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Abstract: The heat transfer problem of a zero-mean oscillatory flow of a Maxwell fluid be-
tween infinite parallel plates with boundary conditions of the third kind is considered. With
these conditions, the amount of heat entering or leaving the system depends on the external
temperature as well as on the convective heat transfer coefficient. The local and global time-
averaged entropy production are computed, and the consequences of convective cooling of
the plates are also assessed. It is found that the global entropy production is a minimum for
certain suitable combination of the physical parameters. For a discrete set of values of the
oscillatory Reynolds number, the extracted heat from one of the plates shows maxima.

Keywords: Entropy generation; Optimization; Oscillatory flows; boundary conditions of the
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1. Introduction

In energy conversion processes, the performance of real thermal devices is always affected by irre-
versible losses that lead to an increase of entropy and reduce the thermal efficiency. Therefore, a great
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deal of effort has been carried out in order to understand the underlying physical processes with the aim
at reducing such irreversibilities according to the physical constraints imposed on the system. On the
other hand, the design of many traditional engineering devices (such as heat exchangers and cooling
modules) and the performance of processes involving heat removal from components such as electronic
chips and other similar high energy devices rely on heat transfer enhancement. In the previous situ-
ations, the analysis of the entropy generation [1, 2] reveals as a tool for characterizing the associated
irreversible processes and, hopefully, optimizing the performance of a given device. In fluid flow sys-
tems, the entropy generation usually involves irreversibilities originated by heat transfer and viscous
friction. It has been recognized that oscillatory flows may play an important role on the improvement
of transport processes in different situations. For instance, oscillatory flows may enhance the transport
of mass compared to the molecular diffusive transport present in a motionless fluid [3]. In a similar
way, the effective thermal diffusivity of a Newtonian fluid in a duct subjected to a zero-mean oscillatory
flow may reach a maximum for a specific oscillation frequency and lead to heat transfer enhancement
[4, 5]. Moreover, in the case of a viscoelastic fluid flowing in a tube, the dynamic permeability may be
enhanced at given resonant oscillation frequencies [6, 7, 9–11]. Recently, attention has been directed
to oscillatory flows at high frequencies under conditions where inertial effects are negligible with the
aim at using them in microfluidics applications [12]. Some other recent studies have also addressed the
problem of heat transfer with viscoelastic fluids [13–15]. Thus, one may reasonably wonder whether one
can profit from a sensible combination of oscillatory flows, thermal boundary conditions and viscoelas-
tic properties of the working fluid. This paper is devoted to providing an analysis of the heat transfer
problem of a zero-mean oscillatory flow of a Maxwell fluid between infinite parallel plates with thermal
boundary conditions based on Newton’s law of cooling where the amount of heat entering or leaving the
system depends on the external temperature as well as on the convective heat transfer coefficient. Such
an analysis will hopefully shed some light on the heat transfer enhancement process. The emphasis is
placed on the computation of the entropy generation for the system and its subsequent analysis [16].

2. Transport Problem

2.1. Basic Assumptions

We consider the flow of a viscoelastic fluid, modeled as a Maxwell fluid, between two infinite parallel
plates separated by a distance 2a, so that border effects are disregarded. We assume that a zero-mean
time-periodic pressure gradient is established in the system producing an oscillatory flow in the axial
x-direction that satisfies nonslip conditions at the plates. With the former approximations, the flow
becomes fully developed with all quantities depending on the transversal coordinate y and the time t ,
except for the pressure, which varies with x and t. Provided the flow remains within the linear regime
assumptions, the stability of the flow is assured. We also assume that the fluid is incompressible and
monocomponent, so that mass diffusion phenomena are disregarded. In addition, all physical properties
of the fluid are assumed to be constant. Heat is generated in the fluid due to viscous stresses and it is
assumed that the system exchanges heat with the exterior through Newton’s law of cooling so that the
heat transfer equation must satisfy thermal boundary conditions of the third kind.
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2.2. Fundamental Equations

The continuity and momentum equations for this system are

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p +∇ · τ , (2)

where u and p , are the velocity and pressure fields while ρ and τ are the mass density and viscous
stress tensor of the fluid. The right-hand side of Eq. (2) accounts for normal and tangential stresses,
respectively. In turn, the heat transfer equation reads

