
Entropy 2010, 12, 53-62; doi:10.3390/e12010053 
 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 

Article 

Imprecise Shannon’s Entropy and Multi Attribute Decision 
Making 

Farhad Hosseinzadeh Lotfi * and Reza Fallahnejad  

Department of Mathematics, Science & Research Branch, Islamic Azad University (IAU), Tehran, 

Iran; E-Mail: r.fallahnejad@gmail.com 

* Author to whom correspondence should be addressed; E-Mail: Hosseinzadeh_lotfi@yahoo.com. 

Received: 25 September 2009 / Accepted: 16 November 2009 / Published: 5 January 2010 

 

Abstract: Finding the appropriate weight for each criterion is one of the main points in 

Multi Attribute Decision Making (MADM) problems. Shannon’s entropy method is one of 

the various methods for finding weights discussed in the literature. However, in many real 

life problems, the data for the decision making processes cannot be measured precisely and 

there may be some other types of data, for instance, interval data and fuzzy data. The goal 

of this paper is the extension of the Shannon entropy method for the imprecise data, 

especially interval and fuzzy data cases. 
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1. Introduction 

Multiple attribute decision making (MADM) refers to making preference decisions (e.g., 

evaluation, prioritization, and selection) over the available alternatives that are characterized by 

multiple, usually conflicting, attributes. The structure of the alternative performance matrix is depicted 
in Table 1, where xij is the rating of alternative i with respect to criterion j and wj is the weight of 

criterion j (in this paper, we consider the case that the rating of alternative i with respect to criterion j 

is non-negative).  
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Table 1. Structure of the alternative performance matrix. 

 Criterion 1 Criterion 2 … Criterion n 
Alternative 1 X11 X12 … X1n

Alternative 2 X21 X22 … X2n

…
 

…
 

…
 

…
 

…
 

Alternative m Xm1 Xm2 … Xmn

 W1 W2 … Wn

 

Since each criterion has a different meaning, it cannot be assumed that they all have equal weights, 

and as a result, finding the appropriate weight for each criterion is one the main points in MADM. 

Various methods for finding weights can be found in the literature and most of them can be 

categorized into two groups: subjective and objective weights. Subjective weights are determined only 

according to the preference decision makers. The AHP method [1], weighted least squares method [2] 

and Delphi method [3] belong in this category. The objective methods determine weights by solving 

mathematical models without any consideration of the decision maker’s preferences, for example, the 

entropy method, multiple objective programming [4,5], principal element analysis [5], etc. Since in the 

most real problems, the decision maker’s expertise and judgment should be taken into account, 

subjective weighting may be preferable, but when obtaining such reliable subjective weights is 

difficult, the use of objective weights is useful. One of the objective weighting measures which has 

been proposed by researchers is the Shannon entropy concept [6]. Entropy concept was used in various 

scientific fields. The concept of Shannon’s entropy has an important role in information theory and is 

used to refer to a general measure of uncertainty. In transportation models, entropy is acted as a 

measure of dispersal of trips between origin and destinations [7]. In physics, the word entropy has 

important physical implications as the amount of “disorder” of a system [7]. Also the entropy 

associated with an event is a measure of the degree of randomness in the event. Entropy has also been 

concerned as a measure of fuzziness [8]. In MADM the greater the value of the entropy corresponding 

to an special attribute, which imply the smaller attribute’s weight, the less the discriminate power of 

that attribute in decision making process. 

In many real life problems, the data of the decision making processes cannot be measured precisely 

and there may be some other types of data, for instance interval data and fuzzy data. In other words, 

the decision maker would prefer to say his/her point of view in these forms rather than a real number 

because of the uncertainty and the lack of certain data, especially when data are known to lie within 

bounded variables, or when facing missing data, judgment data, etc. In MADM it is most probable that 

we confront such a case, so finding a suitable weight is an important problem. It is logical that when 

data are imprecise, weights be imprecise too. In this paper we present a method for solving MADM 

problems by entropy method consisting of interval data. In this method the weight, which is obtained 

for each alternative, will be an interval number. We apply the Sengupta approach mentioned in [9] to 

compare the interval scores we have found.  

This paper has been organized as follows: In Section 2 the MADM problem is presented with 

interval data. Then Entropy method is extended for the interval data. In the same section we will also 

show that if all of the alternatives have deterministic data, then the interval entropy weight leads to the 
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usual entropy weight. In Section 3, by using α-level set, we will obtain interval weight for fuzzy 

MADM problem in different levels of confidence. We will also use the data of an empirical example 

for more explanation and showing the validation of the proposed method. The final section will be  

the conclusion. 

