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Abstract: Systems do not elect thermodynamic pathways on their own. They operate in 

tandem with their surroundings. Pathway selection and traversal require coordinated work 

and heat exchanges along with parallel tuning of the system variables. Previous research 

by the author (Reference [1]) focused on the information expressed in thermodynamic 

pathways. Examined here is how spectral entropy is a by-product of information that 

depends intricately on the pathway structure. The spectral entropy has proven to be a 

valuable tool in diverse fields. This paper illustrates the contact between spectral entropy 

and the properties which distinguish ideal from non-ideal gases. The role of spectral 

entropy in the first and second laws of thermodynamics and heat → work conversions is 

also discussed.  

Keywords: entropy; information; thermodynamics; reversible transformations;  

fluid systems 
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1. Introduction  

By holding K + 2 variables constant, one controls the macroscopic state of a thermodynamic 

system. K equates with the number of components and at least one of the variables must be extensive. 

This axiom applies to solids, liquids, and gases at equilibrium [2]. In spite of the simplicity, a system's 

state point is not infinitely sharp. If it were, there would be no uncertainty in any quantities related to 

the control variables. Their measurements would afford zero thermodynamic information. This turns 
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out to be almost the case as discussed in several classics [3-5]. In Figure 1, the minor impact of 

fluctuations is summarized.  

Panel A shows a closed, K = 1 gas in equilibrium with its surroundings. In the limit of ideal 

behavior, the density ρ is realized as:  

V

N
  (1) 

Tk

p

B
   

where N, V, p, and T are accessible macroscopic variables: particle number, volume, pressure, and 

temperature, respectively [6]. kB is the Boltzmann entropy constant. Because of energy exchanges 

between the system and surroundings, ρ necessarily fluctuates about an average. It can be shown that 

the ratio between the density standard deviation σρ and the average < ρ > is [3-5]:  

V
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 (2) 

κT is the isothermal compressibility: 
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which reduces to 1/p for ideal behavior. In this simplest of examples, the Equation 2 ratio is especially 

compact, namely:  

V

Tk TB 

 




 

2/1 N  

(4) 

Substitutions based on typical gas conditions make the crucial point. If, say, < ρ > were to equal 

1023 particles/m3 (i.e., p ≈ 400 Pascals at room temperature), then σρ / < ρ >  3 × 10-12 and  

σρ  3 × 1011 particles/m3. Three standard deviations of the number density (σρ) would correspond to c. 

1012 particles/m3. Repeated laboratory measurements of ρ for a 1 m3 volume would manifest a narrow 

distribution about the average. More than 99% of the readings would fall in the range  

1023 +/− 1012 particles/m3. A probability density plot based on the measurements would yield a near  

δ-function as in Panel B; higher density conditions only sharpen the function. If alternatively the  

ρ-time dependence were monitored, a recording as in Panel C would obtain. Here the particle density 

is shown to fluctuate about the average in a noisy fashion. A Fourier synthesis (or transform) would 

identify a zero-frequency (ω) component as the dominant one. The power spectrum in Panel D based 

on the Fourier analysis would evidence a single peak at ω = 0. Given the slight impact of energy 

exchanges between the system and surroundings, the amplitude is featureless and nearly zero  

for ω > 0.  
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Figure 1. Equilibrium Systems and Fluctuations. Panel A depicts a gas in equilibrium with 

its surroundings. Panel B shows the probability function that would obtain from repeated 

density measurements. Panel C illustrates the density behavior over time. Panel D shows 

the Fourier spectrum of the density behavior. 

 

The Figure 1 message is that while the role of fluctuations is not visible in state equations such as 

Equation 1, it is a typically (i.e., when ρ and V are appreciable) a very minor one. Thus ρ quantified 

via Equation 1 and similar can be viewed as the overwhelmingly most probable value. Parallel 

arguments can be constructed for other state quantities such as the pressure p, chemical potential μ, 

and entropy S. The sources of non-ideality, namely interactions between the particles, do not alter the 

message. The exception would be when the state point falls in the neighborhood of a phase boundary.  

