1h) ) indicating that variability produces more information, that is, the system is more strongly 
coupled, at shorter time lags. The exponent b is 2.33 for all sites and time lags (with a standard 
deviation of 0.05). 

Based on these observations we propose the Information Production Hypothesis (IPH) stated as: the 
feedback between system components and therefore the information production increases with 
increasing variability within the system. In other words, increased fluctuations in the system allow 
stronger coupling between system components. The system self-organizes to maximize the production 
of information within the bounds imposed by the entropy production of the system characterized 
through the functional form   TSTV

m(τ ) = a(τ )(HV
m )b , where b is found to be 2.33. This hypothesis 

indicates that variability is necessary for the emergence of order in complex ecohydrologic systems 
and that m

VH  is a universal control parameter [17], that is, it determines the emergence of organization 
through feedback in the coupled system.  

The IPH applies to the mean dynamics of the system as a whole involving all variables. Is the 
production of information also controlled by the entropy at the level of the individual variables? By 
focusing on specific variables or subsets within the process network, the information consumption 

 

TS
[−](τ) obtained as: 

  
TS

[−](τ ) =
1

nS nV

A(i, j,
i∈V , j∈S
∑ τ )     (5) 

and net production 

 

TS
net (τ ) = TS

[+](τ) − TS
[−](τ )  become relevant in addition to the information production 

TS
[+ ](τ ) . We note that 

 

TV
[+](τ) = TV

[−](τ )  for the whole system.   TS
[−]  is the average predictive information 

received by the subsystem from all nodes in the process network. Positive 

 

TS
net (τ )  measures the extent 

to which the subsystem S is controlling, as opposed to being controlled by, the rest of the network as it 
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participates in feedback in the process network, and vice-versa. The three metrics TS
[+ ](τ ) , TS

[− ](τ ) , and 
TS

[net ](τ )  are plotted against `
XH  in Figure 4, along with the distribution of `

XH for each of the ten 

variables across seven sites and all months in the data. 

Figure 4. Information production 

 

TX
[+](τ) , consumption 

 

TX
[−](τ), and net production 

 

TX
net (τ )  

are plotted against each variable X’s entropy 

 

H`X , for each site, time lag, and month in this 
dataset. The synoptic (blue) subsystem includes weather-forcing variables, the turbulent 
(green) subsystem includes variables directly influenced by the ecosystem, and the ABL 
(red) subsystem includes precipitation and radiation. Due to an imbalance in information 
production and consumption as 

 

H`X  increases, the net production is negative for the 
turbulent subsystem and is positive for the synoptic subsystem. Also observe that  
the smaller scale turbulent and ABL subsystems rarely take values of 

 

H`X > 0.7 but the  
large-scale synoptic subsystem takes values closer to the upper bound of the  
Shannon entropy. 
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We observe that information generally flows from the net-exporting “synoptic subsystem” 
(consisting of Θa, GER, Θs, VPD, and θ ) to the net-importing “turbulent subsystem” (consisting of 
GEP, γLE, and γH) with the “ABL subsystem” (consisting of P and Rg) generally being net-neutral. The 
synoptic system varies with weather patterns on a timescale of hours to days, while turbulent systems 
varies with atmospheric mixing processes on a timescale of seconds to minutes, and the ABL system 
varies on a timescale of hours and couples the synoptic and turbulent scales [16]. Net information 
flows from high-entropy larger-scale subsystems to low-entropy smaller-scale subsystems.  

At the sub-daily time scales studied here, the higher entropies of the synoptic subsystem reflect the 
variable nature of large-scale weather patterns, and in turn, the lower entropies of the turbulent 
subsystem reflect the presence of stabilizing, self-organizing feedback processes between the 
ecosystem and its environment. The open dissipative ecohydrologic system continually consumes 
information from its highly variable environment to maintain their relatively self-organized state [18]. 
As the net flow of information along the gradient from large to small temporal scales ebbs when water 
and energy become limiting so too ebbs the self-organized, information-consuming land-surface 
ecosystem, which exists on that gradient.  

4. Discussion 

By evaluating the information production, consumption, and entropy for seven climatically diverse 
sites, 36 independent time lags, and ten different variables (Figure 4), it is evident that this pattern is a 
function of the entropy `

XH  which serves as a control parameter. To explain these results, the Moderate 
Entropy Hypothesis (MEH) is proposed: variables that participate the most in the self-organizing 
feedback have moderate entropy or variability (between roughly 40% and 70%, for the systems 
studied). The statistical results presented for the MEH in Figure 4 are computed using “local” bounds 
of variability, such that the minimum and maximum bounds on each variable X are set independently 
for each local time period at each site. In this case, this means that Shannon entropies are computed 
relative to the full spectrum of variable states encountered over exactly one month. Therefore, while 
the “global” entropies allow us to capture the long-term average dynamics of the system, the “local” 
entropies allow us to capture the behavior of individual subsystems as they adapt to short-term 
variability. While the IPH ascertains that larger variability leads to stronger feedback in the system as a 
whole, the MEH indicates that increased feedback between individual components causes moderated 
variability in those components. This suggests a tug-of-war between the variability in the system as a 
whole with a tendency toward maximum variability, and the variability of individual components with 
a tendency toward moderate variability. This tension appears to be the causal reason for the emergence 
of order. Self-organizing systems evolve to maximize order (measured as information production), but 
this comes at the cost of increased variability (measured as entropy). Beyond relative entropy values  
of 70% (a rough value based on the systems studied here), it may be inferred that increased variability 
does not return increased order. Perhaps a further increase in the entropy of a subsystem will result in a 
breakdown of self-organization.  

Earlier work on the use of information theory (see [10] for a discussion) describe the ecosystems as 
a configuration of flows for matter and energy and the entropy provides a measure of flow diversity. 
Higher entropy arising from the increase in the number of configurations for flow to occur provides 
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stability to the system under perturbation. Here in, we extend the notion of flow by considering the 
dynamics of information flow as a legitimate process in its own right, akin to that envisioned by [10] 
with laws that are independent of and complementary to those concerning the transfer of mass, 
momentum, and energy. The, IPH and MEH govern self-organizing system dynamics originating in 
feedback between the system’s variables at multiple timescales. Despite the great diversity of the 
Earth’s climate regimes, it appears that the ecohydrologic systems are adapted to follow a simple 
relationship by which the system’s stochastic variability, measured as entropy, controls the emergence 
of order (measured as information production) across a variety of ecosystems. That is, ecosystems are 
adapted to their local range of variability and not the magnitude of specific control such  
as soil-moisture. 

Further work is required to test the IPH and MEH and to determine their generality and use them to 
explain the origins of order in dynamical self-organizing systems. If the principles hold generally, they 
may solve an important problem by providing a mathematical basis for understanding self-organization 
in dynamical systems [19]. More specifically, these hypotheses might be immediately applied to 
predict the evolution of ecosystems under changing and variable climate conditions. We suggest the 
need for work to test these hypotheses using time varying climate data to examine the system’s 
behavior at larger and smaller spatio-temporal scales, and the dynamics of synthetic complex systems 
(e.g., systems examined by [20-22]). 
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