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Abstract: Self-assembly is a key phenomenon whereby vast numbers of individual
components passively interact and form organized structures, as can be seen, for example,
in the morphogenesis of a virus. Generally speaking, the process can be viewed as a spatial
placement of attractive and repulsive components. In this paper, we report on an investigation
of how morphology, i.e., the shape of components, affects a self-assembly process. The
experiments were conducted with 3 differently shaped floating tiles equipped with magnets
in an agitated water tank. We propose a novel measure involving clustering coefficients,
which qualifies the degree of parallelism of the assembly process. The results showed that
the assembly processes were affected by the aggregation sequence in their early stages, where
shape induces different behaviors and thus results in variations in aggregation speeds.
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1. Introduction

Inspection of the microscopic world of living systems often confronts us with the core mystery of
its amazing capability. In particular, self-assembly is considered to be one of the principal aspects
that one observes in living systems, on the micro-scale [1]. Some fundamental phenomena, such
as the morphogenesis of viruses, offer a key to an understanding of the central issues of “living”
systems. Knowledge from molecular biology reminds us of the importance of the fertile encoding
capability of molecular bonding; it is noteworthy that no matter how complicated the microscopic
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systems seem, they exploit non-covalent bonds (hydrogen bonds, ionic bonds, and van der Waals
attractions) as interaction forces and somehow achieve an amazing specificity in docking with other
selected molecules. Considering the fact that molecules exploit the bonding affinity level for maintaining
connections, this encoding power is noteworthy. The trick of distributing bonding sites around the body,
and having flexible switches to change the morphology are considered to be hidden in the shape and
the dynamics [2, 3]. It is therefore necessary to take stochasticity and morphology into account when
studying these issues.

In contrast to the variety of sets of compounds so far revealed, however, discussions of the emergence
of life from local interactions of components still gravitate around in-depth descriptions and modeling
of interactions, e.g., through steady-state representations such as reaction pathways. The intricate web
of reaction networks provides us with the requisite level of complexity, and the global picture suggests
to us the importance of understanding the dynamics from the perspective of distributed systems [4].
Understanding of the main global features of the dynamics of self-assembly has not yet been achieved.
As the metaphor the mechanism of a single cell is more complex than a Boeing 777 implies, it is
necessary to tackle the issue from another direction—the so called synthetic approach. Efforts are
required to abstract higher level design principles to clarify the actual dynamic processes underlying
these interactions.

There have been numerous attempts undertaken in various fields. A pioneering approach was taken
by Penrose about 50 years ago [5]. He developed a mechanical self-replication model, which operated
in a stochastic manner. Aggregation patterns of passive self-assembly were raised into prominence and
employed by Hosokawa et al. [6, 7]. He examined the effect of active elements on the aggregation.
Whitesides and his group investigated many self-assembling and self-organizing phenomena at different
scales [8–11] and categorized them into static, dynamic, templated, and biological self-assemblies,
depending on the energy dissipation. Seminal ideas about conformational switching were proposed
by Saitou [12]. He proposed a reactive mechanism for 1D self-assembly and assessed the functionality
with kinetic rate equations. The units he designed feature mechanical internal states, such that the units
react differently to their inputs, whereas the system is purely passive with respect to physical causation.

By mimicking tools and methods from nature, many advances have been made in utilizing
self-assembly for the fabrication of structures at molecular scales [13–18]. An important fact to stress
here is that the models are grounded in real entities; thus they provide us with effective ideas. Also, the
capacity level of the number of components that can be treated in each experiment is a certain advantage.
Concerns that we have to confront include the difficulty of controllability, that is, the lack of a capability
to directly adjust the level of activity.

To date, few stochastic self-assembling robots have been developed in the field of modular
robotics (White et al. [19, 20]; Shimizu et al. [21]; Bishop et al. [22]; Griffith et al. [23]; Nagy et
al. [24]; Miyashita et al. [25, 26]). In contrast to the advantage of such an approach—the possibility of
its controllability—technological constraints such as heavy and big motors or large power consumption
prevent the systems from being highly functional. Also, a certain amount of state-based control is
required for the assembly process, which results in systems less suited to their complex environments.

In this paper, we use a simple yet effective model for the analysis of self-assembly—tiles with magnets
in a stochastic environment—and examine the aggregation patterns as a function of the shapes of tiles.
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We characterize the diverse figures of molecules by the combination of shapes and magnetic forces.
Besides we introduce a novel notion, the Degree of parallelism (DOP) as a measure of self-assembly and
experimentally confirm its validity.

