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Abstract: Maximum entropy models are often used to describe supply and demand 

behavior in urban transportation and land use systems. However, they have been criticized 

for not representing behavioral rules of system agents and because their parameters seems to 

adjust only to modeler-imposed constraints. In response, it is demonstrated that the solution 

to the entropy maximization problem with linear constraints is a multinomial logit model 

whose parameters solve the likelihood maximization problem of this probabilistic model. 

But this result neither provides a microeconomic interpretation of the entropy maximization 

problem nor explains the equivalence of these two optimization problems. This work 

demonstrates that an analysis of the dual of the entropy maximization problem yields two 

useful alternative explanations of its solution. The first shows that the maximum entropy 

estimators of the multinomial logit model parameters reproduce rational user behavior, 

while the second shows that the likelihood maximization problem for multinomial logit 

models is the dual of the entropy maximization problem. 
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1. Introduction 

The maximum entropy approach is widely used for formulating demand models, primarily 

aggregate, for urban transportation and land use systems. The first application to transportation 

demand was Wilson’s aggregate doubly constrained gravity model of spatial trip distribution [1]. Since 

then, various writers have published similar versions with various improvements (see [2-4]). 

A relevant class of travel demand models are the combined maximum entropy ones. These are 

aggregate designs that integrate multiple transportation user decisions such as trip generation, 

destination choice, and mode and/or route choice. Examples may be found in [5-17]. In every case the 

modeling method involves formulating an optimization problem with entropy components whose 

optimality conditions define the required demand models. 

One of the main reasons for employing maximum entropy models is that their probabilistic 

formulation exhibits a multinomial logit structure which has an obvious microeconomic interpretation. 

The discrete choice multinomial logit model has been widely utilized for modeling urban 

transportation and land use systems due to its ability to represent, by means of a closed formula, the 

paradigm of the rational consumer (or producer) who maximizes utility (or benefit) within his or her 

possibility space. Both the model’s simplicity and its limitations stem from the fact that the utility 

functions’ stochastic errors are Gumbel-distributed i.i.d. random variables (see [18]). The most 

commonly used method for estimating the parameters of the model is maximum likelihood due to its 

good asymptotic statistical properties. 

It was demonstrated in [5] that for the multinomial logit model, the entropy maximization problem 

with linear constraints has the same solution as the likelihood maximization problem because the 

Kuhn-Tucker conditions of the two are identical. As a consequence of this result, the Lagrange 

multipliers of the entropy maximization problem are the maximum likelihood estimators of the model. 

It did not, however, provide either an interpretation of entropy maximization in a microeconomic 

modeling context or any explanation of the origin of the above-mentioned equivalence. The intended 

contribution of the present paper is to fill these two gaps. 

In what follows, Part 2 formulates the entropy maximization problem of a general discrete choice 

probability distribution with linear constraints, identifies its solution and specifies the dual problem. 

Part 3 gives a microeconomic interpretation of the dual problem based on the rational consumer 

behavior paradigm, while Part 4 provides a statistical interpretation of the dual in terms of the 

estimation criteria of the multinomial logit model parameters. Finally, Part 5 sets out our conclusions. 

2. Formulation of Entropy Maximization Problem and its Dual 

Consider the following entropy maximization problem (ME) of a discrete choice probability 

distribution with linear constraints: 

ME:   i a / i a / i
p p i ,a

Max E p Max N p ln p      (1) 

s .t .

i a / i aik ai aik
i ,a i ,a

N p x N x   for all k    (2) 

1a / i
a

p   for all i      (3) 
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where variable /a ip  is the probability that an individual of type i chooses alternative a, the quantities 

 aikx  are the attributes of alternative a perceived by individual i, aiN  is the observed number of type i 

individuals who chose alternative a and iN  is the number of type i individuals. The problem is 

disaggregate in individuals if 1iN 
 
for all i; if not, we get an aggregated formulation. It is assumed 

that each individual chooses a single alternative, as expressed in constraint (3). Note also that: 

i ai
a

N N   for all i      (4) 

