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Abstract: The method of Generalized Maximum Entropy (GME), proposed in Golan, Judge
and Miller (1996), is an information-theoretic approach that is robust to multicolinearity
problem. It uses an objective function that is the sum of the entropies for coefficient
distributions and disturbance distributions. This method can be generalized to the weighted
GME (W-GME), where different weights are assigned to the two entropies in the objective
function. We propose a data-driven method to select the weights in the entropy objective
function. We use the least squares cross validation to derive the optimal weights. Monte
Carlo simulations demonstrate that the proposed W-GME estimator is comparable to and often
outperforms the conventional GME estimator, which places equal weights on the entropies of
coefficient and disturbance distributions.
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1. Introduction

Jaynes’ Principle of Maximum Entropy provides a method of constructing distributions based on
limited information. This approach, and its generalization through minimization of the cross entropy
by Kullback, Leibler and others, have found wide-spread applications in various fields of science. See,
for example, [1] and references therein. As illustrated by the famous Jaynes’ die problem, this principle
provides a solution to the “ill-posed” inverse problem. Golan, Judge and Miller ([2], GJM henceforth)
generalizes this method to the regression framework. In particular, they reparameterize the coefficients
and disturbances in a linear regression model as discrete random variables on bounded supports. The
sum of entropies of distributions of the coefficients and disturbances are maximized subject to model
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consistency constraints. The coefficients of interest are then calculated as the expectation of random
variables on the prescribed supports under the derived distributions of the entropy maximization. They
further generalize this so-called Generalized Maximum Entropy (GME) method to a weighted one, in
which different weights are assigned to the entropies of coefficient and disturbance distributions.

Although the specifications of the coefficient and disturbance supports can be guided by non-sample
information and preliminary estimates, there is no clear guidance on how to select the weights
placed on the entropies of the coefficient and disturbance distributions. In this study, we propose
a data-driven method of selecting this weight parameter, which balances the two components in the
entropy maximization objective function in an automatic, objective manner. We use the least squares
cross validation in our implement of the proposed method. The results are shown to improve on the
conventional GME estimator under various scenarios.

2. Generalized Maximum Entropy Estimator

In this section, we briefly review the literature on information entropy, the principle of maximum
entropy and its applications to possibly ill-posed inverse problem. We then discuss the generalized
maximum entropy estimator for linear regressions and its statistical properties.

2.1. The ME principle

Let X be a random variable with possible outcome values xk, k = 1, . . . , K and probabilities pk such
that

∑K
k=1 pk = 1. [3] defined the information entropy of the distribution of probabilities, p = {pk}Kk=1

as the measure

H(p) = −
K∑
k=1

pk log pk

where 0 log 0 = 0. The entropy measures the uncertainty of a distribution and reaches a maximum when
p1 = p2 = · · · = pK = 1/K or, in other words, when the probabilities are uniform.

Reference [4] proposed using the entropy concept in choosing the unknown distribution of
probabilities. Under what Jaynes called the maximum entropy principle, one chooses the distribution
for which the information (data) is just sufficient to determine the probability assignment. More
precisely, one chooses the distribution, among those distributions consistent with known information,
that maximizes the entropy. This maximum entropy formulation that is based on the work of [3]
and [4] has been extended by [5], [6] and many others who are identified in the collection of papers
in [7]. Axiomatic arguments for the justification of the ME principle have been made by [1], [8], [9]
and [10]. See GJM for an in-depth review of this literature.

Suppose that E[X] = y. According to the ME principle, one can construct a density of X by
maximizing

H(p) = −p′ logp

subject to the data consistency and normalization-additivity requirements

y = X ′p

p′1 = 1
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where X,p are K × 1 vectors, and 1 is a K × 1 vector of ones. The analytical solution to the entropy
maximization problem can be obtained by the Lagrangian function

