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Abstract: In this paper, an analytical expression is developed for the differential entropy of
a sinusoid with a Beta-distributed phase angle. This particular signal model is prevalent in
optical communications, however an expression for the associated differential entropy does
not currently exist. The expression we derive is approximate as it relies on a series expansion
for one of the key terms needed in the derivation. However, we are able to show that the
approximation is accurate (error ≤ 5%) for a wide variety of Beta parameter choices.
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1. Introduction

The concept of entropy as a measure of information was introduced by Shannon [1] and has since
been discussed in many books (e.g., see [2], [3]). Entropy has played a central role in the field of
communications, providing limits on both data compression and channel capacity [2]. Entropy-based
signal processing techniques and analysis have also enjoyed a great deal of success in a diverse set
of applications ranging from ecological system monitoring [4] to crystallography [5]. Successful
application of entropy-based approaches is often predicated on having analytical expressions for the
entropy of a given signal model, particularly in the communications field (e.g., see [6]. For some
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probability distributions expressions for differential entropy are well known (e.g., see Table 17.1 in
reference [2]) while for others such expressions have not yet been derived.

This work derives the differential entropy for harmonic signals with non-uniform (Beta) distributed
phase. In a number of applications the signal under study is harmonic and the primary uncertainty
mechanism giving rise to the probability distribution is the phase noise which can be distributed
non-uniformly. Optical communications strategies, for example, often involve the phase modulation of
a carrier signal and subsequent demodulation at the receiver. The measured photocurrent at the receiver
takes the general form [7]

I(t) = I1

(
1− cos

(
∆θ(t) + ∆φ(t)

))
(1)

where I1 is a scalar amplitude, ∆θ(t) contains the desired information, and ∆φ(t) represents the noise.
In differential phase shift keying, the probability distribution function associated with ∆φ(t) has been
modeled both as a Gaussian and as a uni-modal (but not Gaussian) distribution [7], [8]. Specifically,
Ho [9] found the distribution to be a convolution of a Gaussian and a non-central chi-squared distribution
with two degrees-of-freedom.

An additional situation in which the signal model (1) appears is in interferometric measurement
or detection systems [10]. In these applications the goal is still the same as in communications: to
recover the parameter ∆θ given phase noise ∆φ. The work of Arie et al. considered a Gaussian phase
model [10] while Freitas [11] considered a non-Gaussian phase-noise model. Calculation of the
differential entropy for the case of a sinusoid with non-uniform phase distributions does not appear
in the literature however.

This paper will therefore derive the differential entropy for the sine wave for the case when the
phase angle is Beta-distributed. The Beta distribution is an extremely flexible distribution possessing
finite support and can be made, via appropriate choice of parameters, to approximate a number of
other well-known distributions. The uniform distribution, for example, is a special case of the Beta
distribution. It will be shown, in fact, that for appropriate choice of parameters the differential entropy
for the Beta-distributed phase case reduces to that of the well-known expression for differential entropy
associated with a uniform distributed phase.

2. Mathematical Development and Results

The following notation will be utilized. The differential entropy for a continuous random variable, X ,
with probability density function p(x) is given by

h(X) = −
∫
S

p(x) log[p(x)]dx (2)

where S = {x|p(x) > 0} is the support set of X . Here log usually means log2. If the log is taken to the
base e, the notation he(X) is used. Consider the sinusoidal signal written as:

Y = A sin θ
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where θ is uniformly distributed on [−π, π] (A similar discussion applies if Y = A sin(ωθ) or
Y = A sin(θ + φ), where ω and φ are constants). It is well known that this signal has a probability
density function given by

p(y) =
1

π
√
A2 − y2

− A < y < A (3)

and possesses zero mean and variance σ2 = A2/2 [12]. For this distribution the associated differential
entropy can be computed by introducing the transformation z = y

2A
+ 1

2
which yields the probability

density function

p(z) =
1

π
√
z(1− z)

=
Γ[1]

Γ[1
2
]Γ[1

2
]
z−

1
2 (1− z)−

1
2 (4)

where Γ(·) is the Gamma function. Equation (4) defines the Beta distribution, with differential entropy
given by

he(Z) = ln
(
B
(1

2
,
1

2

))
+ Ψ

(1

2

)
−Ψ

(
1
)