2. Interval Shannon’s Entropy 

2.1. Method  

As noted before, Shannon’s entropy is a well known method in obtaining the weights for an 

MADM problem especially when obtaining a suitable weight based on the preferences and DM 

experiments are not possible. The original procedure of Shannon’s entropy can be expressed in a series 

of steps: 

S1: Normalize the decision matrix.  

Set nimj
x

x
p

m

j ij

ij
ij ,...,1,,...,1,

1

===
 =

  

The raw data are normalized to eliminate anomalies with different measurement units and scales. 

This process transforms different scales and units among various criteria into common measurable 

units to allow for comparisons of different criteria. 

S2: Compute entropy ih  as nipphh
m

j
ijiji ,...,1,ln.

1
0 =−= 

=

, where 0h  is the entropy constant and is 

equal to ( ) 1mln − , and ijij pp ln.  is defined as 0 if 0=ijp .  

S3: Set nihd ii ,...,1,1 =−=  as the degree of diversification. 

S4: Set ni
d

d
w

n

s s

i
i ,...,1,

1

==
 =

 as the degree of importance of attribute i.  

Now suppose that determining the exact value of the elements of decision matrix is difficult and, as 

a result, their values are considered as intervals. The structure of the alternative performance matrix in 
interval data case is expressed as shown in Table 2, where ],[ u

ij
l
ij xx  is the rating of alternative i with 

respect to criterion j, ],[ u
j

l
j ww  is the weight of criterion j:  

Table 2. Structure of the alternative performance when data are intervalled. 

 Criterion 1 Criterion 2 … Criterion n 
Alternative 1 ],[ 1111

ul xx  ],[ 1212
ul xx  … ],[ 11

u
n

l
n xx  

Alternative 2 ],[ 2121
ul xx  ],[ 2222

ul xx  … ],[ 22
u

n
l

n xx  

… … … …

Alternative m ],[ 11
u
m

l
m xx  ],[ 22

u
m

l
m xx  … ],[ u

mn
l
mn xx  

 ],[ 11
ul ww  ],[ 22

ul ww  … ],[ u
n

l
n ww  

 

When there is interval data, and considering the fact that the value of each alternative with respect 

to each criterion can change within a range and have different behaviors, it is logically better that 

weights change in different situations as well (note that here the DM knows that the exact/real value of 
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a criterion is within its data interval and the probability of each point to be the exact value is the 

same—in other words, a uniform distribution of the interval data is assumed). Therefore, we try to 

extend Shannon’s entropy for these interval data. 

Proposed Approach 

S’1: The normalized values l
ijp  and u

ijp  are calculated as:  

nimj
x

x
p

x

x
p

m

j

u
ij

u
iju

ijm

j

u
ij

l
ijl
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11
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S’2: Lower bound l
ih  and upper bound u

ih  of interval entropy can be obtained by: 

nipphpphh
m
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where 0h  is equal to ( ) 1mln − , and l
ij

l
ij pp ln.  or u

ij
u
ij pp ln.  is defined as 0 if 0=l

ijp  or 0=u
ijp .  

S’3: Set the lower and the upper bound of the interval of diversification l
id  and u

id  as the degree of 

diversification as follows: 
nihdhd l

i
u
i

u
i

l
i ,...,1,1,1 =−=−=  

S’4: Set ni
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d
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 as the lower and upper bound of interval weight of 

attribute i.  

Theorem. The inequality niww u
i

l
i ,...,1, =≤  is held. 

Proof. By using the definition of l
ih  and u

ih  in the second step of the proposed approach, it is clear 

that u
i

l
i hh ≤ . Also referring to the definition of l

id  and u
id  we have nidd u

i
l
i ,...,1, =≤ . So 

 ==
≤ n
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. Therefore niww u
i

l
i ,...,1, =≤ . 

