
Entropy 2008, 10, 71-99; DOI: 10.3390/entropy-e10020071

OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.org/entropyArticle

Estimating the Entropy of Binary Time Series: Methodology,
Some Theory and a Simulation Study
Yun Gao 1, Ioannis Kontoyiannis 2,? and Elie Bienenstock 3

1 Knight Equity Markets, L.P., Jersey City, NJ 07310, USA
2 Department of Informatics, Athens University of Economics and Business, Athens 10434, Greece
3 Division of Applied Mathematics and Department of Neuroscience, Brown University, Providence,
RI 02912, USA
E-Mails: YGao@knight.com; yiannis@aueb.gr; elie@dam.brown.edu
? Author to whom correspondence should be addressed.

Received: 6 March 2008; in revised form: 9 June 2008 / Accepted: 17 June 2008 / Published: 17 June
2008

Abstract: Partly motivated by entropy-estimation problems in neuroscience, we present a
detailed and extensive comparison between some of the most popular and effective entropy
estimation methods used in practice: The plug-in method, four different estimators based
on the Lempel-Ziv (LZ) family of data compression algorithms, an estimator based on the
Context-Tree Weighting (CTW) method, and the renewal entropy estimator.
METHODOLOGY: Three new entropy estimators are introduced; two new LZ-based
estimators, and the “renewal entropy estimator,” which is tailored to data generated by a
binary renewal process. For two of the four LZ-based estimators, a bootstrap procedure is
described for evaluating their standard error, and a practical rule of thumb is heuristically
derived for selecting the values of their parameters in practice. THEORY: We prove that,
unlike their earlier versions, the two new LZ-based estimators are universally consistent,
that is, they converge to the entropy rate for every finite-valued, stationary and ergodic
process. An effective method is derived for the accurate approximation of the entropy rate
of a finite-state hidden Markov model (HMM) with known distribution. Heuristic
calculations are presented and approximate formulas are derived for evaluating the bias and
the standard error of each estimator. SIMULATION: All estimators are applied to a wide
range of data generated by numerous different processes with varying degrees of
dependence and memory. The main conclusions drawn from these experiments include:
(i) For all estimators considered, the main source of error is the bias. (ii) The CTW



method is repeatedly and consistently seen to provide the most accurate results. (iii) The
performance of the LZ-based estimators is often comparable to that of the plug-in method.
(iv) The main drawback of the plug-in method is its computational inefficiency; with small
word-lengths it fails to detect longer-range structure in the data, and with longer
word-lengths the empirical distribution is severely undersampled, leading to large biases.

Keywords: Entropy estimation, Lempel-Ziv coding, Context-Tree-Weighting, simulation,
spike trains.

1. Introduction

The problem of estimating the entropy of a sequence of discrete observations has received a lot of
attention over the past two decades. A, necessarily incomplete, sample of the theory that has been de-
veloped can be found in [1–14] and the references therein. Examples of numerous different applications
are contained in the above list, as well as in [15–27].

Information-theoretic methods have been particularly widely used in neuroscience, in a broad effort to
analyze and understand the fundamental information-processing tasks performed by the brain. In many
of these studies, the entropy is adopted as the main measure for describing the amount of information
transmitted between neurons. There, the continuous signal describing the sequence of action potentials
is typically quantized in time (into bins of duration in the order of milliseconds), and each bin is labelled
1 or 1, according to whether or not a action potential, or “spike” occurred in that time interval. One of the
most basic tasks in this area is to identify appropriate methods for quantifying this information, in other
words, to estimate the entropy of spike trains recorded from live animals; see, e.g., [13, 18, 20, 24–31].

Motivated, in part, by the application of entropy estimation techniques to such neuronal data, we
present a systematic and extensive comparison, both in theory and via simulation, between several of
the most commonly used entropy estimation techniques. This work serves, partly, as a more theoretical
companion to the experimental work and results presented in [32–34]. There, entropy estimators were
applied to the spike trains of 28 neurons recorded simultaneously for a one-hour period from the primary
motor and dorsal premotor cortices (MI, PMd) of a monkey. The purpose of those experiments was to
examine the effectiveness of the entropy as a statistic, and its utility in revealing some of the underlying
structural and statistical characteristics of the spike trains. In contrast, our main aim here is to examine
the performance of several of the most effective entropy estimators, and to establish fundamental prop-
erties for their applicability, such as rigorous estimates for their convergence rates, bias and variance. In
particular, since (discretized) spike trains are typically represented as binary sequences [35], some of our
theoretical results and all of our simulation experiments are focused on binary data.

Section 2 begins with a description of the entropy estimators we consider. The simplest one is the
plug-in or maximum likelihood estimator, which consists of first calculating the empirical frequencies of
all words of a fixed length in the data, and then computing the entropy of this empirical distribution. For
obvious computational reasons, the plug-in is ineffective for word-lengths beyond 10 or 20, and hence it
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cannot take into account any potential longer-time dependencies in the data.
A popular approach for overcoming this drawback is to consider entropy estimators based on “uni-

versal” data compression algorithms, that is, algorithms which are known to achieve a compression ratio
equal to the entropy, for data generated by processes which may possess arbitrarily long memory, and
without any prior knowledge about the distribution of the underlying process. Since, when trying to esti-
mate the entropy, the actual compression task is irrelevant, many entropy estimators have been developed
as modifications of practical compression schemes. Section 2.3 describes two well-known such entropy
estimators [9], which are based on the Lempel-Ziv (LZ) family of data compression algorithms [36, 37].
These estimators are known to be consistent (i.e., to converge to the correct value for the entropy) only
under certain restrictive conditions on the data. We introduce two new LZ-based estimators, and we
prove in Theorem 2.1 that, unlike the estimators in [9], they are consistent under essentially minimal
conditions, that is, for data generated by any stationary and ergodic process.