= ln(π)− γ − 2 ln(2) + γ

= ln
(π

4

)
(5)

where B(·, ·) is the Beta function and Ψ(·) is the Digamma function (see Cover & Thomas [2] p. 486)
so

h(Z) = log2

(π
4

)
bits. (6)

Consequently

h(Y ) = h(2AZ − A) = h(2AZ) = h(Z) + log2

(
|2A|

)
= log2

(πA
2

)
(7)

Note that h(Y ) can be positive or negative, depending on the value of A. This is a well known result,
e.g., see [6]. Indeed the entropy of arbitrary Beta distributions is known [13]. Next it will be shown
that the result given by Equation (7) is a special case of the differential entropy of a sine-wave with a
Beta-distributed phase angle.

The probability density function for a Beta-distributed random variable on [0,1] is expressed as:

f(x) =
Γ(η + γ)

Γ(η)Γ(γ)
xγ−1(1− x)η−1 0 ≤ x ≤ 1 (8)

where η > 0, γ > 0.
The transformation θ = π(x− 1

2
) provides

f(θ) =
1

π

Γ(η + γ)

Γ(η)Γ(γ)

(
1

2
+
θ

π

)γ−1(
1

2
− θ

π

)η−1

− π

2
≤ θ ≤ π

2
(9)
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as the Beta distribution on the interval [−π
2
, π

2
]. Consequently, the sine wave Z = A sin θ, where θ is

Beta-distributed on [−π
2
, π

2
] has probability density function:

p(z) =

1
π

Γ(η+γ)
Γ(η)Γ(γ)

(
1
2

+ θ
π

)γ−1 (1
2
− θ

π

)η−1

A cos θ

=
1

π

Γ(η + γ)

Γ(η)Γ(γ)

(
1
2

+ 1
π

sin−1 z
A

)γ−1 (1
2
− 1

π
sin−1 z

A

)η−1

√
A2 − z2

− A < z < A (10)

The differential entropy for Z in nats, is calculated as follows:

he(Z) = −
A∫

−A

1

π

Γ(η + γ)

Γ(η)Γ(γ)

(
1
2

+ 1
π

sin−1 z
A

)γ−1 (1
2
− 1

π
sin−1 z

A

)η−1

√
A2 − z2

. . .

ln

 1
π

Γ(η+γ)
Γ(η)Γ(γ)

(
1
2

+ 1
π

sin−1 z
A

)γ−1 (1
2
− 1

π
sin−1 z

A

)η−1

√
A2 − z2

 dz (11)

Letting w = sin−1
(
z
A

)
, so z = A sinw and dz = A cosw dw, gives:

he(Z) = −

π
2∫

−π
2

1

π

Γ(η + γ)

Γ(η)Γ(γ)

(
1
2

+ w
π

)γ−1 (1
2
− w

π

)η−1

A cosw

[
ln

(
1

π

Γ(η + γ)

Γ(η)Γ(γ)

)

+(γ − 1) ln

(
1

2
+
w

π

)
+ (η − 1) ln

(
1

2
− w

π

)
− ln(A cosw)

]
A coswdw (12)

so

he(Z) = ln[πB(η, γ)]− 1

πB(η, γ)

(γ − 1)

π
2∫

−π
2

(
1

2
+
w

π

)γ−1(
1

2
− w

π

)η−1

ln

(
1

2
+
w

π

)
dw

+ (η − 1)

π
2∫

−π
2

(
1

2
+
w

π

)γ−1(
1

2
− w

π

)η−1

ln

(
1

2
− w

π

)
dw

−

π
2∫

−π
2

(
1

2
+
w

π

)γ−1(
1

2
− w

π

)η−1

ln(A cosw)dw

 (13)

where we have made the substitution for the Beta function B(η, γ) = Γ(η)Γ(γ)
Γ(η+γ)

.
Setting u = 1

2
+ w

π
in the first integral of Equation (13) leads to:

π

1∫
0

uγ−1(1− u)η−1 lnu du
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which is equal to

πB(η, γ)[Ψ(γ)−Ψ(γ + η)] (14)

from formula 4.253(1) of Gradshteyn and Ryzhik [14]. Similarly, setting v = 1
2
− w

π
in the second

integral gives:

πB(η, γ)[Ψ(η)−Ψ(γ + η)] (15)