ρcp

(
∂T

∂t
+ (u · ∇) T

)
= k∇2T − τ : ∇u, (3)

where T is the temperature, and cp and k are the specific heat at constant pressure and the thermal
conductivity of the fluid, respectively. For the viscous stress tensor τ we consider the linear form of the
Maxwell model, namely,

tm
∂τ

∂t
= −η∇u− τ , (4)

where η is the shear viscosity and tm the relaxation time for the Maxwell fluid. Note that if tm = 0 we
recover the expression for the viscous stress tensor for the Newtonian fluid given by

τ = −η∇u. (5)

2.3. Velocity field

In order to get the governing equation of motion, we first take the time derivative of equation (2)
without the nonlinear convective term. Then, we substitute the term ∂τ/∂t from equation (4) and use
again equation (2) to eliminate the term ∇ · τ . Assuming a unidirectional flow that depends only on the
transversal coordinate and time, the final equation reads

tmρ
∂2u

∂t2
+ ρ

∂u

∂t
= −

(
1 + tm

∂

∂t

)
∂p

∂x
+ η

∂2u

∂y2
. (6)

The oscillatory pressure gradient that produces the motion can be expressed as the real part of (∂p/∂x) =

Geiωt, where G is a constant. Therefore, we assume that the velocity is also a harmonic function of t,
that is, u =

[
u = 1

2

(
uo(y)eiωt + uo(y)e−iωt

)
, 0, 0

]
, where the bar denotes complex conjugation. Under

these circumstances the equation to be solved reads

∂2u0

∂y∗2
= (1 + iω∗)(iRωu0 + K), (7)

where y∗ = y/a, K = Ga2/η, Rω = ωa2ρ/η being the oscillation Reynolds number (which compares
the characteristic length with the viscous penetration depth) and ω∗ = ωtm. The corresponding non-slip
boundary conditions for eq. (7) read u0(±1) = 0. The average velocity U0 is in turn given by

Uo =
1

2

∫ +1

−1

uo dy∗. (8)
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The explicit (analytic) expression of u0(y
∗) in terms of Rω, K and ω∗ may be readily derived from

Eq. (7) and its boundary conditions (as we have done using Mathematica) but will not be written down
here.

2.4. Temperature field

Once the velocity field is obtained, one may proceed to solve the energy balance equation. Here
this equation must be solved using boundary conditions of the third kind that indicate that the normal
temperature gradient at any point in the boundary is assumed to be proportional to the difference between
the temperature at the surface and the external ambient temperature. Hence, the amount of heat entering
or leaving the system depends on the external temperature as well as on the convective heat transfer
coefficient. It is also useful to consider the dimensionless variables u∗ = u/Uo and t∗ = ωt. Then, the
energy balance (3) for the Maxwell fluid may be written, in dimensionless form, as

Pr Rω
∂Θ

∂t∗
=

∂2Θ

∂y∗2
+

1

1 + ω∗2

(
∂u∗

∂y∗

)2

, (9)

where Pr = ηcp/k, is the Prandtl number and the dimensionless temperature is given by Θ = kT/ηU2
o .

Note that the viscous dissipation contribution involves squared terms of harmonic functions of time.
Consequently, the heat source term contains time harmonic terms with twice the frequency of oscillation
as well as a steady contribution. Therefore, one may assume that the dimensionless temperature has the
form

Θ(y∗, t∗) = Θu(y
∗)e2it∗ + Θu(y∗)e−2it∗ + Θs(y

∗), (10)

where the sub-indexes u and s refer to the unsteady and steady contributions, respectively. Introducing
Eq.(10) into Eq. (9), the equations satisfied by Θu, Θu and Θs are found to be

d2Θu

dy∗2
− 2i Pr RωΘu = − 1

4(1 + ω∗2)

(
∂u∗0
∂y∗

)2

, (11)

d2Θu

dy∗2
+ 2i Pr RωΘu = − 1

4(1 + ω∗2)

(
∂u∗0
∂y∗

)2

, (12)

and
d2Θs

dy∗2
= − 1

2(1 + ω∗2)

(
∂u∗0
∂y∗

)(
∂u∗0
∂y∗

)
. (13)