Section 2.4 contains an analysis, partly rigorous and partly in terms of heuristic computations, of the
rate at which the bias and the variance of each of the four LZ-based estimators converges to zero. A
bootstrap procedure is developed for empirically estimating the standard error of two of the four LZ-
based estimators, and a practical rule-of-thumb is derived for selecting the values of the parameters of
these estimators in practice.

Next, in Section 2.5 we consider an entropy estimator based on the Context-Tree Weighting (CTW)
algorithm [38–40]. [In the neuroscience literature, a similar proceedure has been applied in [29] and
[25].] The CTW, also originally developed for data compression, can be interpreted as a Bayesian
estimation procedure. After a brief description, we explain that it is consistent for data generated by any
stationary and ergodic process and show that its bias and variance are, in a sense, as small as can be.∗

Section 3 contains the results of an extensive simulation study, where the various entropy estimators
are applied to data generated from numerous different types of processes, with varying degrees of depen-
dence and memory. In Section 3.1, after giving brief descriptions of all these data models, we present
(Proposition 3.1) a method for accurately approximating the entropy rate of a Hidden Markov Model
(HMM); recall that HMMs are not known to admit closed-form expressions for their entropy rate. Also,
again partly motivated by neuroscience applications, we introduce another new entropy estimator, the
renewal entropy estimator, which is tailored to binary data generated by renewal processes.

Section 3.2 contains a detailed examination of the bias and variance of the four LZ-based estimators
and the CTW algorithm. There, our earlier theoretical predictions are largely confirmed. Moreover, it is
found that two of the four LZ-based estimators are consistently more accurate than the other two.

Finally, Section 3.3 contains a systematic comparison of the performance of all of the above estimators
on different types of simulated data. Incidental comparisons between some of these methods on limited
data sets have appeared in various places in the literature, and questions have often been raised regarding
their relative merits. One of the main goals of the work we report here is to offer clear resolutions
for many of these issues. Specifically, in addition to the points mentioned up to now, some of the

∗The CTW also has another feature which, although important for applied statistical analyses such as those reported in
connection with our experimental results in [33][34], will not be explored in the present work: A simple modification of the
algorithm can be used to compute the maximum a posteriori probability tree model for the data; see Section 2.5 for some
details.
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main conclusion that we draw from the simulation results of Section 3 (these and more are collected in
Section 4) can be summarized as follows:

• Due its computational inefficiency, the plug-in estimator is the least reliable method, in contrast
to the LZ-based estimators and the CTW, which naturally incorporate dependencies in the data at
much larger time scales.

• The most effective estimator is the CTW method. Moreover, for the CTW as well as for all other
estimators, the main source of error is the bias and not the variance.

• Among the four LZ-based estimators, the two most efficient ones are those with increasing win-
dow sizes, Ĥn of [9] and H̃n introduced in Section 2.3. Somewhat surprisingly, in several of the
simulations we conducted the performance of the LZ-based estimators appears to be very similar
to that of the plug-in method.

2. Entropy Estimators and Their Properties

This section contains a detailed description of the entropy estimators that will be applied to simulated
data in Section 3. After some basic definitions and notation in Section 2.1, the following four subsections
contain the definitions of the estimators together with a discussion of their statistical properties, including
conditions for consistency, and estimates of their bias and variance.

2.1. Entropy and Entropy Rate

Let X be a random variable or random vector, taking values in an arbitrary finite set A, its alphabet,
and with distribution p(x) = Pr{X = x} for x ∈ A. The entropy of X [41] is defined as,

H(X) = H(p) = −
∑
x∈A

p(x) log p(x),

where, throughout the paper, log denotes the logarithm to base 2, log2. A random process X =

{. . . , X−1, X0, X1, X2, . . .} with alphabet A is a sequence of random variables {Xn} with values in
A. We write Xj

i = (Xi, Xi+1, . . . , Xj) for a (possibly infinite) contiguous segment of the process, with
−∞ ≤ i ≤ j ≤ ∞, and xj

i = (xi, xi+1, . . . , xj) for a specific realization of Xj
i , so that xj

i is an element
of Aj−i+1. The entropy rate H = H(X), or “per-symbol” entropy, of X is the asymptotic rate at which
the entropy of Xn

1 changes with n,

H = H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn), (1)

whenever the limit exists, where H(X1, X2, . . . , Xn) is the entropy of the jointly distributed random
variables Xn

1 = (X1, X2, . . . , Xn). Recall [41] that for a stationary process (i.e., a process such that the
distribution of every finite block Xn+k

n+1 of size k has the same distribution, say pk, independently of its
position n), the entropy rate exists and equals,

H = H(X) = lim
n→∞

H(Xn |Xn−1, . . . , X2, X1),
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where the conditional entropy H(Xn |Xn−1
1 ) = H(Xn |Xn−1, . . . , X2, X1) is defined as,

H(Xn |Xn−1
1 ) = −

∑
xn
1∈An

pn(xn
1 ) log Pr{Xn = xn |Xn−1

1 = xn−1
1 }

= −
∑

xn
1∈An

pn(xn
1 ) log

pn(xn
1 )

pn−1(x
n−1
1 )

.