The paper is organized as follows. In Section 2., we describe the tiles and the experimental setup.
Then, in Section 3., we describe the interaction mechanism, in particular the magnetic interaction,
and introduce measures to quantify the self-assembly process. In Section 4., we present experimental
results and a detailed analysis. This is followed by a discussion in Section 5. and Section 6. concludes
the paper.

2. The Experimental Self-Assembly Platform

In order to evaluate the role of morphology in the self-assembly process, we constructed an
experimental platform, which consisted of floating tiles equipped with magnets, and a water tank with
two vibrators (4 Hz, 6.5 V, 0.5 A) that induced turbulence on the water surface and thus provided
randomness (Figure 1 b, total weight:1.3kg). We developed tiles with three different shapes (Figure 1 a):
circles, squares, and squares with rounded corners. They were of identical weight (0.2 g), surface area
(484 mm2) and thickness (2 mm). These shapes were selected after noting that a change in one variable
coding the morphology, e.g., surface area, tended to affect the other dependent variables, e.g., diameter,
shortest distance between edges and magnets.

On each tile, one or two (for the double magnet type) vertically oriented magnets were attached.
The double magnet type was constructed to investigate the effects of magnetic strength (as depicted in
Figure 1 b right, “second magnet”). On the water, a floating tile whose magnet pointed upwards attracted
the other type whose magnet pointed downwards, whereas tiles with the same type of magnets repelled
each other. Colors were introduced to distinguish between attracting and repelling tiles and to facilitate
visual inspection of the self-assembly progress. For example, the magnet on the green circular tile in
Figure 1 a is oriented opposed to the magnet on the yellow circular tile. Exploiting these characteristics,
we examined how such multiple tiles formed a structure through the interactions. For each trial, we
initialized the positions of the tiles. Using a spacer, 10 tiles of the same color were placed in one side of
the tank, and 10 tiles of the other color were placed at the opposite side. Then, the spacer was removed
and the vibrators were turned on to agitate the water surface. Now the tiles with similarly oriented
magnets (or of the same color) would repel, while opposing magnets (of different colors) would attract
and thereby form a lattice structure. We defined the goal configuration as a single lattice formation, in
which more than 90% of the tiles touched opposing tiles. The magnitude of the agitation was set such
that it induced sufficient mobility in the tiles but also such that no two tiles overlapped on the water.

3. Interaction Mechanisms and Measures of the System

Long range interactions between two tiles are independent of their shapes and consist of the force
between the magnets on the tiles. Because the magnets are oriented in parallel, there is no magnetic
torque between the magnets. We consider the magnets as dipoles with a magnetic moment m.
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Figure 1. The experimental setup (unit: mm). a) 3 different tiles. b) Agitated water tank.
Stirring the water generated random, fluctuating forces, providing the system with the energy
necessary for assembly.
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3.1. Magnetic potential energy

The magnetic potential φj(r) at a position r from the magnetic moment mj is given by

φj(r) =
µ0

4π

mj · r̂
r2

(1)

where µ0 = 4π × 10−7Tm/A is the permeability of free space, and r̂ ≡ r/|r| assuming that |r| = r is
much larger than the size of the magnet. The magnetic flux of the dipole is then found as

Bj = −∇φj (2)

and the magnetic potential energy Uij acquired by a second dipole mi placed in the field of mj is given
by

Uij = −mi ·Bj (3)

Then, the force between the two dipoles is found by differentiating (3) with respect to r.
Since in our case the magnets are identical, we have |mi| = |mj| = m, and because they are parallel,
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the energy and the force expressions simplify to:

Uij = −µ0

4π

m2

r3
ij

(4)

Fij = −dUij

dr
=

3µ0

4π

m2

r4
ij

(5)

and we can determine the total potential energy of the system as

Utotal =
1

2

∑

i,j i 6=j

{−σij
µ0

4π

m2

r3
ij

}, σij =
mi ·mj

|mi||mj| (6)

Finally, we normalize the energy as U ′
total ≡ Utotal/(

µ0

4π
m2). Note that normalizing by this positive

number, will make the self-assembly system tend towards a maximum of U ′
total instead of a minimum.

The long range interaction described above is identical for each type of tile, independently of its
shape, because identical magnets were used. Also, because the size of the tiles is comparable, so is their
inertia, and consequently their dynamic behavior. However, the short range interaction, i.e., the final
alignment, is dominated by shape and this was experimentally investigated.

3.2. Clustering coefficients in a self-assembly system

In self-assembly processes, a cluster consists of different components. In addition, components often
exhibit different characters and behave differently by linking up together: e.g., proteins open/close their
bonding sites flexibly. Systems that contain such multi-states have to be considered together with their
initial conditions or physical boundaries, which makes an analytical derivation difficult.