L = −p′ logp+ λ(y −X ′p) + µ(1− p′1)

with optimality conditions

∂L/∂p = − log p̂− 1−X ′λ̂− µ̂ = 0

∂L/∂λ = y −X ′p̂ = 0

∂L/∂µ = 1− p̂′1 = 0

We can then solve for p̂, in terms of λ̂ to get

p̂ = exp(−X ′λ̂)/Ω(λ̂) (1)

where
Ω(λ̂) =

∑
k

exp(−x′kλ̂)

is a normalization factor that converts the relative probabilities into absolute probabilities.
Solution (1) establishes a unique non-linear relation between p̂ and y through λ̂. Unlike conventional

regression methods such as the least squares estimator, the ME method can be used for inferences in
the so-called ill-posed problem. For instance, let us look at the famous Jaynes’ die problem. Suppose
that one is given a six-sided die that can take on the values k = 1, 2, . . . , 6, and asked to estimate
the probabilities for each possible outcome given that the average outcome from a large number of
independent rolls of the die was y. The ME formulation of this problem is as follows:

maxH(p) = −
6∑

k=1

pk log pk

subject to

6∑
k=1

pkk = y

6∑
k=1

pk = 1

This is an inverse problem with one observation (the mean) and six unknowns and thus clearly ill-posed.
Using the ME framework, one is able to assign unique probability to each possible outcome. For
example, when the average outcome is 3.5, the ME method assigns equal weights to all six outcomes.
If the average outcome is larger/smaller than 3.5, the ME method “tilts” the distribution smoothly such
that the weight to each side of the die increases/decreases with number of dots on it.

2.2. The GME estimator

GJM generalizes the ME solution to the inverse problem to the regression framework. Consider the
linear model

y = Xβ + e (2)
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where y is a T -dimensional vector of observables,X is a T×K design matrix, and β is aK-dimensional
vector of unknown parameters. The unobservable disturbance vector e may represent one or more
sources of noise in the observed system, including sample and non-sample errors in the data, randomness
in the behavior of the economic agents, and specification or modeling errors.

GJM reparameterize model (2) such that β are represented by expectations of random variables with
compact supports. In particular, one can parameterize βk as a discrete random variable with a compact
support and M possible outcomes zk = [zk1, . . . , zkM ]′, where 2 ≤ M < ∞, and zk1 and zkM are the
plausible extreme values (upper and lower bounds) of βk. We can express βk as a convex combination

βk = z′
kpk

where pk = [pk1, . . . , pkM ]′ is an M -dimensional vector of positive weights that sum to one. Further,
these convex combinations may be assembled in matrix form so that β may be written as

β = Zp =


z′

1 0 · 0

0 z′
2 · 0

· · · ·
0 0 · z′

K



p1

p2

·
pK


where Z is a K ×KM matrix and p is a KM -dimensional vector of weights.

Further assuming that e is a random vector with finite location and scale parameters, one can represent
his uncertainty about the outcome of the error process by representing each et as a finite and discrete
random variable with 2 ≤ J < ∞ possible outcomes. Suppose that there exist sets of error bounds, vt1
and vtJ , for each et so that 1− Pr[vt1 < et < vtJ ] may be made arbitrarily small. One can then write

et = v′
twt

where vt = [vt1, . . . , vtJ ]′ is a finite support for et, and wt = [wt1, . . . , wtJ ]′ is a J-dimensional vector
of positive weights that sum to one. The T unknown disturbances may be written in matrix form as

e = V w =


v′

1 0 · 0

0 v′
2 · 0

· · · ·
0 0 · v′

T



w1

w2

·
wT


where V is a T × TJ matrix and w is a TJ-dimensional vector of weights, which are strictly positive
and sum to one for each t.

Using the reparameterized unknowns, β = Zp and e = V w, one can rewrite model (2) as

y = Xβ + e = XZp+ V w

The Generalized Maximum Entropy (GME) estimator is then defined by

maxH(p,w) = −p′ logp−w′ logw (3)
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subject to

y = XZp+ V w

1K = (IK ⊗ 1′
M )p

1T = (IT ⊗ 1′
J)w

This optimization problem can be solved using the Lagrangian method. The Lagrangian equation
takes the form