The solution to Eqs. (11)-(13) must satisfy the boundary conditions of the third kind, namely

dΘs

dy∗
+ Bi1 (Θs −ΘA) = 0, at y∗ = 1, (14)

dΘs

dy∗
−Bi2 (Θs −ΘA) = 0, at y∗ = −1, (15)

dΘu

dy∗
+ Bi1Θu = 0, at y∗ = 1, (16)

dΘu

dy∗
−Bi1Θu = 0, at y∗ = −1, (17)
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Figure 1. Dimensionless velocity vs. dimensionless position y∗ at t∗ = 0.5. Solid line:
Maxwell fluid, Rω = 1, ω∗ = 1.8× 105, dot-dashed line: Newtonian fluid, Rω = 1.
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where ΘA is the reference ambient dimensionless temperature and the Biot numbers Bi1 = h1a/k

and Bi2 = h2a/k are the dimensionless expressions of the convective heat transfer coefficients of the
upper and lower surfaces, h1 and h2 , respectively, which can be different. As stated before, with these
conditions the amount of heat entering or leaving the system depends on the external ambient temperature
ΘA, as well as on the dimensionless convective heat transfer coefficient of each surface. When the
Biot number tends to zero, an adiabatic boundary is approached. In turn, for very high values of Biot
number, a constant temperature boundary is recovered. Apart from the spatial or the spatial and temporal
dependence, such solutions (derived again with the aid of Mathematica), are functions of Pr , Rω , Bi1 ,
Bi2 and ω∗ whose explicit form is not particularly illuminating and thus will also be omitted. They are,
however, available upon request. For the sake of illustration, Figures 1 and 2 show the cross variation of
the velocity and temperature fields, respectively, for both the Maxwell and the Newtonian fluids in each
case.

The Newtonian description has been obtained by making tm = 0 in Eqs. (7), (11)-(13). Note, in
Figure 1, the middle zone between the plates where the Maxwell fluid flows with an inverted velocity
with respect to that near the plates. A particular choice of the values of the parameters defining the
system was made in order to perform these and the further simulations. The values are the following:
k = 0.58 W/mK, ρ = 1050 Kg/m3, cp = 4.2 × 103 J/KgK and η = 60 Pa s, tm = 1.9 s .
The viscoelastic properties of the fluid correspond to an aqueous solution of cetylpyridinium chloride
(CPyCl) 100 mM and sodium salisylate (NaSal) 60 mM [17].

The oscillation frequency ω is ranging from 6× 102 Hz (Rω = 103) to 9× 106 Hz (Rω = 15), for a
milimetric device (a separation between plates of 10−3 m). We have also taken Pr = 100, ΘA = 5, and
the following intervals for the remaining parameters: 0 < Bi1 < 10, 3 < Bi2 < 60.
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Figure 2. Dimensionless temperature vs. dimensionless position y∗ at t∗ = 0.5. Pr = 100,
Bi1 = 1, Bi2 = 50, ΘA = 10. Solid line: Maxwell fluid Rω = 1, ω∗ = 1.8×105, dot-dashed
line: Newtonian fluid, Rω = 1.
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3. Results

3.1. Entropy Generation

The velocity and temperature fields already obtained will be used for the determination of the entropy
generation rate for this problem. The heat transfer contribution to the dimensionless local entropy gen-
eration, Ṡ∗q , is not modified by the viscoelastic properties of the fluid and presents the usual form also
valid for Newtonian fluids [2, 16], namely,

Ṡ∗q =
1

Θ2

(
∂Θ

∂y∗

)2

. (18)

On the other hand, the viscous stress contribution to the (dimensional) local entropy generation rate, Ṡv,
in general, is given by

Ṡv = −τ : ∇u/T. (19)

For the Maxwellian case, the expression for Ṡv has to be derived by considering the constitutive equation
for the stress tensor of the Maxwell fluid given by Eq. (4) [11]. Expressed in integral form, we have
[18],

τ (t) = −
∫ t

−∞

[
η

tm
e−

t−t
′

tm

]
∇u(t

′
)dt

′
. (20)
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Figure 3. Dimensionless global entropy generation rate Ṡ∗av vs Bi1. Maxwell fluid: Pr =

100, Rω = 10, ΘA = 5, ω∗ = 1.08 × 106. Solid line: Bi2 = 60 dot-dashed line: Bi2 = 5,
dotted line: Bi2 = 3.
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Then, we substitute Eq. (20) into Eq. (19) in order to obtain the general expression for viscous stress
contribution of the entropy generation rate for a Maxwellian fluid, namely,

Ṡv =

[
−

∫ t

−∞

[
η

tm
e−

t−t
′

tm

]
∇u(t

′
)dt

′
]