An individual state point poses little uncertainty regarding thermodynamic quantities. Multiple 

connected points paint an altogether different picture. This is the subject of Figure 2. If control 

variables such as p and V are tuned, a system is directed along a pathway that threads nearest neighbor 

state points. The pathway can be elementary as in isothermal, adiabatic, and isochoric transformations 

where T, S, and V, respectively, are constant. Yet the path need not be a proper function at all as in 

Panel B. Tuning p and V accesses an infinitude of states that link the initial to the final. Whether 

simple or complicated, a pathway allows for alternative representations using variables such  

as T, ρ (Panels C and D) and more. Thermodynamic pathways form a time-honored subject [7]. They 

continue to warrant study as model algorithms and computational programs. At a root level, 

thermodynamic pathways characterize step-wise parallel programming on the part of a system and its 

surroundings. The algorithms are executed via simultaneous tuning of variables tied to the work and 

heat exchanges.  
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Figure 2. Systems and Variable Tuning. Panel A shows a system in which pressure and 

volume are tuned in parallel with work and heat exchanges. Panel B illustrates one of 

infinite possible pathways that connect the initial and final states. Panels C and D present 

alternative representations of the pathway. For simplicity, the system has been taken to  

be 1.00 mole of a monatomic ideal gas. The use of liter and atmosphere units follows the 

practice of classic thermodynamic texts [2,6,7]. 

 

Information is the lifeblood of programs and algorithms. It is an imbedded feature of all 

thermodynamic pathways. The scenarios are much in contrast with individual state points such as in 

Figure 1 where a measurement traps very little information. Information in connection with 

thermodynamic pathways was explored by the author in a previous work [1]. It was shown how a locus 

of nearest neighbor state points predicates a type of probability space. Objective queries of the system 

offer information in amounts significantly greater than for any single point. The amounts depend 

intricately on the pathway structure, measurement resolution, and system composition.  

This paper takes another step by examining the spectral entropy allied with a pathway. This 

quantity also proves connected with collections of nearest neighbor states. Importantly, the spectral 

entropy identifies novel distinctions between ideal and non-ideal gases. It connects as well with the 

constraints placed by the first and second laws of thermodynamics. A pathway's spectral entropy 

highlights the optimum programming strategies for heat → work conversions. One notes the spectral 

entropy to provide a powerful tool in diverse fields. To cite only a few, it has found judicious 

applications in speech recognition algorithms, genome analysis, and particle motion research [8-10]. 

To the author's knowledge, the present study examines a first link between the spectral entropy and 

thermodynamic pathways. While thermodynamics enjoys a highly-developed infrastructure, new 

theoretical and experimental tools continue to be discovered [11]. Moreover, topics that are closely 
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related to spectral entropy include heat engines, system fluctuations, and non-ideal gases. These have 

been well represented the past few years in this journal [12–16].  

2. Thermodynamic Pathways, Information, and Spectral Entropy 

Figure 3 illustrates how information is expressed by a pathway. For simplicity, the system is taken 

to be a closed one composed of 1.00 mole of a monatomic ideal gas. Let the system be transformed 

along a path in the pV plane that matches the one illustrated in Figure 2. Transformations do not occur 

by themselves. Thus the upper portion of Figure 3 schematically depicts the requisite parallel and 

serial programming by way of an entry {pi,Vi} sequence. In effect, ordered pairs of pi, Vi enable the 

system to be stepped precisely along a chosen pathway. There is more than one input program which 

can accomplish the task. The K + 2 criterion for specifying state points allows other control variable 

pairs and sequences to be equally effective: {pi,Ti}, {ρi,Vi}, and so forth.  