L = H(p,w) + λ′[y −XZp− V w] + θ′[1K − (IK ⊗ 1′
M )p] + τ ′[1T − (IT ⊗ 1′

J)w]

where λ, θ, τ are T × 1, K × 1, T × 1 vectors of Lagrangian multipliers respectively. Solving the first
order conditions yields

p̂km =
exp(−zkmX ′kλ̂)

Ωk(λ̂)

ŵtj =
exp(−vtjλ̂)

Ψt(λ̂)

where

Ωk(λ̂) =
M∑
m=1

exp(−zkmX ′kλ̂)

Ψt(λ̂) =
J∑
j=1

exp(−vtjλ̂)

Furthermore, this constrained optimization problem can be rewritten as an unconstrained one, in which
the objective function takes the form

L(λ) = y′λ−
K∑
k=1

log(Ωk(λ))−
T∑
t=1

log(Ψt(λ)) ≡M(λ) (4)

The minimal value function, M(λ), may be interpreted as a constrained expected log-likelihood
function. This dual version of the GME problem simplifies the estimation considerably. The analytical
gradient of the dual problem

∇λM(λ) = y −XZp− V w

is simply the model consistency constraint. The Hessian matrix ofM(λ) takes the form

∇λλ′M(λ) = −XZ∇λ′p(λ)− V ∇λ′w(λ) = −XΣZ(λ)X ′ − ΣV (λ) (5)

where ΣZ(λ) and ΣV (λ) are covariance matrices for distributions p(λ) and w(λ) respectively. Both
covariance matrices are strictly positive definite for any interior solution, (p̂, ŵ), which ensures the
uniqueness of the solution.
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2.3. Statistical properties of GME

Under some mild regularity conditions, GJM establish large sample properties of the GME estimation.
They also analyze its small sample properties, both analytically for some special cases and numerically
using Monte Carlo simulations.

The noise term, V w, effectively “loosens” the model constraints for a given set of observations, and
thus an interior solution is more likely. On the other hand, because of the presence of ΣV (λ), which
is positive definite, in the Hessian matrix (5), the GME estimator behaves like the ridge estimator in the
sense that all coefficients are shrunk toward zero. Consider, for simplicity, the case where var(e) = σ2IT

andX is orthogonal. The approximate covariance matrix of the GME estimate β̂ is

σ2ΣZ(ΣZ + ΣV )−2ΣZ

The finite sample performance of this estimator clearly depends on the specification of the error support
V . Intuitively, the wider is V , the larger is the degree of shrinkage toward zero. GJM proposed to use
the 3σ rule for the error support, where σ refers to the standard deviation of the disturbance. In practice,
σ is replaced by its consistent estimator, such as that based on the OLS regression.

A second factor that may influence the finite sample performance of the GME estimator is the
specification of the coefficient support, Z. The restrictions imposed on the parameter space through
Z reflect prior knowledge about the unknown parameters. However, such knowledge is not always
available, and researchers may want to entertain a variety of plausible bounds on β. As the parameter
supports are widened, the GME risk functions modestly shift upward reflecting the reduced constraints
on the parameter space. Hence, wide bounds may be used without extreme risk consequences, if one’s
knowledge is minimal, to ensure thatZ contains β. Intuitively, widening the bounds increases the impact
of the data and decreases the impact of the support. On the other hand, narrowing the parameter supports
only improves the risk as long as the true parameter vector is well in the interior of the support. GJM
conducted Monte Carlo simulations on the impact of Z by using different supports. They found modest
impacts of varying the parameter support on the estimation.

For both the coefficient and error supports, we need to select the number of points, M and J ,
respectively. Since the variances of the distributions p(λ) and w(λ) depend on the specifications of
the supports, the dimension of the supports may affect the sampling properties of the estimator. Adding
more points to the support of Z should decrease the variance of the associated point estimator. On
the other hand, it increases the computational burden of the optimization problem. GJM reported an
experiment showing that the estimator improves as the number of support points M increases for small
and modest M . The greatest improvement is observed when M is increased from three to five.