As mentioned in the introduction, much of the rest of the paper will be devoted to binary data produced
by processes X with alphabet A = {0, 1}.

2.2. The Plug-in Estimator

Perhaps the simplest and most straightforward estimator for the entropy rate is the so-called plug-in
estimator. Given a data sequence xn

1 of length n, and an arbitrary string, or “word,” yw
1 ∈ Aw of length

w < n, let p̂w(yw
1 ) denote the empirical probability of the word yw

1 in xn
1 ; that is, p̂w(yw

1 ) is the frequency
with which yw

1 appears in xn
1 . If the data are produced from a stationary and ergodic†process, then the

law of large numbers guarantees that, for fixed w and large n, the empirical distribution p̂w will be close
to the true distribution pw, and therefore a natural estimator for the entropy rate based on (1) is:

Ĥn,w,plug−in =
1

w
H(p̂w) = − 1

w

∑
yw
1 ∈Aw

p̂w(yw
1 ) log p̂w(yw

1 ).

This is the plug-in estimator with word-length w. Since the empirical distribution is also the maxi-
mum likelihood estimate of the true distribution, this is also often referred to as the maximum-likelihood
entropy estimator.

Suppose the process X is stationary and ergodic. Then, taking w large enough for 1
w
H(Xw

1 ) to be
acceptably close to H in (1), and assuming the number of samples n is much larger than w so that
the empirical distribution of order w is close to the true distribution, the plug-in estimator Ĥn,w,plug−in

will produce an accurate estimate for the entropy rate. But, among other difficulties, in practice this
leads to enormous computational problems because the number of all possible words of length w grows
exponentially with w. For example, even for the simple case of binary data with a modest word-length of
w = 30, the number of possible strings yw

1 is 230, which in practice means that the estimator would either
require astronomical amounts of data to estimate p̂w accurately, or it would be severely undersampled.
See also [43] and the references therein for a discussion of the undersampling problem.

Another drawback of the plug-in estimator is that it is hard to quantify its bias and to correct for
it. For any fixed word-length w, it is easy to see that the bias E

[
Ĥn,w,plug−in

] − 1
w
H(Xw

1 ) is always
negative [12, 13], whereas the difference between the wth-order per-symbol entropy and the entropy
rate, 1

w
H(Xw

1 ) − H(X), is always nonnegative. Still, there have been numerous extensive studies on
calculating this bias and on developing ways to correct for it; see [13, 18, 20, 24, 27, 28] and the
references therein.

†Recall that ergodicity is simply the assumption that the law of large numbers holds in its general form (the ergodic
theorem); see, e.g., [42] for details. This assumption is natural and, in a sense, minimal, in that it is hard to even imagine how
any kind of statistical inference would be possible if we cannot even rely on taking long-term averages.
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2.3. The Lempel-Ziv Estimators

An intuitively appealing and popular way of estimating the entropy of discrete data with possibly long
memory, is based on the use of so-called universal data compression algorithms. These are algorithms
that are known to be able to optimally compress data from an arbitrary process (assuming some broad
conditions are satisfied), where optimality means that the compression ratio they achieve is asymptoti-
cally equal to the entropy rate of the underlying process – although the statistics of this process are not
assumed to be known a priori. Perhaps the most commonly used methods in this context are based on a
family of compression schemes known as Lempel-Ziv (LZ) algorithms; see, e.g., [36, 37, 44].

Since the entropy estimation task is simpler than that of actually compressing the data, several mod-
ified versions of the original compression algorithms have been proposed and used extensively in prac-
tice. All these methods are based on the calculation of the lengths of certain repeating patterns in the
data. Specifically, given a data realization x = (. . . , x−1, x0, x1, x2, . . .), for every position i in x and
any “window length” n ≥ 1, consider the length ` of the longest segment xi+`−1

i in the data start-
ing at i which also appears in the window xi−1

i−n of length n preceding position i. Formally, define
Ln

i = Ln
i (x) = Ln

i (xi+n−1
i−n ) as 1+ [that longest match-length]:

Ln
i = Ln

i (x) = Ln
i (xi+n−1

i−n )

= 1 + max{0 ≤ ` ≤ n : xi+`−1
i = xj+`−1

j for some i− n ≤ j ≤ i− 1}.

Suppose that the process X is stationary and ergodic, and consider the random match-lengths Ln
i =

Ln
i (X i+n−1

i−n ). In [44, 45] it was shown that, for any fixed position i, the match-lengths grow logarithmi-
cally with the window size n, and in fact,

Ln
i

log n
→ 1

H
as n →∞, with probability 1, (2)

where H is the entropy rate of the process. This result suggests that the quantity (log n)/Ln
i can be

used as an entropy estimator, and, clearly, in order to make more efficient use of the data and reduce the
variance, it would be more reasonable to look at the average value of various match-lengths Ln

i taken at
different positions i; see the discussion in [9]. To that effect, the following two estimators are considered
in [9]. Given a data realization x = x∞−∞, a window length n ≥ 1, and a number of matches k ≥ 1, the
sliding-window LZ estimator Ĥn,k = Ĥn,k(x) = Ĥn,k(x

n+k−1
−n+1 ) is defined by,

Ĥn,k =

[
1

k

k∑
i=1

Ln
i

log n

]−1

. (3)