The pathway in Figure 3 is clearly reversible. This means that the closed system maintains 

equilibrium with the surroundings at all stages. A non-equilibrium condition would indeed not 

correspond to any single point in the pV, Tρ, or other variable plane. Pathways articulate the initial, 

final, and intermediate states. Then if the equation of state is known, the differences between the 

numerous functions of state can be quantified: entropy S, free energy G, internal energy U, and more. 

Quantities that instead hinge on the pathway structure details can also obtain: work received Wrec and 

heat received Qrec.  

Reversible pathways yield many thermodynamic quantities. They are devoid of temporal data, 

however, on account of their equilibrium nature. All of the states are spelled out via an input program, 

but they lack qualifiers on their time and duration of access. Therefore if an objective experimenter 

who is knowledgeable of the state point locus, but ignorant of temporal details, inquires “Does the 

system pressure p at present fall in the following range?”: 

pppp ii   (5) 

the answer would be uncertain in advance of measurement via a suitable transducer (represented by a 

triangle in Figure 3) such as a McLeod gauge. In taking the pathway states to be equally probable, the 

likelihood of an affirmative answer—the conversion of uncertainty “?” to “yes” in Figure 3, depends 

on the number of states that meet the above criterion. Note how for the pathway appearing in the lower 

half of Figure 3, the likelihood of p meeting the condition in (5) is greater than for:  

pppp jj   (6) 

As indicated by the enhanced blackening of pathway segments, there are about eight times the 

quantity of state points that meet the condition in (5) as compared with (6). 
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Figure 3. Pathways and Information. The upper portion schematically illustrates how a 

control variable sequence {pi,Vi} operates as a thermodynamic algorithm for pathway 

traversal: ordered pairs pi, Vi enable the system to be stepped precisely through a 

succession of state points. Measurements via a transducer (triangle symbol) such as a 

McLeod gauge reduce uncertainty ? and trap information about the system, i.e., convert 

“?” to “yes” or “no”. The amount of information depends on the number and distribution of 

pathway state points.  

 

It was shown in previous research how to quantify the likelihood of “yes” versus “no” answers to 

state queries [1]. The procedure involved computing the pathway length over the states that meet the 

query conditions via line integrals. The pieces are summed and weighed against the total pathway 

length. The results include sets of probability values and surprisals: { probi } and {−log2probi }, 

respectively. The expectation value of the surprisals quantifies the pathway information IY in bits: 

iiY probprobI 2log  (7) 

where the subscript Y denotes the thermodynamic quantity queried such as Y  p in Figure 3. IY is 

enhanced if the number of terms in Equation 7 is increased. This would be brought about by 

augmenting the pathway, or by extending the measurements at higher resolution—narrower Δp.  

IY would be further enhanced if the probability terms proved equal (or nearly so) in value; this applies 

typically to pathways that evince complex structures. IY is zero for certain quantities for certain 

pathways: isobaric, isothermal, and adiabatic pathways are absent in Y  p, T, and S information, 

respectively. All closed systems pose zero information regarding the particle number: IYN = 0.  

The spectral entropy SY is an immediate by-product of information. There indeed exists SY 

computable for every pathway state property, i.e., Y  p, V, T, U, G, S, etc. Unlike information,  



Entropy 2009, 11              

 

 

1031

SY does not stem from yes/no queries and measurements with thermometers, pressure gauges, and so 

forth. Its significance arises instead because of the contact made with the algorithmic structure. Most 

notably, SY quantifies the symmetry, or lack of it, imbedded in a pathway. Figure 4, for example, 

shows how SY originates for Y  p, the pressure tuning of a system with commentary as follows. 

Whether simple or complex, a thermodynamic pathway always admits a parametric representation. 

In such a way, dimensionless λ operates as an independent variable common to all state quantities. 

Panels A and B in Figure 4 show the pressure behavior over the same path charted in Figure 3. There 

is a one-to-one correspondence of λ to each state point as indicated by the dotted lines. This 

correspondence holds for V and all other quantities T, S, etc., traversed by the path.  