GJM demonstrate various merits of the GME estimator, especially its resistance to multicollinearity
problem. The implementation of the GME estimation, however, requires several “human” decisions
which are not required in the OLS. GJM provides some guidance on the specifications of these factors.
First, non-sample information can be useful. For example, it is not uncommon in practice that the sign,
range or approximate multitude of coefficients in question are known a priori. This information provides
useful guidance on the specification of the coefficient support. Similarly, non-sample information
regarding the error distribution is sometimes available. For instance, it is well known that the error
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distributions in financial studies have fat tails. Accordingly, one can use a wider error support than the
usual 3σ rule does.

A second useful principle is adaptation. Generally any consistent estimators can provide useful
information on the coefficients and the distribution of the disturbance. Thus, one can tailor his
specification of the coefficient and error supports based on preliminary consistent estimators. For
example, to use the usual 3σ rule, one can replace σ with a consistent estimator. In the spirit of adaptive
estimation, one can further tailor the error support such that it reflects characterizations of the error
distribution, such as skewness, fat-tailedness, and so on.

Lastly, the maximum entropy problem can be further generalized to the minimum cross entropy
problem. The cross entropy, or Kullback-Leibler information criteria, for two distributions, p and q
(with a common support) is defined as

D(p, q) =
∑
k

pk log(pk/qk)

The cross entropy measures the discrepancy between p and q. Suppose in addition to the model
consistency requirement, prior information is available in the form of distributions of probabilities on
the discrete supports for the coefficients and disturbances, it can be incorporated into the estimation
by minimizing the cross entropy subject to the model consistency and additivity constraint. The ME
principle is a special case of the minimum cross entropy principle, with the prior distributions set
to constant.

3. The Weighted GME Estimator with a Data-driven Weight

3.1. The weighted GME estimator (W-GME)

As discussed above, the specifications of the coefficient and error supports may affect the GME
estimation results. In addition, the specification of the dual loss objective function (3) can also influence
the estimator. By accounting for the unknown signal and noise components in the consistency relations,
the GME estimates of the unknown parameter β and disturbances e are jointly determined. As a result,
the entropy based objective function reflects statistical losses in the sample space (prediction) and in
the parameter space (precision). It is noted, however, the objective function (3) implicitly places equal
weights on the parameter and error entropies.

To avoid arbitrarily assigning weights to the two loss components, GJM suggested a weighted GME
(W-GME) estimator with the following objective function

H(p,w; γ) = −(1− γ)p′ logp− γw′ logw (6)

where γ ∈ (0, 1) controls the weights given to the two entropies. The corresponding unconstrained
weighted GME(γ) objective function is

M(λ; γ) = y′λ− (1− γ)
K∑
k=1

log(Ωk(λ; γ))− γ
T∑
t=1

log(Ψt(λ; γ))
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One can then show that

p̂km =
exp(−zkmX ′kλ̂/(1− γ))

Ωk(λ̂; γ)

ŵtj =
exp(−vtjλ̂/γ)

Ψt(λ̂; γ)

where λ̂ are functions of γ, and

Ωk(λ̂; γ) =
M∑
m=1

exp(−zkmX ′kλ̂/(1− γ))

Ψt(λ̂; γ) =
J∑
j=1

exp(−vtjλ̂/γ)

GJM illustrated that the entropy optimization results are affected by γ. Furthermore, they reported
that the effect of the weight on the estimation results cannot be determined unambiguously even for some
very simple cases.

3.2. W-GME with a data-driven weight

GJM show that one can use non-sample information and preliminary estimates to aid the specification
of the coefficient and error supports. The prior distributions on these supports can be further “tilted”
exponentially by non-uniform prior distributions incorporated through the minimum cross entropy
framework. On the other hand, there is no clear guidance on the selection of γ in the W-GME problem.
In this section, we propose a data-driven method to select γ for the W-GME estimator.

Specially, we use the method of least squares cross-validation (LSCV), which is widely used in
nonparametric estimations. This method is implemented as follows:

1. Given the coefficient support Z, disturbance support V , and weight γ ∈ (0, 1), estimate β using
the W-GME method (6), on T − 1 observations, with the tth observation omitted for t = 1, . . . , T .
Denote each estimate β̂−t(γ). For simplicity, we use uniform prior distributions for Z and V .