For an answer, one useful insight can be derived from network theory. The idea is to focus only on
connections between components (neglecting the identity of each component) and acquiring information
about the compounds. To measure the geometrical connections of the tiles, we apply the clustering
coefficient concept from network theory [27]. Let ci be the clustering coefficient of a cluster i. We refer
to it as a local clustering coefficient and define it as:

ci =
number of connections within the i-th cluster

number of connections within the complete configuration
≡ xi

Xcomp

(7)

X denotes the total number of connections in the system (X ≡ ∑
i xi). We defined the global clustering

coefficient C as the sum of the local clustering coefficients (C ≡ ∑
i ci).

Figure 2 shows the examples of clustering coefficients with 6 tiles (Xcomp = 7). The two local
clustering coefficients are c1 = 3

7
= 0.43 (left) and c2 = 1

7
= 0.14 (right) in (a), while C = c = 7

7
= 1

in (b). Note that by defining Xcomp we focus only on the “targeted” connections between the tiles, that
can be recognized in the complete configuration. The concept can be extended and applied to assembly
processes in general. In particular, in our experiments with 20 tiles, we assumed that the complete
configuration was a lattice structure that was an alignment of 4× 5 layers of tiles and had Xcomp = 31.
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Figure 2. Example of clustering coefficients where Xcomp = 7. a) configuration with two
clusters where x1 = 3 (left) and x2 = 1 (right). b) configuration with x = Xcomp = 7. The
two local clustering coefficients are c1 = 3

7
= 0.43 (left) and c2 = 1

7
= 0.14 (right) in (a),
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7

= 1 in (b).
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3.3. Entropy and Degree of parallelism (DOP)

Entropy is the common term to express the level of disorder, which is applied in information theory
and thermal physics. Adleman [28] described the information-theoretic entropy of a discrete random
variable that draws its values from a countable universe. Similar to the entropy concept, we defined the
degree of parallelism (DOP) H as a function of the local clustering coefficients (ci), and taking a value
between 0 to 1, namely:

H = −
N∑

i=1

ci ln ci (8)

As an illustration of the DOP, consider the situation with an assembly of six tiles, depicted in Figure 3.
In the figure, we classify and depict different configurational clusters, according to the number of total
connections X . We show each possibility among similar topological clusters, and align considering
the number of formed clusters. The figure tells that as X increases, the DOP H increases, attaining
a maximum for X = 3 or X = 4, and then decreasing to 0 for X = Xcomp = 7. Also, in each
column (that is, within a group having the same number of connections), the more equally clustered, the
higher the DOP. In other words, high values are derived from states in which the connections are equally
distributed.

Suppose that there exist a number N of clusters. From Shannon’s lemma, it follows that the value H

becomes a maximum when N clusters are equally formed, namely;

H(X) = −
N∑

i=1

ci ln ci

≤ −
N∑

i=1

{ X

Xcomp

· 1

N
} ln{ X

Xcomp

· 1

N
} = − X

Xcomp

ln{ X

Xcomp

· 1

N
} (9)

The upper limit in Equation (9), i.e., the maximal value for H, is obtained when ci = { X
Xcomp

· 1
N
} for ∀ i,

that is, when there are equal numbers of clusters of the same size. This characteristic can be extended to
general assembly processes, irrespective of the number of tiles or clusters.
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Figure 3. Example of the proposed degree of parallelism H where Xcomp = 7. It shows the
tendency that the more assembly proceeds in parallel, the larger the value becomes.
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4. The Experimental Results

We carried out 15 iterative trials for each of 4 different combinations; square tiles and square tiles (S·
hereafter, ·is either s: with a single magnet or d: with double magnets), circle tiles and circle tiles (C·),
rounded-square tiles and rounded-square tiles (R·), and square tiles and circle tiles (M·).

4.1. Assembly completion time

The assembly completion time (completion of over 80% in (a) and 90% in (b)) of all trials are
displayed in Figure 4 as a box plot. All the measured data are listed in the Appendix. The boxes on
the left side of each column show assembly completion times for single magnet tiles, and on the right
side show the times for double magnet tiles. We show the lower quartile (Q1), median (Q2), upper
quartile (Q3), and the average of each combination in Table 1. The trials for which we did not observe
convergence in a certain amount of time (>300s), are included as 300 s (2 trials in Ss 80% completion,
5 trials in Sd 90% completion, 1 trial in each of Rd 90% and Md 90% completion).