Now let  k  be the Lagrange multipliers of constraint (2). Applying the Kuhn-Tucker conditions 

to ME we obtain as the solution to the problem the following multinomial logit model: 

 
k aik

k
a / i

k a ik
a k

exp x

p

exp x




 


 
 
 
 
 
 



 
 for all a,I    (5) 

This same model is obtained if we apply the random utility theory approach (see [18,19]), 

specifying that: 

 ai k aik
k

V x       (6) 

where aiV  is the deterministic component of the conditional indirect utility perceived by individual i 

from alternative a and  is the scale factor for a Gumbel probability distribution of the random utility 
error (. As demonstrated by [5], the Lagrangian multipliers  k  are the maximum likelihood 

estimators of the model (5). The Lagrangian function of the ME problem is: 

 1             
 i a / i a / i k i a / i aik ai aik i a / i

i ,a k i ,a i ,a i a
L N p ln p N p x N x p   (7) 

where i  is the Lagrange multiplier of constraint (3). The equivalent problem of ME is therefore: 

ME:

    1i a / i a / i k i a / i aik ai aik i a / i
p , , p , , i ,a k i ,a i ,a i a
Max L p, , Max N p ln p N p x N x p

   
                 

  
(8) 

If the value of a / iln p  obtained from (5) is substituted into the first summation term of the 

Lagrangian (7) and the value of a / ip is substituted into the third summation term, the resulting 

expression reduces to: 

 i k a ik ai k aik
i a k i ,a k

L N ln exp x N x 


       
 

    (9) 

From this expression we can formulate the known dual of the ME problem (see [20]) as:  

DME:  i k a ik ai k aik
i a k i ,a k

Min D( ) Min N ln exp x N x
 

  


         
  

   (10) 
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In the following two sections we present two interpretations of the DME problem, one 

microeconomic and the other statistical. By extension, they are applied to the ME problem. 

3. Microeconomic Interpretation of the Entropy Maximization Dual Problem 

If (6) is substituted into (10) then, given (4), the dual problem can be written as:  

DME:       1
ai i ai

i ,a
Min D Min N EMU V
 

  


      (11) 

where: 

  1
i a i

a

EMU ( ) ln exp V  
 



   
 
  for all i    (12) 

is the maximum expected utility of individual i [21]. 
Given that    i aiEMU V   for all a,i, the DME problem consists in finding the parameters 

 k  such that for each individual the expected utility for the chosen alternative approaches as closely 

as possible to the maximum expected utility of the various available alternatives. This allows us to 

interpret the Lagrange multipliers of restrictions (2) micro economically in that they adjust to the 

fullest extent possible so that the model reflects rational behavior by the individuals. 
An interesting variant of the ME problem occurs when the parameters  k  are known. If this 

condition is applied to (8) then, given (6), this variant is: 

VME:   / / / /
, ,

, ,

  , ln 1i a i a i i a i ai i a i
p p

i a i a i a

Max L p Max N p p N p V p
 

  
  

      
  

      (13) 

or equivalently: 

VME:   1
i a / i ai i a / i a / i

p p i ,a i ,a
Max M p Max N p V N p ln p


    
 

   (14) 

1
s.t .

a / i
a

p   for all i      (15) 

The entropy term of this problem can be interpreted simply as the penalty imposed on the 

deterministic problem for finding a discrete choice probability law that maximizes the sum, over all 

individuals, of the expected value of the deterministic utilities of the chosen alternatives. 

There is, however, another interesting microeconomic interpretation. Since the solution of the VME 

problem is (5), we deduce that the maximum expected utility of individual i, defined by (12), can be 

written as:  

 
/

/

exp1 1
ln lnai

i ai a i
a i

V
EMU V p

p


 

 
   

 
 for all a,i   (16) 

In (16) the function is linear in the logarithm of the probability. It can be proved that the functions 

that are linear the logarithm are the only ones that gives what is called proper local score functions. 
If we multiply (16) by a / ip  and sum over a, then, given (15), we have: 
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/ / /

1
lni a i ai a i a i

a a

EMU p V p p


    for all i    (17) 

Thus, the value of the objective function of the VME problem at the optimum is the sum, over all 

individuals, of their maximum expected utilities among the available alternatives. Observe also that 
  i i

i
M p N EMU   for all p. The discrete choice probability law that solves the VME problem 

therefore conforms with the rational consumer paradigm for each individual as regards expected value. 