2. Calculate the squared prediction error ŝt(γ) = (yt − xtβ̂−t(γ))2 for each t.

3. Select γ such that it minimizes the sum of the squared prediction errors
∑T

t=1 ŝt(γ).

The LSCV method is known to produce asymptotically consistent estimators for the optimal
smoothing or regularization parameter ([11], [12] and [13]). By doing so, we allow the data to specify
the weight for the coefficient uncertainty and the disturbance uncertainty.

4. Monte Carlo Simulations

To investigate the finite sample performance of the proposed W-GME method, we conducted some
Monte Carlo simulations. The purpose of these experiments is to compare the W-GME with the
conventional GME, which places equal weights on the entropy of the coefficient distribution and that
of the disturbance distribution. It is not intended as an investigation of the GME method, where
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careful selection of the support for the coefficient and the disturbance is crucial to its performance.
For simplicity, we choose not to use non-sample information in the specification of coefficient and error
support, and to use the simple GME approach, or, uniform prior distributions in the minimum cross
entropy framework.

Following GJM’s Monte Carlo simulation setup, we investigate the performance of the W-GME on
linear models where the design matrices vary in degree of multicollinearity. Recall that the GME is
similar to the ridge regression as a robust estimator against multicollinearity. Thus we are interested in
its performance in the presence of multicollinearity.

We measure a matrix’s multicollinearity using its condition number, which is the ratio between its
largest and smallest eigenvalues. Let X be a T × 4 matrix which is generated randomly from an i.i.d.
standard normal distribution. To form a design matrix with a desired condition number, κ(X ′X) = µ,
the singular value decomposition of X = QLR was recovered. Then, the eigenvalues in L were
replaced with the vector

a =

[√
2

1 + µ
, 1, 1,

√
2µ

1 + µ

]
which has length K = 4. The new design matrix, Xa = QLaR, is characterized by κ(X ′

aXa) = µ,
and the condition number may be specified a priori. 1 We then set

y = Xaβ + e

where β = [2, 1,−3, 2]′, and e are T i.i.d. random errors.
In the Monte Carlo simulations, we consider three estimators: the OLS, GME and W-GME. We

consider sample size n = 30 and n = 50. 500 samples are generated for each case. We use the LSCV to
select the optimal weight γ. In particular, we use a line search over the interval (0, 1) to locate the γ that
minimizes the squared prediction errors.2

4.1. Regressions with normal errors

Firstly, we assume that e are iid standard normal random errors. For
both GME estimators, we use a five-point support Z = [−z,−z/2, 0, z/2, z]
for z = 10, 20, 30, 50, 100 respectively. For the error support, we set
V = [−σ̂,−σ̂/2, 0, σ̂/2, σ̂] × 3, where σ̂ is the standard error of the OLS residuals. We report
the Mean Squared Errors (MSE) of coefficient estimates, ||β̂ − β||2, in Table 1. When µ = 1, the MSE
of the OLS is close to 4, its theoretical value, in all cases. Not surprisingly, when X is orthogonal, the
OLS outperforms both GME estimators, which are shrinkage estimators and thus biased. On the other
hand, in most cases where µ > 1, the two GME estimators have smaller MSEs than the OLS does.
This is consistent with the famous Stein’s phenomenon that the OLS is dominated by some shrinkage
estimators in multiple linear regressions.

Comparing the GME and W-GME, we note that when z = 10, or the coefficient support is defined on
[−10, 10], the MSEs of the GME are smaller than those of the W-GME. This result suggests that when
a relatively precise coefficient support is used, the GME estimator has a smaller risk. Intuitively, with a
narrow support for the coefficients that covers the true values, the coefficients can be estimated precisely,
regardless the choice of the weight γ in a weighted GME framework. On the other hand, the potential
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benefit of the W-GME is largely offset by the additional variation entailed by the data-driven method
of selecting the entropy weight γ. However, in practice, the improvement due to narrow coefficient
supports is only obtainable if the supports contain the true unknown coefficient values. Without prior or
non-sample information, using a narrow coefficient support increases the risk of missing the true values
and renders the estimator inconsistent.