Definition. We name the interval [ ]u
i

l
i ww ,  as the weight of i’th criterion obtained from interval entropy 

method. Notice that if all of the alternatives have deterministic data, then we have u
ij

l
ij xx =  and 

also u
ij

l
ij pp = . So we have u

i
l
i hh =  and therefore u

i
l
i dd = , then u

i
l
i ww =  (the basic entropy weight). It 

means if all of the alternatives have deterministic data, then the interval entropy weight leads to the 

usual entropy weight. As a result, the entropy weight in the case of interval data as the proposed 

method is well defined, but if at least one of the numbers is interval, all weights will be in the interval 

form, even for the criteria with crisp data. The reason is that the final entropy weight is dependent on 
the degree of diversification ( id ) of all criteria based upon the forth step of the entropy method 

(
 =

=
n

s s

i
i

d

d
w

1

). So, if a criterion is in the interval form, its degree of diversification will be obtained in 

the interval form too. Therefore, the weight of crisp criteria will alter based on the alteration of the 

degree of diversification of an interval criterion in its interval degree of diversification. 
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2.2. Comparing interval weights  

After determining the weights in interval form by using the proposed method, we must rank them. 

In other words, when considering two interval numbers; we want to know which one is “greater” or 

“smaller”. Various methods can be found in the literature for ranking interval data, each of which is 

based on a certain theory (for example see [9-14]). In this paper we use Sengupta’s approach [9]. As 

we know, interval data can be shown by their first and last points. But an interval number can be 

shown by its mid-point and its half-width. Sengupta’s approach compares two intervals based upon 

those. Sengupta and Pal introduced the acceptability function to compare two interval numbers D and 

E as follows: 
)()(

)()(
)( EwDw

EmDm

+
−=Α   where )(),( EmDm  are the mid-points of interval numbers D and E, 

and )(),( EwDw  are the half-width of D and E. )(Α  may be interpreted as the ‘‘first interval to be 

inferior to the second interval’’. This procedure states that between two interval numbers with the 

same mid-point, the less uncertain interval will be the best choice for both of maximization and 

minimization purposes.  

2.3. A numerical example 

In this section, the steps of the proposed method are described with a simple example. Suppose that 

there is an MADM problem with six alternatives and four criteria. Data are presented in Table 3.  

Table 3. The data of alternatives. 

 C1 C2 C3 C4 
A1 1451 [2551,3118] [40,50] [153,187] 
A2  843 [3742,4573] [63,77] [459,561] 
A3  1125 [3312,4049] [48,58] [153,187] 
A4  55 [5309,6488] [72,88] [347,426] 
A5  356 [3709,4534] [59,71] [151,189] 
A6  391 [4884,5969] [72,88] [388,474] 

 

As we can see, the first criterion is in the crisp form whereas other criteria are intervals. We want to 

obtain a weight for each criterion by using the proposed approach. In Table 4 the normalized data are 

presented.  

Table 4. The normalized rates. 

C1 C2 C3 C4 
0.343905 [0.088491,0.108578] [0.092623,0.115778] [0.06442,0.343905] 
0.199703 [0.130293,0.159066] [0.145396,0.178244] [0.193756,0.199703] 
0.266601 [0.115092,0.140608] [0.110932,0.134626] [0.06442,0.266601] 
0.012884 [0.184582,0.225841] [0.166397,0.203554] [0.146184,0.012884] 
0.084242 [0.129207,0.15798] [0.136241,0.164243] [0.063429,0.084242] 
0.092666 [0.169924,0.207926] [0.166397,0.203554] [0.163528,0.092666] 
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In the first row of Table 5, interval entropy of each criterion obtained in the second step (S’2) can be 

seen. The closer the entropy of a criterion to 1, the less important the criterion. In the second and the 

third rows of Table 5, the degree of diversification and the weight of each criterion are mentioned. As 

can be seen, the corresponding weight to the first criterion, which is in the crisp form, is interval. As 

mentioned before, since other criteria have interval diversification, as their diversification change 

between intervals, the weight of the first criterion will change within an interval too. Finally we 

applied Sengupta approaches to rank the criteria. Mid-points and half-widths of interval weights that 

are used to obtain the final rank of each criterion by using the acceptability function can be seen in raw 

4 and raw 5 of Table 5. To determine the rank of criterion C1 for example, we use acceptability 

functions for intervals corresponding to C1 and C2, C1 and C3 and also C1 and C4. The obtained 

values  

are –0.9461898, –0.9729971 and 0.35378407, respectively. We see that the rank of C1 is just better 

than the rank of C4. Therefore, C1 locates at rank 3. Other criteria can be ranked in the same way. For 

problems with more complexity, with a small program (for example Excel) we can determine the rank 

of each criterion. In the last row of Table 5, the rank of each criterion can be seen. 

Table 5. Entropy, degree of diversification, weight and rank. 