4. Statistical Interpretation of the Entropy Maximization Dual Problem 

The statistical interpretation of the DME problem (10) is obtained from the following reformulation 

of its objective function: 

 
   
 
 

ai k aik i k a ik
i ,a k i a k

ai k aik ai k a ik
i ,a k i ,a a k

k aik
k

ai
i ,a

k a ik
a k

D( ) N x N ln exp x

         N ln exp x N ln exp x

exp x
         N ln

exp x

  

 














            
                  

  
   

  
 

  (18) 

Thus, the negative of the DME problem objective function is just the log likelihood function of the 

multinomial logit model. It follows, then, that the log likelihood maximization problem is equivalent to 

the entropy maximization problem because its dual is just the DME problem.  

Then, the DME problem can therefore be reformulated as: 

DME:    /
,

  lnai a i
i a

Max D Max N p
 

        (19) 

Note also that this equivalence is independent of the number of individuals or alternatives or 

whether the probabilistic model is aggregate in individuals or not. 
The variance-covariance matrix of the parameters  k  that solve the ME problem is derived as the 

inverse of the expected value of the matrix of second derivatives of the dual function D of the DME 

problem, known as the information matrix (see [22-28]). 

The second derivatives of the dual problem measure the variations in the optimum of the ME or 

DME objective function caused by changes in the parameters of the resulting model. Thus, if a 

parameter undergoes a large change but the dual problem optimum varies very little (that is, the second 

derivative of the dual problem is small), that parameter provides little information and intuitively its 

variance should be very high. If, on the other hand, the second derivative of the dual with respect to a 

given parameter is high, the parameter is significant and its variance should be small. Notice that this 

point is closely related to the fact that the Fisher information matrix in an exponential family is 

inversely proportional to the variance-covariance matrix. 

By a similar process we can estimate the variance-covariance matrix of the parameters of the 

multinomial logit model using the log likelihood function. This implies that by demonstrating that this 
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function is the negative of the dual function we will have reconciled the two approaches to estimating 

the variance-covariance matrix of the model parameters. 

It also follows from the equivalence of the DME problem (10) and problem (19) that the latter is 

equivalent to problem (11). From this we deduce that the maximum likelihood estimators of the 

multinomial logit model represent rational behavior by the users in terms of expected value. This 

method of estimating the multinomial logit model parameters is therefore congruent with the rational 

consumer paradigm defined by the model itself. 

5. Conclusions 

Maximum entropy models have been widely applied to various economic systems, and are 

particularly common in representations of supply and demand behavior in urban transportation and 

land use modeling. A major criticism of these models, however, is that they do not embody  

actual behavioral rules of the agents in the system and their parameters adjust only to the constraints 

imposed by the modeler. This paper demonstrated that two useful alternative interpretations of the 

models’ optimality conditions can be derived from an analysis of the dual of the classical entropy  

maximization problem. 

The first of these interpretations was derived from the fact that the dual problem consists in  

finding parameters of the utility (benefit) functions of users (suppliers) such that each user behaves 

rationally, that is, maximizes utility (benefit) in terms of the expected value of the consumption 

(production) alternatives available. The maximum entropy model parameters thus take on a clear  

microeconomic interpretation.  

The second interpretation is that from a statistical standpoint: the dual maximum entropy problem is 

equivalent to the likelihood maximization problem for multinomial logit models. This in turn explains 

the equivalence between the problems of likelihood maximization and entropy maximization. 

Furthermore, with this result the methods for estimating the variance-covariance matrices of maximum 

entropy and maximum likelihood estimators are completely reconciled. Finally, we note that both 

interpretations are valid for aggregate or disaggregate models independently of the number of 

individuals or alternatives considered. 

A possible extension of this study would be to analyze logit models with non-linear constraints and 

hierarchical structures. Given the characteristics that distinguish them from multinomial logit models, 

the results may be different from those presented here. 
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