As is universally appreciated, algorithms and programs can be executed multiple times. Thus to 

quantify SY, a thermodynamic pathway is regarded as expressing a state space period of 2L. The 

periodicity allows each λ-dependent function to be written as a Fourier series [17]. For instance, the 

pressure function of Figure 4 can be re-expressed as:  
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The arguments of the trigonometric functions define “frequencies”:  

L

n
n

   (10) 

The quotation marks emphasize that the χn have nothing to do with time as with ω in Figure 1. The 

χn rather identify the density of the pathway kinks governed by the program. The pathway of Panel A 

demonstrates twists and turns in both pressure and volume. Their Fourier representations accordingly 

necessitate multiple terms with diverse χn. By contrast, an isobaric or isochoric pathway demonstrates 

constant p or V, respectively. In such cases, p(λ) or V(λ) require only a single term in their Fourier 

expressions at χo = 0. Each representation is equivalent to that for a single state point.  



Entropy 2009, 11              

 

 

1032

Figure 4. Pathways and Spectral Entropy. Panels A and B show how a pathway admits a 

parametric representation. The representation can be expressed as a Fourier sum of 

trigonometric functions such as shown as in Panel C. The weight coefficients compose a 

power spectrum as in Panel D.  

 

The coefficients an, bn determine the degree to which each Fourier term contributes. The  

modulus quantity: 

22
nnn baA   (11) 

then identifies the amplitude allied with each χn. A plot of An versus χn realizes a power spectrum as in 

Panel D. At infinite resolution (infinitesimal Δp), Equations 8 and 9 converge to integrals which 

predicate an infinite number of spectral terms. A finite-step pathway is, of course, much closer to 

experimental reality.  

Figure 5 illustrates an example of the spectral entropy SYp that results from pressure tuning of a 

system: The calculation follows from the pathway of Figure 4 that is, in turn, described by the 

(arbitrarily chosen) parametric function: 


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3

12
sin510)( 2.2  Bp  (12) 

λ is dimensionless while B equates with the unit pressure, here assigned to be 1.00 atmosphere. The 

Fourier representation has been computed using Equations 8 and 9 and its normalized power spectrum  
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is contained in the lower panel of Figure 5. In calculating the spectrum, the An have been rescaled by 

factor ξ so that: 

1
n

nA  (13) 

Clearly the spectrum reflects a non-trivial component distribution that is heavily weighted at low χn. 

SYp follows straightaway, viz. 


n

nnpY AAS )(log2   (14) 

The summation is dictated by the number of Fourier components: 100 are more than sufficient 

given the typical pathway bias toward low χn and finite resolution. The logarithmic terms of Equation 

14 are analogous to information surprisal quantities [18]. Each term is weighted by a normalized 

amplitude which is analogous to a probability term. The results of the weighted summation appear in 

the upper panel of Figure 5. The results for SYV have been included for comparison. One observes 

that different thermodynamic quantities of the identical pathway need not express the same spectral 

entropy. The “bit” units are applicable in the same way as information. For this single,  

arbitrarily-chosen pathway—there are infinite possible—it requires approximately 5 bits to encode the 

amplitude terms in the p, V power spectra.  

Figure 5. Power Spectra and Weighted Surprisal Sums. The lower panel illustrates the 

normalized power spectrum based on p(λ) of Figure 4. The upper panel illustrates the 

weighted sum of surprisals for pressure and volume pathway variables. 
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3. Applications and Discussion 

The spectral entropy has been employed in diverse research [8-10]. Concerning thermodynamic 

pathways, SY contributes insights in four respects. The first concerns the properties that distinguish 

ideal from non-ideal gases. As is well known, the former demonstrates signature features beginning 

with Equation 1. Additional ones include that the internal energy U and enthalpy H depend solely on N 

and T [6,7]. For a monatomic ideal gas: 