When z ≥ 20, the W-GME outperforms the GME considerably. Furthermore, the performance
of the W-GME relative to that of the GME improves with both the width of coefficient support and
the condition number. The average ratios between the MSEs of the W-GME and those of the GME
across two sample sizes are respectively [1.11, 0.87, 0.78, 0.69, 0.70] for z = [10, 20, 30, 50, 100], while
these ratios are respectively [1.00, 0.87, 0.76, 0.69] across the condition numbers µ = [1, 10, 20, 50]. In
addition, it is noted that the performance of the W-GME appears to stabilize for z ≥ 50. In other words,
its performance seems to be affected little when a wide coefficient support is further widened. In contrast,
the MSE of the GME increases with the coefficient support and reaches the level of that of the OLS for
z ≥ 50. Given the fact that a narrow coefficient support increases the risk of inconsistency, the stability
of the W-GME under a wide range of coefficient supports is highly desirable.

Table 1. MSE of regressions with normal errors.

n = 30 n = 50

z κ OLS W-GME(γ̂) GME OLS W-GME(γ̂) GME
10 1 3.84 4.06 (0.26) 3.57 3.84 4.26 (0.24) 3.67

10 7.38 5.97 (0.24) 5.37 6.57 5.77 (0.23) 4.91
20 10.83 7.29 (0.24) 6.78 10.63 7.06 (0.22) 6.49
50 19.85 8.28 (0.23) 7.99 21.29 8.15 (0.23) 7.50

20 1 3.94 4.25 (0.08) 4.03 4.07 4.28 (0.08) 4.18
10 8.35 6.81 (0.11) 7.59 7.55 6.55 (0.09) 7.27
20 13.00 8.72 (0.11) 10.69 13.85 8.63 (0.10) 11.13
50 27.58 12.81 (0.14) 16.05 25.91 11.88 (0.12) 16.27

30 1 3.86 4.00 (0.04) 3.92 4.10 4.42 (0.04) 4.53
10 7.73 6.07 (0.05) 7.49 8.11 6.73 (0.05) 8.21
20 13.31 8.29 (0.07) 12.11 12.35 7.90 (0.06) 11.33
50 26.89 12.67 (0.08) 21.09 26.70 12.75 (0.08) 21.01

50 1 4.16 3.89 (0.02) 4.28 3.92 3.98 (0.02) 4.35
10 7.44 5.55 (0.02) 7.58 8.70 6.91 (0.02) 9.90
20 13.14 8.19 (0.03) 12.98 12.78 8.21 (0.03) 13.58
50 28.40 13.87 (0.05) 26.65 31.14 15.29 (0.04) 28.83

100 1 4.02 3.82 (0.02) 4.15 3.74 4.39 (0.01) 4.74
10 7.71 6.04 (0.02) 7.93 8.03 6.64 (0.01) 8.81
20 12.21 7.93 (0.02) 12.14 12.77 8.32 (0.02) 13.47
50 26.33 13.52 (0.03) 26.38 26.98 12.84 (0.02) 27.20
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Next we turn our attention to the empirically determined weight γ̂ in the weighted entropy objective
function. For each experiment, the average γ̂ is reported in parenthesis for the W-GME estimator. We
observe two note-worthy features. First, γ̂ increases generally with µ. Recall that γ is the weight placed
on the entropy of the disturbance distributions. Thus the more severe the “ill-posed” problem is, the
larger is the weight selected by the LSCV. In other words, the data-driven method automatically relaxes
the model consistency constraints when the underlying linear inverse problem associated with the OLS
becomes problematic. Second, γ̂ decreases with the width of the coefficient support across all condition
numbers. Intuitively, the wider is the coefficient support, the weaker are the restrictions imposed by
the GME estimation procedure. Correspondingly, the smaller is the need to regulate the entropy, or
uncertainty, of the disturbance distribution.3

Lastly, we note that the overall performance of the estimators in question remains quite stable when
the sample size is increased from 30 to 50. The average ratios, across all cases, in the MSE between
the W-GME and GME are 0.834 and 0.828 respectively for n = 30 and 50. It is well-known that
data-driven methods normally require a sizeable sample to attain its theoretical advantages. Nonetheless
our results demonstrate that the W-GME can outperform the GME with quite small sample sizes under
various scenarios.