Similarly, the increasing-window LZ estimator Ĥn = Ĥn(x) = Ĥn(x2n−1
0 ) is defined by,

Ĥn =

[
1

n

n∑
i=2

Li
i

log i

]−1

. (4)

The difference between the two estimators in (3) and (4) is that Ĥn,k uses a fixed window length,
while Ĥn uses the entire history as its window, so that the window length increases as the matching
position moves forward.
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In [9] it is shown that, under appropriate conditions, both estimators Ĥn,k and Ĥn are consistent,
in that they converge to the entropy rate of the underlying process with probability 1, as n, k → ∞.
Specifically, it is assumed that the process is stationary and ergodic, that it takes on only finitely many
values, and that it satisfies the Doeblin Condition (DC). This condition says that there is a finite number
of steps, say r, in the process, such that, after r time steps, no matter what has occurred before, anything
can happen with positive probability:

Doeblin Condition (DC). There exists an integer r ≥ 1 and a real number β > 0 such that,

Pr(Xr = a |X0
−∞) > β,

for all a ∈ A and with probability one in the conditioning, i.e., for almost all semi-infinite
realizations of the past X0

−∞ = ( X0, X−1, . . .).

Condition (DC) has the advantage that it is not quantitative – the values of r and β can be arbitrary
– and, therefore, for specific applications it is fairly easy to see whether it is satisfied or not. But it is
restrictive, and, as it turns out, it can be avoided altogether if we consider a modified version of the above
two estimators.

To that end, we define two new estimators H̃n,k and H̃n as follows. Given x = x∞−∞, n and k as
above, define the new sliding-window estimator H̃n,k = H̃n,k(x) = H̃n,k(x

n+k−1
−n+1 ),

H̃n,k =
1

k

k∑
i=1

log n

Ln
i

, (5)

and the new increasing-window estimator H̃n = H̃n(x) = H̃n(x2n−1
0 ) as,

H̃n =
1

n

n∑
i=2

log i

Li
i

. (6)

Below some basic properties of these four estimators are established, and conditions are given for
their asymptotic consistency. Parts (i) and (iii) of Theorem 2.1 are new; most of part (ii) is contained in
[9].

Theorem 2.1. [CONSISTENCY OF LZ-TYPE ESTIMATORS]

(i) When applied to an arbitrary data string, the estimators defined in (3)–(6) always satisfy,

Ĥn,k ≤ H̃n,k and Ĥn ≤ H̃n,

for any n, k.

(ii) The estimators Ĥn,k and Ĥn are consistent when applied to data generated by a finite-valued,
stationary, ergodic process that satisfies Doeblin’s condition (DC). With probability one we have:

Ĥn,k → H, Ĥn → H, as k, n →∞.
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(iii) The estimators H̃n,k and H̃n are consistent when applied to data generated by an arbitrary finite-
valued, stationary, ergodic process, even if (DC) does not hold. With probability one we have:

H̃n,k → H, H̃n → H, as k, n →∞.

Note that parts (ii) and (iii) do not specify the manner in which n and k go to infinity. The results are
actually valid in the following cases:

1. If the two limits as n and k tend to infinity are taken separately, i.e., first k →∞ and then n →∞,
or vice versa;

2. If k →∞ and n = nk varies with k in such a way that nk →∞ as k →∞;

3. If n →∞ and k = kn varies with n in such a way that it increases to infinity as n →∞;

4. If k and n both vary arbitrarily in such a way that k stays bounded and n →∞.

Proof. PART (i). An application of Jensen’s inequality to the convex function x 7→ 1/x, with respect to
the uniform distribution (1/k, . . . , 1/k) on the set {1, 2, . . . , k}, yields,

H̃n,k =
k∑

i=1

1

k

log n

Ln
i

=
k∑

i=1

1

k

[ Ln
i

log n

]−1

≥
[ k∑

i=1

1

k

Ln
i

log n

]−1

= Ĥn,k,

as required. The proof of the second assertion is similar.

PART (ii). The results here are, for the most part, proved in [9], where it is established that Ĥn → H and
Ĥn,n → H as n →∞, with probability one. So it remains to show that Ĥn,k → H as n, k →∞ in each
of the four cases stated above.

For case 1 observe that, with probability 1,

lim
k

lim
n

Ĥn,k = lim
k

[
1

k

k∑
i=1

lim
n

Ln
i

log n

]−1

(a)
= lim

k

[
1

k

k∑
i=1

1

H

]−1

= H, (7)

where (a) follows from (2). To reverse the limits, we define, for each fixed n, a new process {Y (n)
i } =

{. . . , Y (n)
−1 , Y

(n)
0 , Y

(n)
1 , Y

(n)
2 , . . .} by letting Y

(n)
i = Ln

i /(log n) for each i. Then the process {Y (n)
i } is

itself stationary and ergodic. Recalling also from [9] that the convergence in (2) takes place not only
with probability one but also in L1, we may apply the ergodic theorem to obtain that, with probability 1,

lim
n

lim
k

Ĥn,k = lim
n

[
lim

k

1

k

k∑
i=1

Y
(n)
i

]−1

(b)
= lim

n
[E(Y

(n)
1 )]−1 =

[
lim

n
E

( Ln
1

log n

)]−1

(c)
= H,

where (b) follows by the ergodic theorem and (c) from the L1 version of (2).
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The proof of case 2 is identical to the case k = n considered in [9]. In case 3, since the sequence
{kn} is increasing, the limit of Hkn,n reduces to a subsequence of the corresponding limit in case 2 upon
considering the inverse sequence {nk}.