 C1 C2 C3 C4 

Entropy 0.851761 [0.896549,0.984209] [0.900264,0.988816] [0.794438,0.851761] 
Degree of 
Diversification 

0.148239 [0.015791,0.103451] [0.011184,0.099736] [0.148239,0.205562] 

Weight [0.266143,0.458301] [0.028352,0.319835] [0.020079,0.308348] [0.266143,0.635525] 
Mid-point 0.362222 0.174093 0.164213 0.450834 
Half-width 0.096079 0.145742 0.144135 0.184691 
Rank 2 3 4 1 

3. Fuzzy Shannon’s Entropy 

3.1. Fuzzy Shannon’s entropy based on α -level sets 

In real decision making problem, a lot for data happens to be of fuzzy type. The structure of the 
alternative performance matrix in fuzzy data case is expressed as shown in Table 6, where 

ijx~ is the 

rating of alternative i with respect to criterion j, and jw~  is the weight of criterion j:  

Table 6. Structure of the alternative performance in the case of fuzzy data. 

 Criterion 1 Criterion 2 … Criterion n 
Alternative 1 11

~x  12
~x  … nx1

~
 

Alternative 2 21
~x  22

~x  … nx2
~

 

…
 

…
 

…
 

…
 

…
 

Alternative m 1
~

mx  2
~

mx  … mnx~  

 1
~w  2

~w  … nw~  
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In the case where all fuzzy data are expressed in triangular and trapezoidal fuzzy numbers, several 

approaches have been proposed to deal with the fuzzy data. Fuzzy data will be transformed into 

interval data in this paper by using the α-level sets.  

Definition (α-level sets). The α-level set of a fuzzy variable ijx~  is defined by a set of elements that 

belong to the fuzzy variable ijx~  with membership of at least α  i.e., ( ) { }αμ
α

≥∈= )(|~
~ ijxijij xRxx

ij
.  

The α-level set can also be expressed in the following interval form: 

( ) ( )[ ] { } { }



 ≥∈≥∈= αμαμ

αα
)(|max,)(|min~,~

~~ ijxij
x

ijxij
x

U
ij

L
ij xRxxRxxx

ij
ij

ij
ij

 

where 10 ≤< α . By setting different levels of confidence, namely α−1 , fuzzy data are accordingly 
transformed into different α -level sets ( ){ }10|~ ≤< α

αijx , which are all intervals. Now by using the 

proposed method in the previous section, we can obtain an interval weight for each α-level set. We 
name the entropy weight for the i’th fuzzy criterion in α-level as [ ]αu

i
l
i ww , . Now by using every 

interval ranking method, we can rank all fuzzy criteria in every α-level set. In what follows, we find 

the weights for the criteria of a real MADM problem. 

3.2. Empirical example 

Consider Table 7 in which there are seven alternatives and 16 criteria. Data are taken from [15]. 

Data are fuzzy triangular numbers in the form of (a,b,c), where the first, second and third components 

display the left, center and right side of the related numbers. We used the proposed method for five 

level sets, 0.1, 0.3, 0.5, 0.7 and 0.9. The obtained weights and the corresponding rank of each criterion 

for different α-level sets are presented in Table 8. As can be seen in Table 8, the rankings under 

different α-levels might be quite different. In this situation, the overall ranking cannot be easily 

observed. In order to generate an overall ranking, choosing a trade-off between the precision and the 

confidence is suggested. A higher α means precision of the interval chosen and a lower α means a 

higher confidence in the result. A risk-averse assessor or DM might choose a high alpha because of 

strong dislike of uncertainty (fuzziness), while a risk-taking assessor or DM might prefer a low alpha 

because of seeking risk. In addition, weighted averaging of the interval weights by using alpha as 

weight is suggested. After obtaining the weighted average, ranks can be obtained by different 

approaches, for example Sengupta approach. 

Table 7. The data of alternatives (Empirical Example). 