2

3 TNk
U

B
  (15) 

and:  

pVUH   (16) 

2

5 TNkB
   

It follows that for ideal systems, the heat capacities CV, Cp are independent of volume and 

temperature: 
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U
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Other response functions such as the coefficient of thermal expansion αp and isothermal 

compressibility κT (Equation 3) are equally simple: 
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T

1
  

and κT = 1/p. A non-ideal system requires more complicated mathematics for the state relations. The 

van der Waals equation is a well-established, elementary model for interacting gases [6,7,16]: 

2

2

V

aN

NbV

TNk
p B 


  (20) 

where a and b scale, respectively, with the attractive and repulsive forces between the particles. Note 

that conventional notation is being used in Equation 20 and beyond. The van der Waals a and b 
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coefficients are not to be confused with the Fourier weight coefficients of Equations 9 and 11. Then 

with Equation 20, or similar non-ideal equation of state operative, the representations of potentials U 

and H are no longer so compact. In the van der Waals case: 

V

aNTNk
U B

2

2

3
  (21) 

while:  
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CV for a van der Waals system is equivalent to that appearing in Equation 17. Cp does not demonstrate 

the same economy, however: 
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The take-home points are as follows. There are established properties that distinguish ideal from 

non-ideal gases. To the list need to be added three additional:  

(1) Ideal and non-ideal samples alike express SYT = 0 for isothermal pathways. Yet only an ideal 

gas expresses zero SYU and SYH for isothermal pathways.  

(2) All pathways—no exceptions—for a closed ideal system express zero SYCV and SYCp. In sharp 

contrast, only highly select ones demonstrate zero SYCp for non-ideal systems. This is because Cp 

depends non-trivially on p, T, V, a, and b as in Equations 23, 24, and 25. 

(3) If a system is ideal, its isothermal and isobaric pathways pose zero SYαp and SYκT, 

respectively. Matters are more complicated for a non-ideal system. Zero SYαp and SYκT can only be 

demonstrated by highly rarefied pathways. This is because κp and αT depend intricately on p, T, and V, 

and case-specific a and b. The zero SYαp and SYκT pathways programmed for an argon sample would 

not apply to neon.  

The above can be demonstrated via numerous equations of state, not simply the van der Waals, that 

address the effects of interparticle forces. Even so, real materials conduct themselves ideally at 

sufficiently low densities and high temperatures. Hence the features 1–3 are universal in their 

application. The second and third are especially striking. To construct a pathway with fixed heat 

capacity is trivial for an ideal gas–any and all pathways will do. To engineer likewise for a non-ideal 

material, however, incurs infinitely greater programming costs. Regarding (3), to ascertain a system’s  
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thermodynamic properties, knowledge of either CV or Cp along a pathway that threads a range of p and 

T is required [6]. Usually Cp is experimentally more accessible via the specific heat cp:  

pp mcC   (26) 

where m is the system mass. Equation 26 plus Feature (2) inform the experimenter, however, that the 

accessibility of Cp obtains at the price of greater pathway complexity for a non-ideal system. One way 

of quantifying the complexity is via SYCp.  

Along related lines, knowledge of both αp and κT is required at all points in a region of state space 

in order to realize the thermodynamic quantities U, G, S, etc. [6]. From Feature (3), one learns that it is 

impossible to measure αp or κT for one state of a non-ideal system and thereby automatically know the 

values for points along the intersecting isotherms and isobars in the state space. As with Cp, the 

complexity of αp and κT is non-trivial for real systems, yet it is directly quantified by SYαp and SYκT. 

The second insight relates pathway spectral entropy to the first law of thermodynamics. This law 

holds that the internal energy change ΔU of any system equates with the work and heat received:  

recrec QWU   (27) 

with special cases applying to isochoric (Wrec = 0) and adiabatic (Qrec = 0 ) transformations [1,5,6]. 