Finally for case 4, recall from (7) that,

lim
n

Hk,n = H with prob. 1,

for any fixed k. Therefore the same will hold with a varying k, as long as it varies among finitely many
values.

PART (iii). The proofs of the consistency results for H̃n and H̃n,k can be carried out along the same lines
as the proofs of the corresponding results in [9], together with their extensions as in Part (ii) above. The
only difference is in the main technical step, namely, the verification of a uniform integrability condition.
In the present case, what is needed is to show that,

E
{

sup
n≥1

log n

Ln
1

}
< ∞. (8)

This is done in the following lemma. 2

Lemma 2.1. Under the assumptions of part (iii) of the theorem, the L1-domination condition (8) holds
true.

Proof. Given a data realization x = (. . . , x−2, x−1, x0, x1, x2, . . .) and an m ≥ 1, the recurrence time
Rm is defined as the first time the substring xm

1 appears again in the past. More precisely, Rm is the
number of steps to the left of xm

1 we have to look in order to find a copy of xm
1 :

Rm = Rm(x) = Rm(xm
−∞) = inf{k ≥ 1 : xm

1 = x−k+m
−k+1 }.

For any such realization x and any n ≥ 1, if we take m = Ln
1 , then by the definitions of Rm and Ln

1 it
follows that, Rm > n, which implies,

log Rm

m
>

log n

Ln
1

,

and thus it is always the case that,

sup
n

log n

Ln
1

< sup
m

log Rm

m
.

Therefore, to establish (8) it suffices to prove:

E
{

sup
m

log Rm

m

}
< ∞. (9)

To that end, we expand this expectation as,

E
{

sup
m

log Rm

m

}
≤

∑

k≥0

Pr
{

sup
m

log Rm

m
≥ k

}

≤ K +
∑

k≥K

Pr
{

sup
m

log Rm

m
≥ k

}

≤ K +
∑

k≥K

∑
m≥1

Pr
{ log Rm

m
≥ k

}
,
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where K is an arbitrary integer to be chosen later. Applying Markov’s inequality,

E
{

sup
m

log Rm

m

}
≤ K +

∑

k≥K

∑
m≥1

E(Rm)2−mk. (10)

To calculate the expectation of Rm, suppose that the process X takes on α = |A| possible values, so
that there are αm possible strings xm

1 of length m. Now recall Kac’s theorem [44] which states that
E(Rm |Xm

1 = xm
1 ) = 1/ Pr{Xm

1 = xm
1 }, from which it follows that,

E(Rm) =
∑
xm
1

E(Rm |Xm
1 = xm

1 ) · Pr{Xm
1 = xm

1 } = αm. (11)

Combining (10) and (11) yields,

E
{

sup
m

log Rm

m

}
≤ K +

∑

k≥K

∑
m≥1

2−m(k−log α)

= K +
∑

k≥K

2−(k−log α)

1− 2−(k−log α)

= K +
∑

k≥K

1
2k

α
− 1

< ∞,

where we choose K > log α. This establishes (9) and completes the proof. 2

2.4. Bias and Variance of the LZ-based Estimators

In practice, when applying the sliding-window LZ estimators Ĥn,k or H̃n,k on finite data strings, the
values of the parameters k and n need to be chosen, so that k +n is approximately equal to the total data
length. This presents the following dilemma: Using a long window size n, the estimators are more likely
to capture the longer-term trends in the data, but, as shown in [46, 47], the match-lengths Ln

i starting at
different positions i have large fluctuations. So a large window size n and a small number of matching
positions k will give estimates with high variance. On the other hand, if a relatively small value for n

is chosen and the estimate is an average over a large number of positions k, then the variance will be
reduced at the cost of increasing the bias, since the expected value of Ln

i / log n is known to converge to
1/H very slowly [48].

Therefore n and k need to be chosen in a way such that the above bias/variance trade-off is balanced.
From the earlier theoretical results of [46–50] it follows that, under appropriate conditions, the bias is
approximately of the order O(1/ log n), whereas from the central limit theorem it is easily seen that the
variance is approximately of order O(1/k). This indicates that the relative values of n and k should
probably be chosen to satisfy k ≈ O((log n)2).

Although this is a useful general guideline, we also consider the problem of empirically evaluating
the relative estimation error on particular data sets. Next we outline a bootstrap procedure, which gives
empirical estimates of the variance Ĥn,k and H̃n,k; an analogous method was used for the estimator Ĥn,k

in [21], in the context of estimating the entropy of whale songs.
Let L denote the sequence of match-lengths L = (Ln

1 , , L
n
2 , . . . , L

n
k) computed directly from the data,

as in the definitions of Ĥn,k and H̃n,k. Roughly speaking, the proposed procedure is carried out in three
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steps: First, we sample with replacement from L in order to obtain many pseudo-time series with the
same length as L; then we compute new entropy estimates from each of the new sequences using Ĥn,k or
H̃n,k; and finally we estimate the variance of the initial entropy estimates as the sample variance of the
new estimates. The most important step is the sampling, since the elements of sequence (Ln

1 , . . . , L
n
k) are

not independent. In order to maintain the right form of dependence, we adopt a version of the stationary
bootstrap procedure of [51]. The basic idea is, instead of sampling individual Ln

i ’s from L, to sample
whole blocks with random lengths. The choice of the distribution of their lengths is made in such a way
as to guarantee that they are typically long enough to maintain sufficient dependence as in the original
sequence. The results in [51] provide conditions which justify the application of this procedure.