Comparison between different shapes

Regarding the difference in assembly speed from the perspective of the shapes, it is seen that on
average, square tiles took the longest time to aggregate compared with the other shaped tiles. However,
it should be noted that the shortest completion time of Ss and Sd were as fast as for the other conditions.
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This is because the minimum distance between the magnets of two connecting tiles was the shortest
among all the combinations. Considering the changes in the magnetic attractive force, which is inversely
proportional to the distance with a power of 4 (Equation 5), small differences were dominant and
induced strong attractive forces. As a factor which hindered the aggregation speed in Sd, we observed
that frequently the connected tiles were aligned linearly and so prevented other tiles from connecting
(magnetic shielding effect, see Figure 5 and Section 5.). Once an isolated tile was surrounded by other
similarly magnetized tiles connecting each other, the single tile was trapped in the local region and
difficult to transfer to a suitable position. This made it difficult for the system to converge and was the
main source of such diverse variances. As for the other cases, C,R, andM showed better assembly than
S . R showed a slightly better assembly capability in speed compared to C (Cs 80% vs. Rs 80%, Cs 90%

vs. Rs 90%, and Cd 80% vs. Rd 80%). Here we also saw the effect of the shortest distance between two
magnets. M also showed good assembly speed, mainly due to rotational movement which facilitated
reconfiguration in the local region.

Figure 4. Comparison of assembly completion times. a) more than 80% completion. b)
more than 90% completion. (S: square, C: circle, R: rounded-square, M: mixed). The
boxes on the left side of each column show the assembly completion times for single magnet
tiles, and on the right side show the times for double magnet tiles.
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Comparison between differently magnetized tiles

We observed two prominent tendencies when comparing conditions with/without a second magnet.
Firstly, square tiles with second magnets had an increased assembly completion time, while in the other
cases, we saw reductions in their assembly completion time. Secondly, the comparison of percentage
rises between 80% completion and 90% completion in Table 1 indicates the difficulty of the last stages’
assembly in each combination, where we observed the big rises in Rd and Rs. Taking these two
outcomes into account, we can conclude that square tiles and rounded-square tiles had stricter optimal
magnetized levels in their assemblies. This originated in the differences in the characteristics of the
dynamics; namely, due to the shape and the strong force between two magnets, an alignment of
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square tiles and rounded-square tiles prevent flexible bends and connection sites. Another noticeable
characteristics is that while R didn’t change the speed so much along with an increase in magnetic
force, M decreased the speed. We think that this is because, whereas rounded-square tiles are able to
rotate around neighboring tiles and change their relative positions, a mixed combination with square tiles
prohibits this movement and acts as a restriction with a stronger magnetic force.

Table 1. The lower quartile Q1, median, upper quartile Q3, and the averages of 80% and
90% completion level over all of the trials (unit: sec).

Ss Sd

80% 90% increase rate 80% 90% increase rate
Q1 26 43 19 69

median 45 56 26 172
Q3 83 129 38 300

average∗ 56.5 76.6 136% >68.5 >184.2 >269%
Cs Cd

80% 90% increase rate 80% 90% increase rate
Q1 10 26 6 13

median 18 59 10 41
Q3 29 105 22 80

average 31.2 71.0 228% 20.9 54.2 259%
Rs Rd

80% 90% increase rate 80% 90% increase rate
Q1 12 33 5 14

median 15 51 9 37
Q3 26 76 19 117

average∗ 21.5 67.8 315% 18.3 >71.0 >394%
Ms Md

80% 90% increase rate 80% 90% increase rate
Q1 12 17 7 25

median 15 26 13 42
Q3 18 77 33 96

average∗ 21.5 42.7 199% 23.8 >71.4 >300%

∗The trials for which we did not observe convergence in a certain amount of time (>300s), are included
as 300s (2 trials in Ss 80% completion, 5 trials in Sd 90% completion, 1 trial in each of Rd 90% and
Md 90% completion). All the measured data are listed in the Appendix.