: [∇u(t)]/T. (21)

Explicitly, once the velocity profile is substituted into Eq. (21) and the integral of Ṡv over one period
of oscillation is calculated, we find the local (time-averaged) entropy generation rate for the Maxwellian
fluid that, in dimensionless terms, reads

< Ṡ∗v > (y∗) =
1

Θ(1 + ω∗2)

(
∂u∗0
∂y∗

)2

, (22)

where the symbol < > denotes time integration over one period of oscillation. Therefore, the dimen-
sionless time-averaged local entropy generation rate, < Ṡ∗ >, that takes into account irreversibilities due
to heat conduction and viscous losses is given by

< Ṡ∗ >=< Ṡ∗q > + < Ṡ∗v >, (23)

where < Ṡ∗ > is normalized by k/a2. Previously to the time integration, Ṡ∗ is a function of space and
time and, in fact, contains both time harmonic and steady parts. Once the time-averaging is performed,
time harmonic terms disappear and only the steady, space-dependent terms remain. The global entropy
generation rate per unit length in the axial direction, denoted as Ṡ∗av, is obtained by integrating < Ṡ∗ >

from y∗ = −1 to y∗ = 1. While one could attempt to derive the resulting (complicated) function of Pr,
Rω, Bi1, Bi2, and ω∗, it seems much more practical to compute it numerically.
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Figure 4. Log plot of dimensionless global entropy production Ṡ∗av vs Rω. Bi1 = 0.5,
Bi2 = 60, ΘA = 5. Solid line: Maxwell fluid (Pr = 100), dot-dashed line: Newtonian fluid
(Pr = 1).
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In Figure 3 we show the normalized global entropy generation rate, for the Maxwell fluid only, as a
function of Bi1, for fixed Pr, Rω and ω∗ and three different values of Bi2.

As clearly seen in Figure 3, the global entropy production displays well defined minima. A previous
research has reported an analogous result for other heat transfer problem with a Newtonian fluid [19, 20].
These minima are due in part to the elastic properties of the Maxwell fluid manifested through the
presence of relaxation terms in Eqs. (7,11)-(13). Note that minima are only found for restricted values
of the Biot numbers.

In the Log plot of Figure 4, it is displayed the behavior of the global entropy generation with respect to
the oscillation Reynolds number for both the Newtonian and the Maxwell fluids. Unlike the Newtonian
fluid, the dependence of Ṡ∗av on Rω appears rather complicated in the case of the Maxwell fluid and it has
a remarkable feature; namely, the global entropy production behaves periodically with Rω , so that for
given frequencies the entropy generation reaches very small values. These low entropy production zones
in Rω should be considered in the design of thermal devices for the sake of optimal working conditions.
Mention must be made that both curves in Figure 4 were obtained with the same values of the parameters,
excepting the Prandtl number. The curves should be compared only in a qualitative way.

3.2. Heat Transfer

We now show the dependence of the normal heat transported through the parallel plates on both the
Biot and the oscillatory Reynolds numbers. Firstly, we calculate the heat per unit area in a full oscillation
period and the result for the lower plate can be seen in Figures 5 and 6, when plotted against Bi1 and
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Figure 5. Dimensionless heat transported per unit area in lower plate vs. Bi1. Solid line:
Maxwell fluid, dot-dashed line: Newtonian fluid. Rω = 1.4, Bi2 = 60, ΘA = 5, ω∗ =

1.51× 106.
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Bi2 , respectively. In each one of those figures, we display the heat for both Maxwell and Newtonian
fluids. We note that the graphs for both fluids can be compared in a quantitative way since they were
obtained with exactly the same model parameters. Observe that the heat does not vanish as Bi1 goes to
zero (Figure 5), while it does vanishes at Bi2 = 0 for the two fluids, as expected, since according with
the boundary conditions, when Bi2 vanishes the heat flow is zero in the lower plate. We note the fact
that the magnitude of the transported heat through the lower plate increases when Bi1 decreases (Figure
5) and when Bi2 increases (Figure 6). Though not displayed, the normal heat per unit area transferred
through the upper plate shows a similar behavior.

Finally, we show in Figure 7 the transported heat through the lower plate as a function of Rω. Note
firstly, that maxima of the heat exist where Ṡ∗av has also maxima, and secondly, that in all cases of Figures
5, 6, 7, the transported heat flow is positive. It may be shown that the heat flow through the upper plate
is also positive. Then, the device is extracting heat from the lower plate and giving a part of the absorbed
or generated heat to the upper plate.