The details of the three steps above are as follows: First, a random position j ∈ {1, 2, . . . , k} is
selected uniformly at random, and a random length T is chosen with geometric distribution with mean
1/p (the choice of p is discussed below). Then the block of match-lengths (Ln

j , L
n
j+1, . . . , Lj+T−1) is

copied from L, and the same process is repeated until the concatenation L∗ of the sampled blocks has
length k. This gives the first bootstrap sample. Then the whole process is repeated to generate a total
of B such blocks L∗1, L∗2, . . . , L∗B, each of length k. From these we calculate new entropy estimates
Ĥ∗(m) or H̃∗(m), for m = 1, 2, . . . , B, according to the definition of the entropy estimator being used,
as in (3) or (5), respectively; the choice of the number B of blocks is discussed below. The bootstrap
estimate of the variance of Ĥ is,

σ̂2 =
1

B − 1

B∑
m=1

[Ĥ∗(m)− µ̂]2,

where µ̂ = B−1
∑B

m=1 Ĥ∗(m); similarly for H̃ .
The choice of the parameter p depends on the length of the memory of the match-length sequence

L = (Ln
1 , L

n
2 , . . . , L

n
k); the longer the memory, the larger the blocks need to be, therefore, the smaller the

parameter p. In practice, p is chosen by studying the autocorrelogram of L, which is typically decreasing
with the lag: We choose an appropriate cutoff threshold, take the corresponding lag to be the average
block size, and choose p as the reciprocal of that lag. Finally, the number of blocks B is customarily
chosen large enough so that the histogram of the bootstrap samples Ĥ∗(1), Ĥ∗(2), . . . , Ĥ∗(B) “looks”
approximately Gaussian. Typical values used in applications are between B = 500 and B = 1000. In
all our experiments in [33, 34] and in the results presented in the following section we set B = 1000,
which, as discussed below, appears to have been sufficiently large for the central limit theorem to apply
to within a close approximation.

2.5. Context-Tree Weighting

One of the fundamental ways in which the entropy rate arises as a natural quantity, is in the Shannon-
McMillan-Breiman theorem [41]; it states that, for any stationary and ergodic process

X = {. . . , X−1, X0, X1, X2, . . .},
with entropy rate H ,

− 1

n
log pn(Xn

1 ) → H, with prob. 1, as n →∞, (12)
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where pn(Xn
1 ) denotes the (random) probability of the random string Xn

1 . This suggests that, one way
to estimate H from a long realization xn

1 of X , is to first somehow estimate its probability and then use
the estimated probability p̂n(xn

1 ) to obtain an estimate for the entropy rate via,

Ĥn,est = − 1

n
log p̂n(xn

1 ). (13)

The Context-Tree Weighting (CTW) algorithm [38–40] is a method, originally developed in the con-
text of data compression, which can be interpreted as an implementation of hierarchical Bayesian pro-
cedure for estimating the probability of a string generated by a binary “tree process.”‡The details of the
precise way in which the CTW operates can be found in [38–40]; here we simply give a brief overview
of what (and not how) the CTW actually computes. In order to do that, we first need to describe tree
processes.

A binary tree process of depth D is a binary process X with a distribution defined in terms of a suffix
set S, consisting of binary strings of length no longer than D, and a parameter vector θ = (θs ; s ∈ S),
where each θs ∈ [0, 1]. The suffix set S is assumed to be complete and proper, which means that any
semi-infinite binary string x0

−∞ has exactly one suffix s is S, i.e., there exists exactly one s ∈ S such that
x0
−∞ can be written as x−k

−∞s, for some integer k.§We write s = s(x0
−∞) ∈ S for this unique suffix.

Then the distribution of X is specified by defining the conditional probabilities,

Pr{Xn+1 = 1 |Xn
−∞ = xn

−∞} = 1− Pr{Xn+1 = 0 |Xn
−∞ = xn

−∞} = θs(xn
−∞).

It is clear that the process just defined could be thought of simply as a D-th order Markov chain, but this
would ignore the important information contained in S: If a suffix string s ∈ S has length ` < D, then,
conditional on any past sequence xn

−∞ which ends in s, the distribution of Xn+1 only depends on the
most recent ` symbols. Therefore, the suffix set offers an economical way for describing the transition
probabilities of X , especially for chains that can be represented with a relatively small suffix set.

Suppose that a certain string xn
1 has been generated by a tree process of depth no greater than D, but

with unknown suffix set S∗ and parameter vector θ∗ = (θ∗s ; s ∈ S). Following classical Bayesian
methodology, we assign a prior probability π(S) on each (complete and proper) suffix set S of depth
D or less, and, given S, we assign a prior probability π(θ |S) on each parameter vector θ = (θs). A
Bayesian approximation to the true probability of xn

1 (under S∗ and θ∗) is the mixture probability,

P̂D, mix(x
n
1 ) =

∑
S

π(S)

∫
PS,θ(x

n
1 )π(θ |S) dθ, (14)

where PS,θ(x
n
1 ) is the probability of xn

1 under the distribution of a tree process with suffix set S and
parameter vector θ. The expression in (14) is, in practice, impossible to compute directly, since the
number of suffix sets of depth ≤ D (i.e., the number of terms in the sum) is of order 2D. This is
obviously prohibitively large for any D beyond 20 or 30.