4.2. The formed structures

In this section, we evaluate the formed structures of each assembly that is shown in Figure 5. We
selected the fastest 10 aggregations out of 15 trials in each combination in order to keep the distributions
of the population the same. From top to bottom, the four different combinations are listed and, in each
combination, the upper row depicts the case with one magnet and the lower row depicts the double
magnet case. In each row, trials are sorted with respect to the increase in assembly completion time.
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Figure 5. The formed structures of each assembly of the four different combinations. In each
combination, the upper row depicts the case with one magnet and the lower row depicts the
double magnet case. The trials are sorted with respect to the increase in assembly completion
time. Tiles trapped by the magnetic shielding effect are marked with dotted circles.
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Figure 6. Comparison of DOP against the assembly completion time. Considering the wide
time range that square tiles took to complete, we displayed the other combinations in small
windows, whose corresponding area is shown as a dotted square.
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In Figure 6, we plotted the DOP of all final configurations versus the time they took to complete.
Considering the wide time range that square tiles took to reach a complete assembly, we displayed
the other combinations in small windows, whose corresponding area is shown as a dotted square.
An increase of DOP was observed for C and a decrease was observed for S. This suggests that the
combination of circular shape with a strong interaction force works not only to accelerate the aggregation
speed but also works to achieve a dense structure. Changes were rarely observed with R and M. The
addition of a magnet has several meanings depending on the perspective that is described. In this work,
adding a magnet corresponds not only to enhancing the attractive forces among the tiles, which was
considered to relatively decay the effect of morphology of the shapes, but also to enhance the effect of
shape especially once they connect. That is, it positively influences both the long range interaction due
to magnetic forces and the short range interaction through the local shapes.

In some trials, we observed that tiles created gaps within the cluster, such as we can see in
Figure 5 Cd15, Rd11, and Ms9. Unlikely to converge into a pure lattice cluster, they frequently created
a hall (Ss2, Sd19), or a small gap (Rs8, Ms10). We quantified this tendency by comparing clusters’



Entropy 2009, 11 654

surface areas with their perimeters. Note here that the surface area means the entire area inside the
cluster, including the gaps. We visually processed the image with Matlab, neglecting stand alone tiles
and measured the surface area and the perimeter simply by counting the number of corresponding pixels
(Figure 7).

Figure 7. Image processing for the measurement of surface areas and perimeters of clusters.
Note here the surface area means the entire area inside the cluster including the gaps.

In Figure 8, we display perimeters of S and C in (a), and R and M in (b) compared with the surface
areas. Both variables are normalized by the mean values over all combinations and represented as
percentages. In general, the further right along the X-axis, the more branched configurations were
observed, and the further left, the more rounded were the configurations. The further up the Y-axis,
the more gaps are observed.

Figure 8. Comparison of surface areas against perimeters. Both variables are normalized
and represented as percentages from mean values. A large negative correlation was observed
in C (−0.573), and a moderate negative correlation was observed in R (−0.322). Linearly
fitted curves of C and R are shown in the figures.
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We surmised that the normalized populations followed Gaussian distributions and calculated the
correlations of each combination. A large negative correlation was observed for C (−0.573), and a
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moderate negative correlation was observed in R (−0.322). Linearly fitted curves of C andR are shown
in the figures as dotted lines. Almost no correlation could be seen in S = −0.021 and M− 0.036.

These two fitting lines clearly show reductions in the values of C and R. This suggests that gaps
remained for C and R as they formed relatively rounded clusters, whereas in the case of S and M, gaps
were rarely created between tiles, as we see in Figure 8. This is largely due to the characteristics of
square tiles. The sharp corners induced a big difference in magnetic force, forcing a strong constraint on
the next tiles. For the case of R, they sometimes formed with a 45 degrees rotated formation, resulting
in the outcome above.

4.3. Time evolution

In Figure 9, we selected one of the representative aggregations in which more than 95% of tiles
were aggregated from each combination and displayed (the respective final configurations can be seen in
Figure 5 Sd13, Cd16,Rd15, andMd11). For each case of the raw data, we present the time sequence of
trials listed from the left top to the right bottom (with an illustration of the most discriminative movement
of the set on the left side). On the right side, we show the transitions of the magnetic potential energy
and the clustering coefficients. We discuss each case individually:

• Sd: After the spacer was removed, the tiles moved randomly by changing their relative positions
(1–3). The increase in potential energy and the clustering coefficients can be seen in the right
figure. Once two tiles were attached (often adjusting their relative positions by sliding), the
relatively strong connection force kept the connection tight (2, 7). Note that this results in a large
value of the potential energy. This caused the tiles to stay in the same configuration, that is to say,
reconfiguration was made more difficult (e.g., 8). As a result, the system produced an irregular
shape (8). In this transition, the tiles first formed two small clusters (3–6) and subsequently they
bonded together (7). It is worth noting that this large scale docking did not cause a big stored
energy jump as expected (reflected in the right figure). This suggests that a major dominance of
the energy is induced by locally connecting two tiles but among tiles that are apart. In addition
to that, we observed that a white tile highlighted with a dotted circle was assisted to attach to the
cluster by a red tile in the transformation from (3) to (5) (magnetic shielding effect, see Section 5.).