Table 2. MSE of regressions with χ2(4) errors.

n = 30 n = 50

z κ OLS W-GME(γ̂) GME OLS W-GME(γ̂) GME
10 1 3.98 3.41 (0.42) 2.81 4.08 3.43 (0.44) 2.73

10 8.07 5.64 (0.41) 4.18 7.75 5.06 (0.45) 3.67
20 12.17 6.50 (0.40) 4.99 12.16 5.88 (0.43) 4.69
50 29.33 7.70 (0.44) 5.66 27.46 7.09 (0.44) 5.55

20 1 4.03 3.54 (0.18) 3.18 3.92 3.39 (0.19) 2.92
10 8.53 5.66 (0.19) 5.40 7.79 5.26 (0.20) 4.83
20 12.12 7.27 (0.18) 6.76 12.58 7.16 (0.21) 6.08
50 28.15 11.22 (0.22) 9.23 28.61 10.82 (0.22) 8.29

30 1 4.21 3.62 (0.11) 3.44 4.34 3.60 (0.10) 3.46
10 8.09 5.66 (0.12) 5.82 8.41 5.85 (0.12) 6.05
20 13.60 7.58 (0.12) 9.00 13.76 7.91 (0.13) 8.76
50 26.99 11.45 (0.15) 13.06 25.87 10.95 (0.15) 11.57

50 1 4.11 3.46 (0.05) 3.35 3.90 3.23 (0.04) 3.14
10 8.58 5.48 (0.05) 6.79 7.76 5.36 (0.05) 6.01
20 13.15 6.97 (0.06) 10.27 13.34 7.39 (0.06) 9.89
50 27.81 11.16 (0.08) 17.84 28.01 11.28 (0.08) 17.47

100 1 3.90 3.02 (0.02) 3.45 4.00 2.94 (0.01) 3.25
10 7.55 4.70 (0.02) 6.35 8.54 5.12 (0.02) 6.65
20 13.62 6.86 (0.02) 11.49 13.52 6.94 (0.03) 10.81
50 28.27 11.29 (0.04) 22.14 29.26 12.03 (0.04) 21.93
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Table 3. MSE of regressions with t(3) errors.

n = 30 n = 50

z κ OLS W-GME(γ̂) GME OLS W-GME(γ̂) GME
10 1 3.84 4.09 (0.47) 3.61 3.36 4.71 (0.44) 4.02

10 7.01 5.68 (0.44) 4.98 6.35 6.47 (0.42) 5.49
20 10.65 6.41 (0.44) 5.47 10.31 7.31 (0.42) 5.91
50 20.90 7.03 (0.44) 6.28 20.58 7.98 (0.43) 6.93

20 1 3.84 4.11 (0.21) 4.54 3.70 6.91 (0.18) 6.92
10 7.46 6.07 (0.21) 6.30 7.18 8.12 (0.20) 8.95
20 11.02 6.83 (0.21) 7.48 11.11 9.70 (0.20) 10.69
50 24.31 9.98 (0.24) 9.37 24.20 11.64 (0.22) 12.03

30 1 4.60 4.33 (0.21) 5.39 3.59 6.23 (0.18) 6.50
10 7.83 5.91 (0.21) 7.82 7.19 9.00 (0.20) 10.77
20 12.03 7.73 (0.21) 9.84 11.38 9.71 (0.20) 13.32
50 23.92 10.75 (0.24) 13.89 25.65 15.82 (0.22) 19.98

50 1 5.64 5.29 (0.05) 7.15 3.78 8.32 (0.04) 8.76
10 7.86 5.74 (0.05) 9.28 7.80 12.54 (0.05) 17.37
20 13.41 8.18 (0.06) 13.91 11.89 9.69 (0.05) 16.53
50 24.07 11.05 (0.08) 21.30 25.82 20.27 (0.08) 32.39