4. Discussion

The convective cooling of the parallel plates brings out a diminishing of the entropy production as
the Biot number Bi1 increases. It reaches a minimum at certain Bi1 which depends on the value of Bi2,
as for example, in the case when Bi2 = 3, the minimum appears at Bi1 = 0.24 (see Figure 3). The
conditions of minimum entropy generation for the Maxwell fluid can then be sketched from Figures 3
and 4. In Figure 3, we see that minima exist if 0 < Bi1 < 0.5, when Bi2 is varying from 3 to 60. On the
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Figure 6. Dimensionless heat transported per unit area in lower plate vs. Bi2 Solid line:
Maxwell fluid, dot-dashed line: Newtonian fluid. Rω = 1.4, Bi2 = 60, ΘA = 5, ω∗ =

1.51× 106.
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other hand, we periodically find minima of Ṡ∗av in the full range of Rω considered in this study (Figure
4). The minima appear approximately at Rω = 1, 2, 3, .., and so on.

We remark the striking differences introduced by the peculiar properties of the Maxwell fluid in
the entropy production analysis. As mentioned above, when tm = 0, the problem reduces to the one
of the Newtonian fluid which is therefore a particular case of the present development. Our results
suggest that the sensitivity of Ṡ∗av to a variation of tm would be very high. Far from the statement that
the viscoelastic properties of the Maxwell fluid can make disappear the existence of minimal entropy
production operating conditions, we see that, in fact, they make wider the spectrum of combinations
of the parameters to obtain such conditions. From the results obtained in this work we have that given
values of Biot numbers obeying 0.2 < Bi1 < 0.5 and Bi2 > 1, a suitable selection of Rω, practically
in its whole range of variation, can bring out the minimal entropy production condition, which is not
so in the case of the Newtonian fluid. In this case, the entropy production increases indefinitely as Rω

increases.
With respect to the heat transferred through the plates we only wish at this point to remind the reader

of the fact that the heat extracted from the lower plate is bigger when the Biot numbers satisfy Bi1 < 1,
and Bi2 > 1, than otherwise.

One can now define the optimal performance of the device as the condition in which the heat extracted
from the lower plate is the biggest, while the global entropy production is as small as possible. In order
to get it, one only needs to fix the value of Bi1 between 0.2 and 0.4, Bi2 bigger than unity, and then the
Reynolds number should be chosen among the values where the heat transferred through the lower plate
has maxima (Figure 7). These are at approximately Rω = 1.4, 2.4, 3.4, ..., etc. We know that the global
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Figure 7. Dimensionless heat transported per unit area in lower plate vs. Rω Solid line:
Maxwell fluid, dot-dashed line: Newtonian fluid. Bi1 = 0.5, Bi2 = 60 and ΘA = 5.
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entropy production also has maxima in such points but we now also know that there it is the smallest.
One may rise the question about the use of non-Maxwellian viscoelastic fluids in oscillatory motion

for heat transfer applications. Although it may deserve a separate study, in the linear regime other
viscoelastic fluids could present a behavior similar to the one found in this paper. Provided viscous and
elastic effects are present in a time-periodic flow, a resonant behavior could be expected.

5. Summary and Conclusion

In this work we have analyzed the problem of an oscillatory flow of a Maxwell fluid between infinite
parallel plates and considered the heat transfer problem with boundary conditions of the third kind. After
deriving the velocity and temperature fields, we computed the local and global entropy production in the
system. It has been found that for a suitable combination of the physical parameters involved in the
oscillatory regime of the problem and those defining the boundary conditions, the system can operate in
a minimum global entropy production state. The following is the combination:

1. 0.2 < Bi1 < 0.5, Bi2 > 1

2. Rω = 1, 2, 3, ...

The existence of these values of Rω is an outstanding result that arises from the peculiar properties of
the Maxwell fluid (Figures 4 and 7).

The optimal performance of the system has been defined as that in which the heat extracted from the
lower plate is a maximum and the global entropy production is as small as possible. We have suggested
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a suitable solution to the problem of reaching such operating state. The first step is to choose the Biot
numbers satisfying condition 1) above, and then to take Rω among the values:

3. Rω = 1.4, 2.4, 3.4, ...
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