‡The CTW algorithm is a general method with various extensions, which go well beyond the basic version described here.
Some of these extensions are mentioned later in this section.

§The name tree process comes from the fact that the suffix set S can be represented as a binary tree.
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The CTW algorithm is an efficient procedure for computing the mixture probability in (14), for a
specific choice of the prior distributions π(S), π(θ |S): The prior on S is,

π(S) = 2−|S|−N(S)+1,

where |S| is the number of elements of S and N(S) is the number of strings in S with length strictly
smaller than D. Given a suffix set S, the prior on θ is the product (1

2
, 1

2
)-Dirichlet distribution, i.e., under

π(θ|S) the individual θs are independent, with each θs ∼ Dirichlet(1
2
, 1

2
).

The main practical advantage of the CTW algorithm is that it can actually compute the probability in
(14) exactly. In fact, this computation can be performed sequentially, in linear time in the length of the
string n, and using an amount of memory which also grows linearly with n. This, in particular, makes it
possible to consider much longer memory lengths D than would be possible with the plug-in method.

The CTW Entropy Estimator. Thus motivated, given a binary string xn
1 , we define the CTW entropy

estimator Ĥn,D, ctw as,

Ĥn,D, ctw = − 1

n
log P̂D, mix(x

n
1 ), (15)

where P̂D, mix(x
n
1 ) is the mixture probability in (14) computed by the CTW algorithm. [Corresponding

proceedures are similarly described in [25, 29].] The justification for this definition comes from the
discussion leading to equation (13) above. Clearly, if the true probability of xn

1 is P ∗(xn
1 ), the estimator

performs well when,

− 1

n
log P̂D, mix(x

n
1 ) ≈ − 1

n
log P ∗(xn

1 ). (16)

In many cases this approximation can be rigorously justified, and in certain cases it can actually be
accurately quantified.

Assume that xn
1 is generated by an unknown tree process (of depth no greater than D) with suffix set

S∗. The main theoretical result of [38] states that, for any string xn
1 , of any finite length n, generated by

any such process, the difference between the two terms in (16) can be uniformly bounded above; from
this it easily follows that,

− 1

n
log P̂D, mix(x

n
1 )−

[
− 1

n
log P ∗(xn

1 )
]
≤ |S∗|

2n
log n +

3|S∗|+ 1

n
. (17)

This nonasymptotic, quantitative bound, easily leads to various properties of Ĥn,D, ctw:
First, (17) combined with the Shannon-McMillan-Breiman theorem (12) and the pointwise converse

source coding theorem [52, 53], readily implies that ĤN,D, ctw is consistent, that is, it converges to the
true entropy rate of the underlying process, with probability one, as n → ∞. Also, Shannon’s source
coding theorem [41] implies that the expected value of Ĥn,D, ctw cannot be smaller than the true entropy
rate H; therefore, taking expectations in (17) gives,

0 ≤ [bias of Ĥn,D, ctw] ≤ |S|
2n

log n + O(1). (18)
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In view of Rissanen’s [54] well-known universal lower bound, (18) shows that the bias of the CTW is
essentially as small as can be. Finally, for the variance, if we subtract H from both sides of (17), multiply
by
√

n, and apply the central-limit refinement to the Shannon-McMillan-Breiman theorem [55, 56], we
obtain that the standard deviation of the estimates Ĥn,D, ctw is≈ σX/

√
n, where σ2

X is the minimal coding
variance of X [57]. This is also optimal, in view of the second-order coding theorem of [57].

Therefore, for data xn
1 generated by an arbitrary tree processes, the bias of the CTW estimator is

of order O(log n/n), and its variance is O(1/n). Compared to the earlier LZ-based estimators, these
bounds suggest much faster convergence, and are in fact optimal. In particular, the O(log n/n) bound on
the bias indicates that, unlike the LZ-based estimators, the CTW can give useful results even on small
data sets.

Extensions. An important issue for the performance of the CTW entropy estimator, especially when
used on data with potentially long-range dependence, is the choice of the depth D: While larger values
of D give the estimator a chance to capture longer-term trends, we then pay a price in the algorithm’s
complexity and in the estimation bias. This issue will not be discussed further here; a more detailed
discussion of this point along with experimental results can be found in [33, 34].

The CTW algorithm has also been extended beyond finite-memory processes [40]. The basic method
is modified to produce an estimated probability P̂∞(xn

1 ), without assuming a predetermined maximal
suffix depth D. The sequential nature of the computation remains exactly the same, leading to a cor-
responding entropy estimator defined analogously to the one in (15), as Ĥn,∞, ctw = − 1

n
log P̂∞(xn

1 ).
Again it is easy to show that Ĥn,∞, ctw is consistent with probability one, this time for every stationary
and ergodic (binary) process. The price of this generalization is that the earlier estimates for the bias and
variance no longer apply, although they do remain valid is the data actually come from a finite-memory
process. In numerous simulation experiments we found that there is no significant advantage in using
Ĥn,D, ctw with a finite depth D over Ĥn,∞, ctw, except for the somewhat shorter computation time. For that
reason, in all the experimental results in Sections 3.2 and 3.3 below, we only report estimates obtained
by Ĥn,∞, ctw.