 A1 A2  A3  A4  A5  A6  A7  

C1  (3.400, 5.400, 
7.400)  

(3.799, 5.800, 
7.800)  

(4.333, 6.333, 
8.266)  

(6.199, 8.199, 
9.600) 

(2.599, 4.599, 
6.599) 

(5.266, 7.266, 
9.066)  

(6.733, 8.733, 
9.866) 

C2  (1.799, 3.799, 
5.800)  

(3.799, 5.800, 
7.800)  

(5.533, 7.533, 
9.266)  (7, 9,10)  (3, 5,7)  (5.533, 7.533, 

9.266)  
(3.799, 5.800, 
7.800) 

C3  (3.799, 5.800, 
7.733)  

(3.799, 5.800, 
7.733)  

(3.799, 5.800,
7.733)  

(6.333, 8.333, 
9.600) 

(3.799, 5.800, 
7.733) 

(5.266, 7.266, 
9)  

(5.133, 7.133, 
8.866) 

C4  (4.066, 6.066, 
8.066)  

(5.800, 7.800, 
9.333)  

(5.800, 7.800, 
9.333)  

(5.800, 7.800, 
9.333) 

(1.933, 3.933, 
5.933) 

(5.800, 7.800, 
9.333)  

(4.066, 6.066, 
8.066) 

C5  (4.599, 6.599, 
8.533)  

(5.266, 7.266, 
8.933)  

(5.266, 7.266, 
8.933)  

(5.266, 7.266, 
8.933) 

(3.133, 5.133, 
7) 

(5.266, 7.266, 
8.933)  

(4.599, 6.599, 
8.533) 

C6  (2.866, 4.866, 
6.866)  

(4.866, 6.866, 
8.666)  

(5.400, 7.400, 
9.066)  

(5.533, 7.533, 
9.199) 

(3.400, 5.400, 
7.400) 

(6.733, 8.733, 
9.866)  

(3.799, 5.800, 
7.733) 
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Table 7. Cont. 

C7  (2.466, 4.466, 
6.466)  

(4.866, 6.866, 
8.666)  

(4.866, 6.866, 
8.666)  

(5.533, 7.533, 
9.133) 

(4.466, 6.466, 
8.399) 

(6.466, 8.466, 
9.600)  

(3.400, 5.400, 
7.333) 

C8  (4.466, 6.466, 
8.199)  

(4.466, 6.466, 
8.199)  

(4.466, 6.466, 
8.199)  

(4.466, 6.466, 
8.199) 

(2.599, 4.599, 
6.599) 

(2.599, 4.599, 
6.599)  

(4.466, 6.466, 
8.199) 

C9  (2.333, 4.333, 
6.333)  

(5.133, 7.133, 
8.866)  

(5.133, 7.133, 
8.866)  

(5.133, 7.133, 
8.866) 

(2.866, 4.866, 
6.866) 

(2.866, 4.866, 
6.866)  

(5.133, 7.133, 
8.866) 

C10  (5.533, 7.533, 
9.199)  

(3.400, 5.400, 
7.400)  

(3.533, 5.533, 
7.466)  

(2.266, 4.199, 
6.133) 

(3.933, 5.933, 
7.933) 

(3.799, 5.800, 
7.800)  

(3.799, 5.800, 
7.800) 

C11  (2.466, 4.466, 
6.466)  

(4.066, 6.066, 
8.066)  

(5.400, 7.400, 
9)  

(5.133, 7.133, 
8.866) 

(6.733, 8.733, 
9.866) 

(6.599, 8.600, 
9.800)  (3, 5,7)  

C12  (2.133, 4.066, 
6.066)  

(4.333, 6.333, 
8.266)  

(6.866, 8.866, 
9.933)  (7, 9,10)  (3.799, 5.800, 

7.733) 
(5.266, 7.266, 
9)  

(5.266, 7.266, 
9) 

C13  (3.400, 5.400, 
7.400)  

(5.400, 7.400, 
9.199)  

(5.800, 7.800, 
9.399)  

(2.200, 4.066, 
6.066) 

(0.866, 2.466, 
4.466) 

(6.733, 8.733, 
9.866)  

(2.866, 4.866, 
6.866) 

C14  (5.133, 7.133, 
8.866)  

(3.400, 5.400, 
7.400)  

(3.533, 5.533, 
7.466)  

(2.133, 3.933, 
5.866) 

(2.733, 4.733, 
6.666) 

(5.133, 7.133, 
8.866)  

(3.533, 5.533, 
7.533) 

C15  (4.599, 6.599, 
8.533)  

(2.733, 4.733, 
6.733)  

(4.199, 6.199, 
8.199)  

(2.333, 4.333, 
6.333) 

(1.133, 2.866, 
4.866) 

(6.333, 8.333, 
9.666)  

(1.533, 3.400, 
5.400) 

C16  (3.666, 5.666, 
7.666)  (5, 7,8.800)  (4.066, 6.066, 

7.933)  
(2.200, 4.199, 
6.199) 

(1.666, 3.400, 
5.333) 

(5.400, 7.400, 
9.066)  

(3.266, 5.266, 
7.266) 

Table 8. The weight and rank for the 16 criteria under different α-level settings. 