Finally, setting u = 1
2

+ w
π

in the third integral and noting that sin πu = sin(w + π
2
) = cosw, we obtain

π
2∫

−π
2

(
1

2
+
w

π

)γ−1(
1

2
− w

π

)η−1

ln(A cosw)dw = π

1∫
0

uγ−1(1− u)η−1 ln(A sin πu)du

= π

lnA

1∫
0

uγ−1(1− u)η−1du+

1∫
0

uγ−1(1− u)η−1 ln(sinπu)du


= πB(η, γ) lnA+ π

1∫
0

uγ−1(1− u)η−1 ln(sinπu)du (16)

Collecting terms gives

he(Z) = ln[πAB(η, γ)]− (γ − 1)Ψ(γ)− (η − 1)Ψ(η) + (η + γ − 2)Ψ(γ + η)

+
1

B(η, γ)

1∫
0

uγ−1(1− u)η−1 ln(sinπu)du (17)

The last term is the average of the function ln(sinπu)du over the Beta distribution. Unfortunately, there
does not appear to be an analytic solution for this integral.

A variety of Beta distributions (taken from Hahn and Shapiro, [15]) are shown in Figure 1, along
with the corresponding differential entropy, h, for a sine wave of amplitude A = 1. These entropies are
expressed in bits, so the values of he obtained from Equation (17) are divided by ln 2. The last term
in (17) is calculated by standard numerical integration techniques.
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Figure 1. Beta distributions with different parameter values and the associated entropy
values, h, (in bits).
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We now derive an analytic approximation for the integral term in Equation (17) which is valid when
η ≥ 1 and γ ≥ 1. This technique is based on the following integral found in Gradshteyn and Ryzhik
([14], formula 3.768(11)):

1∫
0

uγ−1(1− u)η−1 sin au du = − i
2
B(η, γ) [1F1(γ; γ + η; ia)− 1F1(γ; γ + η;−ia)] (18)

and its companion (formula 3.768(12)):

1∫
0

uγ−1(1− u)η−1 cos au du =
1

2
B(η, γ) [1F1(γ; γ + η; ia) + 1F1(γ; γ + η;−ia)] (19)

both expressed in terms of generalized hypergeometric series. In fact, 1F1 is defined by:
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1F1(α; β; ζ) =
∞∑
n=0

(α)n
(β)n

ζn

n!
(20)

where (α)n denotes the product α(α+1)(α+2) · · · (α+n−1) for n > 0 and (α)0 = 1. (β)n is similarly
defined. Note that Mathematica also gives expressions for the integrals in (18) and (19); these formulas
are in terms of the 2F3 generalized hypergeometric series and, with a bit of manipulation, can be shown
to be equivalent to the expressions above.

We make use of the power series expansion:

ln(1− x) = −
(
x+

x2

2
+
x3

3
+
x4

4
+ . . .

)
which converges for |x| < 1, and apply it to x = 1 − sin πu since |1 − sin πu| < 1 for 0 < u < 1.
This gives

ln(sin πu) = −
[
(1− sin πu) +

(1− sin πu)2

2
+

(1− sinπu)3

3
+

(1− sin πu)4

4
+ . . .

]
We wish to choose N such that the first N terms of this series converge closely enough to ln(sinπu)

for purposes of calculating the integral in Equation (17). We have found that this approximation will
be valid when η ≥ 1 and γ ≥ 1. If either η or γ is less than unity, then the contribution to the integral
near the endpoints at u = 0 and u = 1 will exceed the precision of the power series convergence near
those points.

Accordingly,

ln(sinπu) ≈ −
[
1− sin πu+

1

2
(1− 2 sinπu+ sin2 πu) +

1

3
(1− 3 sinπu+ 3 sin2 πu− sin3 πu) + . . .

+
1

N

N∑
i=0

(
N

i

)
(−1)i(sinπu)i

]

Collecting the coefficients of like powers of sin πu, we can write ln(sinπu) as

ln(sinπu) ≈ −
N∑
j=0

dj(N)(sinπu)j (21)

where

d0(N) =
N∑
k=1

1

k

and

dj(N) = (−1)j
N∑
k=j

1

k

(
k

j

)
j = 1, 2, . . . , N.
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This is an unusual approximation since it is clear that the coefficients diverge as N → ∞. However,
the coefficients have alternating signs and our calculations show that the approximation is increasingly
good for small values of N up to about N = 50, at which point we begin losing precision. For example
consider the approximation obtained with N = 24 terms. In this case the coefficients are given by the
values shown in Table 1.