• Cd: In the beginning, several small groups were formed (1–2). The speed of aggregation was fast,
whereas connections between two tiles were relatively weak and the tiles changed their relative
positions smoothly (3–4 and 6–8). In particular, the transformation highlighted with a dotted circle
that can be seen from (7) to (8) is supposed to be rarely observed in the square tile combinations
(see Section 5.). The increase in potential energy is lower than in the case of square tiles, especially
since the closest distance between two magnets is greater (recall that we set the surface area of the
tiles to be the same). The transition took 22s for 90% aggregation, and took 79s for the further
global configuration (7–8).

• Rd: The characteristic of these tiles was that they frequently rotated and changed directions
according to the landscape of potential energy (2–4). These tiles possessed positive characteristics
of both square and circle tiles, namely, a flexible reconfigurability and a stable lattice formation.
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Figure 9. Representative aggregations of 4 combinations in which more than 95 % of tiles
aggregated. For each case of raw data, we present the time sequence of trials listed from
the left top to the right bottom (with an illustration of the most discriminative movement of
the set on the left side). On the right side, we show the transitions of the magnetic potential
energy and the clustering coefficients.
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The lattice structure was reached rapidly (23s) and was sufficiently stable to resist agitation (8).
The potential energy converged to a value between those for the cases of square tiles and circle
tiles (shown on the right).
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• Md: This was the only heterogeneous combination in terms of shape. Rotation was also
observed. The circle tiles acted as a “hinge”, carrying a connected square tile to another position
(2–3, 6). Structured lattice regions were stabilized by square tiles fixing the relative positions (8),
while due to the flexibility of such combinations, the system often produced branching shapes,
which were characterized by lowest clustering coefficients (see Figure 5Md).

Figure 10 shows the 4 transitions (which are shown in Figure 9) of global clustering coefficients
plotted against (a) magnetic potential energies (U ′

total), and (b) averaged potential energies (U ′
total/U

′
comp).

In Figure 10a, a linear increase in global clustering coefficients was observed (note that Cd took longer
time than the others). The linear increase in the number of connections led to an increase in potential
energy, showing that the systems were following the terrain of their potential energy to their stable
minima. Note that we expect to observe small fluctuations in their energy transitions on the micro scale.
Due to the fact that the closest distance between two magnets is the shortest in S (shape parameter
consistency problem, see Section 5.), in that situation the largest value of the potential energy existed
among the 4 combinations, irrespective of the branched configuration. The gradient of the transition
represents the tendency of potential aggregation; here the steeper gradient represents the efficacy of the
tiles with respect to aggregation, in contrast to the potential energy. Therefore, for the circle tiles (Cd),
the clusters sustained a tendency to keep reconfiguring, as further agitation occurred. Here, the square
tiles (Sd) seemed to have less probability for reconfiguration (see Section 5. for further discussion).
In Figure 10b, linearly fit curves are displayed, along with the plots. Given that the numbers of tiles
contained in a cluster were the same, the clustering coefficient tended to be higher, if the cluster had a
rounded shape. The inclinations of each plot are 0.958 (Sd), 0.922 (Cd), 1.10 (Rd), and 0.837 (Md),
respectively, showing that combinations for R exhibited good aggregation behavior, whereas this was
not the case for M.

Figure 10. Comparisons of the 4 transitions of clustering coefficients plotted against (a)
potential energy, and (b) normalized potential energy.
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Figure 11 shows the transitions of DOP, where the X-axis represents the magnetic potential energy
normalized by the energy of their complete structures (U ′

total/U
′
comp).

It can be seen that Cd traces out relatively low values representing a rather sequential aggregation.
Note that a large decrease in the value for the last transition of Sd can be observed, where two large
clusters combined and eventually resulted in a configuration of one cluster. Considering that both
aggregations achieved a quick assembly (27 s in Cd and 34 s in Sd), it can be observed that C proceeds
to aggregation at a good pace, irrespective of the aggregation sequence, whereas S is affected by the
sequence (we show this tendency in Figure 14). The attained points for the 4 transitions tell the complete
story of their formed structures, suggesting that the reactions were still in a state of local minima.
Although it is natural to consider that an increase of the agitation level is needed to overcome this
convergence, such a change often leads to the destruction of some appropriate connections as well. This
is known to happen, especially when the formed structure has isometry—different configurations with
identical connection topologies [29].

Figure 11. Measured clustering coefficients and the DOP plotted against normalized energy.
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5. Discussion

Toward the aim of general self-assembly principles, we discuss two issues that we encountered during
the experiments.