 1.0=α  3.0=α  5.0=α  
 ],[ u

i
l
i ww  Rank ],[ u

i
l
i ww  Rank ],[ u

i
l
i ww  Rank 

C1  [0.001106, 2.678872] 9 [0.001686, 1.798292] 9 [0.002775, 1.114091] 9
C2  [0.001769, 2.870533] 8 [0.002652, 1.936326] 8 [0.0043, 1.210006] 7
C3  [0.000477, 2.64328] 11 [0.000737, 1.764269] 12 [0.001227, 1.081136] 14
C4  [0.001264, 2.626005] 13 [0.00187, 1.762589] 13 [0.002994, 1.092323] 11
C5  [0.000371, 2.536726] 15 [0.000538, 1.689477] 16 [0.000844, 1.031383] 16
C6  [0.0009, 2.634344] 12 [0.001372, 1.764558] 11 [0.002255, 1.089002] 13
C7  [0.000914, 2.664014] 10 [0.00138, 1.7839] 10 [0.002252, 1.100421] 10
C8  [0.000553, 2.9384] 7 [0.00083, 1.96164] 7 [0.001347, 1.202042] 8
C9  [0.001173, 2.944939] 6 [0.001726, 1.976302] 6 [0.002749, 1.222171] 6
C10  [0.000727, 3.095741] 5 [0.001058, 2.073005] 5 [0.001672, 1.274704] 5
C11  [0.001338, 2.606493] 14 [0.002036, 1.751892] 14 [0.003342, 1.08908] 12
C12  [0.00143, 2.525463] 16 [0.002167, 1.698879] 15 [0.003546, 1.058105] 15
C13  [0.003731, 3.214919] 3 [0.005511, 2.198219] 2 [0.008824, 1.405822] 2
C14  [0.001095, 3.147682] 4 [0.001593, 2.112584] 4 [0.002515, 1.304852] 4
C15  [0.003194, 3.582455] 1 [0.004714, 2.438022] 1 [0.007556, 1.544431] 1
C16  [0.001725, 3.227949] 2 [0.002508, 2.17573] 3 [0.003956, 1.354434] 3

 7.0=α  9.0=α  

 ],[ u
i

l
i ww  Rank ],[ u

i
l
i ww Rank 

C1  [0.005295, 0.592758] 9 [0.015317, 0.205936] 9
C2  [0.0081, 0.655912] 6 [0.023193, 0.244052] 4
C3  [0.002364, 0.560752] 15 [0.0069, 0.175001] 15
C4  [0.005568, 0.58199] 11 [0.01574, 0.203552] 10
C5  [0.001542, 0.530417] 16 [0.004288, 0.159366] 16
C6  [0.004295, 0.574551] 13 [0.012403, 0.193142] 13
C7  [0.004264, 0.579997] 12 [0.012259, 0.194217] 12
C8  [0.002542, 0.622921] 8 [0.007297, 0.193332] 14
C9  [0.005095, 0.646322] 7 [0.014376, 0.218216] 7
C10  [0.003077, 0.663629] 5 [0.008639, 0.208405] 11
C11  [0.006354, 0.584896] 10 [0.018306, 0.211323] 7
C12  [0.006723, 0.570882] 14 [0.019317, 0.209957] 8
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Table 8. Cont. 

C13  [0.016453, 0.798981] 2 [0.046753, 0.345504] 1
C14  [0.004628, 0.686627] 4 [0.012987, 0.226037] 5
C15  [0.014128, 0.858899] 1 [0.040333, 0.346101] 2
C16  [0.007276, 0.725392] 3 [0.020421, 0.256179] 3

4. Conclusions 

There are several methods for obtaining the weights of criteria of an MADM problem, one of which 

is the entropy method. When data are nondeterministic, like interval data, the method must be 

modified to show the correct result. In this research we extended Shannon’s entropy method for 

interval data. The new method for obtaining weights yields the interval weight for each criterion, and 

in the end we show that when data is deterministic, our method is the same as the conventional 

methods. Also by using α-level method, we obtained weights for criteria in the case of fuzzy data. In 

this paper we did not consider outlier numbers. Investigation of robustness of the method when some 

outliers are present in data will be considered in future works. 
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