The first law contact with pathway spectral entropy is notably different. Specifically SYWrec and 

SYQrec bracket SYΔU:  

QrecYUYWrecY SSS    (28) 

and:  

WrecYUYQrecY SSS    (29) 

In so doing, the spectral entropy of the work and heat exchanges provides upper and lower bounds 

for SYΔU. There is a single exception, namely when Wrec and Qrec exactly cancel at all points of a 

pathway; this renders SYΔU zero. More importantly, for isochoric and adiabatic pathways,  

(28) and (29) become equality statements:  

WrecYUYQrecY SSS   ;0  (30) 

QrecYUYWrecY SSS   ;0  (31) 

The first law bearing on pathway spectral entropy is crucial. It emphasizes how the work and heat 

exchanges between a system and surroundings must be programmed in-parallel with each other. SY↔ΔU 

could exceed both SY↔Wrec and SY↔Qrec only if the exchanges were independent, thus admitting different 

sets of Fourier coefficients. The first law and the nature of reversible pathways preclude this. For one 

of infinite possible examples, Figure 6 illustrates the weighted surprisal summations that yield SYWrec, 

SYΔU, and SYQrec for the Figure 4 pathway. In this case, the condition in (28) holds. Evidently the 

complexity of programmed heat exchanges exceeds that of the work exchanges. Such a trait is not 

apparent from casual inspection of the pathway structure.  



Entropy 2009, 11              

 

 

1037

Figure 6. Weighted Surprisal Sums based on ΔU, Wrec, and Qrec Power Spectra. The data 

derive from the pathway illustrated in Figure 4. 

 

The second law of thermodynamics also impacts the spectral entropy; this is the subject of Figure 7. 

The Caratheodory statement of the second law asserts that there exist neighboring states of a system 

which are impossible to access along an adiabatic path [19]. A pathway's spectral entropy admits a 

parallel statement:  

All systems possess neighboring states for which a SYS = 0 path is non-existent. Figure 7 shows 

four (of infinite possible) arrows that pinpoint nearby states. For these, there exists no SYS = 0 

pathway that links the initial state without expression of positive SYS. The Caratheodory principle 

emphasizes that adiabatic pathways are exceptional for systems, ideal and otherwise. The same 

principle establishes the rarity of SYS = 0 pathways.  

Figure 7. Pathways and Neighboring States. The arrows point to several (of infinite 

possible) neighboring states that cannot be accessed by an adiabatic/isentropic path. The 

pathway identifies one (of infinite possible) that can link initial and final states. It is 

virtually always the case that changing paths incurs changes in the spectral entropy. 
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There follows a corollary: 

There exist an infinite number of pathways that are able to link an initial to a final state. The curve in 

Figure 7 represents one (of infinite possible) having positive SYS, SYV, SYp, etc. There exist 

neighboring pathways for which a non-zero change in SY is impossible: Y  p, T, U, μ, etc. The reason 

is that altering a pathway inexorably modifies one or more weight coefficients in the Fourier 

representation. Neighboring states that admit fixed-entropy pathways are special by the Caratheodory 

principle. Neighboring pathways that pose zero change in the spectral entropy prove no less special.  

Figure 8. Carnot Cycles and Pathways. A Carnot cycle for 1.00 mole of monatomic ideal 

gas is illustrated in both the pV and TS planes. The Carnot strategy in relation to pathway 

spectral entropy is discussed in the text.  

 
 

A final insight concerns heat engines, devices that transform a system along a cyclic pathway such 

that the initial and final states are identical. In simplest terms, heat is injected into the system  

(e.g., steam or combustion gas mixtures) at some high temperature; entropy is injected simultaneously. 