5.1. Shape parameter consistency problem

This problem arose when we simply tried to compare different shapes in the context of self-assembly;
i.e., setting the surface area of different shapes to be the same resulted in a variation in diameters. In
other words, this variation can be exploited for the desired behaviors in self-assembly. As a consequence,
the magnetic force that a square tile can generate on its neighbor is 1.62 times as large as that of circle
tiles. Hence the inducible maximum magnetic force between two tiles could not be made consistent, and
thus variation resulted in their stored potential energies.

5.2. Magnetic shielding effect and the influence of shape on self-assembly

The magnetic shielding effect is the effect where the long range magnetic interaction force is
effectively canceled by another magnet. This effect was frequently observed with square tiles, which
were not flexible with respect to changing their relative positions. This can be illustrated with a simple
superposition argument, examining Equation (4) or (5). For example, the total energy in X–Y space can
be shown in Figure 12 a, where the three aligned tiles expect another tile (marked as A) to attach (we
show −U ′

total, for intuitive visualization).
Here we see that the positive energy from the two red tiles acts as a shield, preventing the red tile (A)

from connecting to the white tile. The force exerted on a fourth tile, marked by A, is the sum of the three
forces—two repulsive and one attractive—from the three connected tiles. If A is at a sufficiently large
distance, the repulsive force acts effectively on A, which makes the attachment of A to the rest of the
cluster almost impossible (Figure 12b). The tile A needs turbulence which would enable it to overcome
the repulsive force and jump into the attractive region of the cluster. What has to be noticed is that this
problem can be avoided with a different aggregation sequence. Here, if the first two attachments are
made in an “L” instead of a straight configuration, a wider attractive region is kept open for the third
red tile (Figure 12c). Furthermore, an additional white tile can expand the attractive region even farther
(Figure 12d, “O” configuration). Several fundamental issues can be observed in this phenomenon: the
existence of appropriate sets of complementary tiles, the potential role of the aggregation pattern, an
adequate agitation level, and the necessity of a physical boundary.

For further investigation, we show two representative convergence paths with 4 square tiles in
Figure 13; starting with 2 red and 2 white tiles in (a), and 1 red and 3 white tiles in (b). Here the orders of
the paths are expressed with arrows. Each DOP H is also shown for the formed cluster. Surprisingly, in
Figure 13a, all paths allow the system to converge. That is, the system has little influence of the magnetic
shielding effect, and always completes the aggregation process. However, in Figure 13b, the system has
the possibility to be trapped by the problem and doesn’t manage to converge to a single cluster (i.e., a
white square tile highlighted with red dotted circle). However, this occasion can be avoided if there is
another opponent tile in the system (the dotted red square tile; “supplement of additional unit”). Once
this tile is added to the system, no matter to which direction that the system proceeds to assembly, it
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never encounters the problem. This indicates that having a similar number of sets of opponents on a
regular basis helps a system to fall into a local minimum. It also explains why systems proceeded with a
fast aggregation in the early stages in the experiments.

Figure 12. Magnetic shielding effect. a) The positive energy from two red tiles (B, C) acts as
a shield, preventing the red tile (A) from connecting to the white tile. b) The small attractive
region is displayed. The tile A is repelled from the cluster in the grey region. c) If the
first two attachments are made with an “L” configuration instead of a straight one, a wider
attractive region is kept open for the third red tile. d) An additional white tile can expand the
attractive region even farther (“O” configuration).
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In Figure 14, we plot the DOP transitions of square tiles (shown in Figure 5Sd) vs. the change in
the global clustering coefficients. We divide the transitions into two groups, namely, a fast aggregation
group (Figure 5 Sd 11 - 14, < 1 min) and a slow aggregation group (Figure 5 Sd 15 - 20, > 2 min), and
show the transitions in Figure 14 a and Figure 14 b, respectively. As a reference, we plot mathematically
derived DOP curves in which the tiles aggregate in the most sequential way. Note that these curves are
the lowest values that the system can take.

The figure indicates that, in the case of rapid transitions, the tiles tended to form two clusters and
subsequently aggregated and configured a cluster. This tendency can be seen as large DOP reductions in
the second half stages of their transitions, where the global clustering coefficients are between 0.4 and 0.8
(highlighted with a gray colored background). This aggregation pattern can be characterized as parallel
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growth, where the system proceeds with its assembly utilizing a high degree of parallelism. However,
transitions that took a relatively long time (more than 2 minutes) show a tendency to form one large
cluster in their early stages, preventing single surrounding tiles from assuming appropriate positions.
This comparison clearly shows that the method of aggregation affects the efficiency of self-assembly.