Table 1. Coefficients for the approximation of ln(sin(πu)) using N = 24 terms.

j 0 1 2 3 4 5 6 7 8 9 10 11 12
dj(N) 3.776 -24 138 -674.67 2656.5 -8500.8 22433 -49443 91934 -145278 196126 -226922 225346
j 13 14 15 16 17 18 19 20 21 22 23 24
dj(N) 192011 140090 -87167 45967 -20359 7477.6 -2237.1 531.30 -96.38 12.55 -1.043 0.0417

We further expand Equation (21) by expressing powers of sinx as linear combinations of sines and
cosines of multiples of x (see Gradshteyn and Ryzhik, [4] pp. 25-26). In general, for any positive
integer n,

(sinx)2n =
1

22n

[
n−1∑
k=0

(−1)n−k 2

(
2n

k

)
cos(2(n− k)x) +

(
2n

n

)]
(22)

and

(sinx)2n−1 =
1

22n−2

n−1∑
k=0

(−1)n+k−1

(
2n− 1

k

)
sin((2n− 2k − 1)x) (23)

Combining (21), (22), and (23) leads to the conclusion that ln(sinπu) is (approximately) expressible as
a linear combination of terms of the form sin(mπu), cos(mπu), and constant terms. Consequently, the
integral in Equation (17): ∫ 1

0

uγ−1(1− u)η−1 ln(sinπu)du

can be written as a linear combination of integrals of the form:∫ 1

0

uγ−1(1− u)η−1du = B(η, γ)

∫ 1

0

uγ−1(1− u)η−1 sin(mπu)du

∫ 1

0

uγ−1(1− u)η−1 cos(mπu)du

which are given analytically by Equations (18) and (19).
Results for this analytic approximation are shown in Table 2 for two values of N . The last term of

Equation (17) is shown, as well as the resulting value of differential entropy he(Z) in nats. Again, the
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amplitude of the sine wave is taken to be A = 1. Clearly the approximation is a good one, particularly
for N = 45. We find that for a wide variety of Beta parameters the error in the approximation is ≤ 5%.
For larger values ofN , we find that the quality of the results degrade. Specifically, we find that the values
in the range 40 ≤ N ≤ 50 give the best results.

Table 2. Accuracy of the Analytical Approximations of the Entropy for Various Values of
η ≥ 1 and γ ≥ 1.

1
B(η,γ)

∫ 1

0
uγ−1(1− u)η−1 ln(sinπu)du Entropy he(Z) (in nats)

Analytical Approximation Analytical Approximation
η γ Numerical Integration N = 24 N = 45 Numerical Integration N = 24 N = 45

1 1 -0.6931 -0.6677 -0.6793 0.4516 0.4771 0.4654
2 2 -0.3278 -0.3268 -0.3274 0.6919 0.6928 0.6922
3 3 -0.2141 -0.2140 -0.2141 0.6627 0.6628 0.6628
5 5 -0.1264 -0.1264 -0.1264 0.5377 0.5377 0.5377
2 1 -0.6931 -0.6677 -0.6793 0.2584 0.2839 0.2723

1.5 3 -0.4970 -0.4916 -0.4948 0.3747 0.3801 0.3769
1.5 5 -0.7485 -0.7377 -0.7443 -0.1837 -0.1729 -0.1794
3 1.5 -0.4970 -0.4916 -0.4948 0.3747 0.3801 0.3769
5 1.5 -0.7485 -0.7377 -0.7443 -0.1837 -0.1729 -0.1794

3. Conclusions

This paper provides an analytical approximation for the differential entropy of a sine wave with a
Beta-distributed phase angle. The results predicted by the expression are in good agreement with those
obtained via numerical integration for Beta distribution parameters η ≥ 1 and γ ≥ 1. For all parameter
combinations we have looked at, the error in the approximation is ≤ 5% when a reasonable number of
terms are used in the approximation (N = 45). The result for a uniformly-distributed phase angle is
also included as a special case of our more general result. The derived expression may prove useful in
entropy-based calculations for signals in which a non-uniform phase distribution model is appropriate.
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