100 1 3.96 4.01 (0.02) 5.19 3.80 11.75 (0.01) 12.88
10 6.92 5.33 (0.02) 8.68 8.31 14.55 (0.02) 19.93
20 14.25 7.78 (0.02) 17.64 11.64 17.64 (0.02) 25.50
50 32.09 14.24 (0.03) 33.82 28.35 41.85 (0.04) 59.32

4.2. Regressions with non-normal errors

Next we investigate the performance of the proposed estimator when the errors are generated from
some non-normal distributions. Using the same sample design outlined above, we generated the errors
instead from a χ2(4) and a t(3) distribution. The χ2(4) errors were centered by subtracting the mean
(i.e., 4), and all drawings were scaled to have unit variance by dividing each by the associated standard
deviation (

√
3 and

√
8 respectively). Under a χ2 error distribution, we set the disturbance support to

V = [−σ̂,−σ̂/2, 0, σ̂, 2σ̂] × 3 to account for the skewness of the χ2 distribution.4 When the
disturbance terms were generated from the t distribution, instead of using the 3σ rule, we set
V = [−σ̂,−σ̂/2, 0, σ̂/2, σ̂]× 5 to account for the fat-tailedness of the error distribution.

The estimation results for the χ2 case are reported in Table 2. The overall pattern is similar to that
with normal errors. With narrow coefficient supports, the GME has a smaller MSE than the W-GME.
On the other hand, when z ≥ 30, the W-GME outperforms the GME, and the performance gap generally
increases with the condition number. The performance is quite similar between n = 30 and n = 50. On
the other hand, the average γ is larger than that for normal error case, indicating a heavier penalty for the
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uncertainty in error distribution when it is skewed.
Lastly, Table 3 reports the results for t error distributions. With n = 30, the overall pattern is again

similar to those of the first two cases. A noteworthy difference is that the MSEs for the two GME
estimators increase substantially when the sample size is raised to 50. In contrast, the OLS does not
seem to be affected by the change in sample size. Nonetheless, except when the condition number is
small or a very wide coefficient support is used (i.e., z = 100), the W-GME still outperforms the OLS.
We also note that the weight γ is larger than that chosen under normal errors.

5. Concluding Remarks

The Generalized Maximum Entropy (GME) estimator is a robust estimator that is resistant to
multicollinearity. Like other robust estimators, the estimator requires specification of some “tuning”
parameters. In particular, it requires users to specify discrete supports for the coefficients and
disturbances. In a more general weighted GME framework, one also needs to specify a weight that
determines the relative weight placed on the entropies of the coefficient and error distributions. Although
the specifications of the coefficient and error supports can be guided by non-sample information
and preliminary estimates, there is no clear guidance on the selection of the weight in a weighted
GME estimation.

In this study, we have presented a weighted-GME estimator with a data-driven weight. The
conventional GME estimator places equal weights on the entropies of coefficient and disturbance
distributions. Instead, we proposed to use the method of least squares cross validation to select this
weight in a data-driven manner. We demonstrate numerically that the proposed W-GME estimator
provides superior performance under various scenarios. Investigation on combining the data-driven
selection of the weight parameter and automatic specification of the supports for the coefficients and
errors to achieve adaptiveness and further improvement shall be of interest for future studies.

Notes

1. A high condition number indicates a high degree of multicollinearity, and vise versa. A condition
number of one signifies that the columns of the matrix in question are orthogonal to each other.

2. We searched over an equally-spaced interval ρ = [log(0.01), log(0.01) + h, log(0.01) +

2h, . . . , log(0.99)], where h = (log(0.99)− log(0.01))/15 and γ is set to exp(ρ).
3. Recall that the GME estimator implicitly assumes a uniform prior distribution for the error support.

Since we use a symmetric error support centered at zero, a uniform distribution over this support leads
to a zero disturbance. A wider coefficient support means less restrictive constraints on β and thus the
a smaller e = y− xβ in absolute value. With the error terms more likely to be close to zero, the need
to regulate the entropy of error term distributions is less.

4. A non-uniform prior distribution u = [4/15, 4/15, 1/5, 2/15, 2/15]′ is used for the error support such
that the prior distribution is centered at zero.
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