So that mechanical integrity is preserved, an equivalent amount of entropy must be ejected by the 

system somewhere along the pathway. The only feasible way is for the system to cast out “wasted” 

heat at some lower temperature. It follows that the conversion efficiency of injected heat  output 

work can never be 100%. The output work is at best equal to Qinjected–Qwasted [6,7].  
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Not all cyclic transformations are created equal. Thus Carnot identified the optimum pathways for 

heat  work conversions [6,7,12,13]. These entail minimizing the thermal gradients within the system 

while maximizing the temperature differences between the points of heat injection and ejection. The 

first strategy minimizes the irreversibilities that create additional entropy; this extra entropy must also 

be ejected at some point of the cycle to maintain integrity. The latter strategy enhances the ejection 

efficiency as ΔS scales inversely with temperature. One example of a Carnot cycle is represented in 

Figure 8. Shown for both the pV and TS planes are the state point loci for 1.00 mole of a monatomic 

ideal gas operating over a temperature range of 300–400 K. Heat is injected along the upper isotherm 

while ejection occupies the lower. The work performed over each cycle equates with the area enclosed 

by each cyclic pathway.  

Figure 9. Cyclic Pathways and Spectral Entropy. Upper and lower panels illustrate highly 

similar cyclic pathways for 1.00 mole of monatomic ideal gas. The volume domains are 

identical while the pressure domains are nearly so. The heat → work conversion efficiency 

is greater—25% versus 12%—for the cycle in the lower panel because SY↔TS for the B 

segment is less than that for A.  

 
 

Carnot’s strategy can be stated succinctly in spectral entropy terms: 

At all points of the cyclic pathway, the following equality must be maintained:  

TSYSYTY SSS    (32) 

SYT and SYS are respectively zero for isothermal and adiabatic pathways. Thus Equation 32 

reflects that the optimum algorithm for heat → work conversions is where SYTS is limited either by 

SYT or SYS. In effect, SYT and SYS establish an upper bound for SYTS so as to minimize the 

spectral entropy. In other words, the pathway SYTS must demonstrate a single source of thermal 
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programming complexity for the maximum efficiency. Clearly all the pathway segments of Figure 8 

demonstrate this critical property. The condition is unmodified if the segments are subdivided 

arbitrarily. Note the Carnot segments to be radically different from the pathways illustrated of the 

previous figures where:  

TSYSYTY SSS    (33) 

The TS-spectral entropy provides an alternative assessment of pathway segments for their suitability 

in heat engine programs. As an example, Figure 9 shows two (of infinite possible) cyclic pathways that 

have equivalent volume domains and nearly-equal pressure domains. The upper segments A and B are 

different, however. The heat → work conversion efficiencies are readily computed by conventional 

methods. Alternatively, a calculation of SYTS for the A and B segments immediately identifies the 

more efficient program. SYTS is ca. 10% less for B in the lower panel; the heat → work conversion 

efficiency is about double that for the upper panel cycle. This holds in spite of the nearly-double 

temperature domain covered in the upper cycle.  

4. Summary and Closing Comments 

Systems do not elect and travel pathways by themselves. Joint operations with the surroundings are 

required. These entail highly-coordinated work and heat exchanges and parallel tuning of the system 

variables. Algorithms and programs form the currency for these operations. The spectral entropy for 

several variables was examined for elementary systems and algorithms. Shown was how SY 

distinguishes ideal from non-ideal gases; it connects as well with the first and second laws and the 

optimal programs encoded for heat engines. This paper focused on the pathway spectral entropy for 

elementary macroscopic systems. Clearly algorithms and programs are distinguished by their entropic 

character. Therefore a follow-up task is to identify the minimum SY—pathways that direct a 

thermodynamic state toward another. Such research is currently in progress. It is further noteworthy 

that microscopic systems such as enzymes present thermodynamic fluctuations and pathways under 

dynamic, non-equilibrium conditions [20,21]. The pathways of these systems might benefit from an 

analysis in spectral entropy terms. The properties described here for non-ideal systems, and first and 

second law constraints offer valid starting points.  
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