Figure 13. Two examples of square tile assembly. a) Starting with two identical sets of
opponent tiles. b) Starting with one red tile and three white tiles.

configures

two clusters

start with the same amount of

two types of units

start with different amount of

two types of units

"I" configuration: failure
 (magnetic shielding effect)

"L" configuration

successsuccesssuccess success

success

supplement of additional unit

configures

two clusters
configures

one cluster

a) Xcomp=4 b) Xcomp=3(to 5)

?

success
(complete)

Xcomp=5

"L" configuration"I" configuration

H=0

H=0.347

H=0.347

H=0.347

H=0.693

H=0.216

H=0
H=0.216

H=0.216

H=0

H=0.366

H=0.270
H=0.270

H=0

H=0.367

H=0.688
H=0.307

H=0.179

Discussed in Fig. 15

In Figure 15, we investigate the possibility of the transformation which we see in Figure 13 (dotted
square in (a)). We measured the transitions in magnetic potential energy of square tiles and circle tiles.
The energy is normalized by dividing by the absolute initial values (−U ′

total/|U ′
total

∣∣
θ=90

|). Each tile is
supposed to move from position A(C) to B(D).
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Figure 14. The DOP transitions of square tiles (Figure 5Sd) vs. the change in global
clustering coefficients. a) Transitions whose assembly completion times (90%) are less than
one minute (Figure 5 Sd 11 - 14). b) Transitions which took more than two minutes (Figure 5
Sd 15 - 20). In the case of rapid transitions, the tiles tended to form two clusters and
subsequently aggregated and configured a cluster. This tendency can be observed as large
DOP reductions in the second half stages of their transitions, where the global clustering
coefficients are between 0.4 and 0.8 (highlighted with a gray colored background).

a) fast speed assembly b) slow speed assembly
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The figure indicates that, in the case of square tiles, a potential barrier has to be overcome to arrive
at a stable position, whereas in the case of circle tiles, the tile is supposed to roll down to the position D
without any assistance (we don’t consider friction). The effect of shape can be clearly recognized here.

6. Conclusions

In this paper, we have shown how the morphology of components affects the self-assembly process.
We have proposed a new measure, the degree of parallelism (DOP), which is a function of clustering
coefficients, to quantify the aggregation characteristics,. The DOP captures how the system allocates
connections into different clusters. The results acquired using this measure showed that the early
stages of the aggregation pattern are crucially influential to the rest of the entire assembly process.
It was observed that a shape which has a rounded corner, such as a circle or rounded-square eases the
problem—the Magnetic shielding effect—and facilitates efficient assembly at an appropriate magnetized
level. We clearly show that a change in the morphology of components can induce different aggregation
patterns, affecting the completed structure of their final configurations.
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Appendix

The assembly completion time [sec] (80% and 90% completion) of all combinations.
Ss Sd Cs Cd

trials 80% 90% 80% 90% 80% 90% 80% 90%
1 12 34 19 136 9 26 16 56
2 45 45 142 162 8 27 6 10
3 51 56 33 46 19 54 13 29
4 19 129 19 20 18 109 22 24
5 26 53 17 172 29 59 7 13
6 11 24 38 266 18 26 56 119
7 46 55 27 27 10 23 26 117
8 58 58 26 >300 23 166 6 11
9 90 90 >300 >300 29 97 11 80

10 83 157 26 26 182 192 11 46
11 36 67 20 >300 12 13 10 41
12 138 138 21 135 25 105 7 11
13 164 164 29 273 14 59 6 17
14 26 36 11 >300 65 65 5 73
15 43 43 >300 >300 16 44 111 166

average∗ 56.5 76.6 >68.5 >184.2 31.2 71.0 20.9 54.2
Rs Rd Ms Md

trials 80% 90% 80% 90% 80% 90% 80% 90%
1 14 183 82 139 10 17 20 38
2 18 138 8 14 13 77 7 20
3 13 43 10 28 12 17 36 96
4 26 65 10 174 12 36 5 81
5 8 20 19 39 18 84 124 124
6 12 46 5 11 17 26 14 25
7 24 32 9 11 14 26 10 106
8 27 76 5 8 26 48 13 42
9 15 45 8 17 20 23 34 50

10 13 130 22 37 15 81 15 34
11 12 51 5 37 17 17 8 12
12 15 33 9 >300 10 17 33 37
13 62 62 43 104 12 21 19 >300
14 12 33 11 117 112 132 13 21
15 52 60 29 29 15 19 6 65

average∗ 21.5 67.8 18.3 >71.0 21.5 42.7 23.8 >71.4

∗The trials which took longer than 300 s are included as 300 s (listed with “>”).
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