Finally, perhaps the most striking feature of the CTW algorithm is that it can be modified to compute
the “best” suffix set S that can be fitted to a given data string, where, following standard statistical
(Bayesian) practice, “best” here means the one which is most likely under the posterior distribution. To
be precise, recall the prior distributions π(S) and π(θ |S) on suffix sets S and on parameter vectors θ,
respectively. Using Bayes’ rule, the posterior distribution on suffix sets S can be expressed,

Pr{S |xn
1} =

∫
PS,θ(x

n
1 )π(θ |S) dθ

P̂D, mix(xn
1 )

;

the suffix set Ŝ = Ŝ(xn
1 ) which maximizes this probability is called the Maximum A posteriori Probabil-

ity, or MAP, suffix set. Although the exact computation of Ŝ is, typically, prohibitively hard to carry out
directly, the Context-Tree Maximizing (CTM) algorithm proposed in [58] is an efficient procedure (with
complexity and memory requirements essentially identical to the CTW algorithm) for computing Ŝ. The
CTM algorithm will not be used or discussed further in this work; see the discussion in [33, 34], where
it plays an important part in the analysis of neuronal data.
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3. Results on Simulated Data

This section contains the results of an extensive simulation study, comparing various aspects of the
behavior of the different entropy estimators presented earlier (the plug-in estimator, the four LZ-based
estimators, and the CTW estimator), applied to different kinds of simulated binary data. Motivated, in
part, by applications in neuroscience, we also introduce a new method, the renewal entropy estimator.
Section 3.1 contains descriptions of the statistical models used to generate the data, along with exact
formulas or close approximations for their entropy rates.

Sections 3.2 and 3.3 contain the actual simulation results.

3.1. Statistical Models and Their Entropy Rates

3.1.1. I.I.D. (or “homogeneous Poisson”) Data

The simplest model of a binary random process X is as a sequence of independent and identically dis-
tributed (i.i.d.) random variables {Xn}, where the Xi are independent and all have the same distribution.
This process has no memory, and in the neuroscience literature it is often referred to as a “homogeneous
Poisson process” (since sampling a Poisson process at regular time intervals and replacing the sampled
values by their successive differences produces such an i.i.d. sequence). The distribution of each Xi is
described by a parameter p ∈ [0, 1], so that Pr{Xi = 1} = p and Pr{Xi = 0} = 1− p. If {Xn} were to
represent a spike train, then p = E(Xi) would be its average firing rate.

The entropy rate of this process is simply,

H = H(X1) = −p log p− (1− p) log(1− p).

3.1.2. Markov Chains

An `-th order (homogeneous) Markov chain with (finite) alphabet A is a process X = {Xn} with the
property that,

Pr{Xn = xn |Xn−1
1 = xn−1

1 } = Pr{Xn = xn |Xn−1
n−` = xn−1

n−`} = Pxn−1
n−` ,xn

,

for all xn
1 ∈ An, where P =

(
Px`

1,x`+1

)
is the transition matrix of the chain. This formalizes the idea that

the memory of the process has length `: The probability of each new symbol depends only on the most
recent ` symbols, and it is conditionally independent of the more distant past. The distribution of this
process is described by the initial distribution of its first ` symbols, (π(x`

1)), and the transition matrix P .
The entropy rate of an ergodic (i.e., irreducible and aperiodic) `-th order Markov chain X is given by,

H = −
∑

x`
1

π∗(x`
1)

∑
x`+1

Px`
1,x`+1

log Px`
1,x`+1

,

where π∗ is the unique stationary distribution of the chain.

3.1.3. Hidden Markov Models

Next we consider a class of binary processes X = {Xn}, called hidden Markov models (HMMs) or
hidden Markov processes, which typically have infinite memory. For the purposes of this discussion, a
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binary HMM can be defined as follows. Suppose Y = {Yn} is a first-order, ergodic Markov chain, which
is stationary, i.e., its initial distribution π is the same as its stationary distribution π∗. Let the alphabet of
Y be an arbitrary finite set A, write P = (Pyy′) for its transition matrix, and let Q = (Qyx ; y ∈ A, x ∈
{0, 1}) be a different transition matrix, from A to {0, 1}. Then, for each n, given {Yi} and the previous
values xn−1

1 of Xn−1
1 , the distribution of the random variable Xn is,

Pr{Xn = x |Yn = y} = Qyx,

independently of the remaining {Yi} and of Xn−1
1 . The resulting process X = {Xn} is a binary HMM.

The consideration of HMMs here is partly motivated by the desire to simulate spike trains with slowly
varying rates, as in the case of real neuronal firing. To illustrate, consider the following (somewhat
oversimplified) description of a model that will be used in the simulation examples below. Let the
Markov chain Y = {Yn} represent the process which modulates the firing rate of the binary “spike
train” X , so that Y takes a finite number of values, A = {r1, r2, . . . , rα}, with each ri ∈ (0, 1). These
values correspond to α different firing regimes, so that, e.g., Yn = r1 means that the average firing rate
at that instant is r1 spikes-per-time-unit. To ensure that the firing rate varies slowly, define, for every
y ∈ A, the transition probability that Yn remains in the same state to be Pr{Yn = r |Yn−1 = r} = 1− ε,
for some small ε > 0. Then, conditional on {Yn}, the distribution of each Xn is given by Pr{Xn =

1 |Yn = r} = r = 1− Pr{Xn = 0 |Yn = r}.
In general, an HMM defined as above is stationary, ergodic and typically has infinite memory – it is

not a `-th order Markov chain for any `; see [59] and the references therein for details. Moreover, there
is no closed-form expression for the entropy rate of a general HMM, but, as outlined below, it is fairly
easy to obtain an accurate approximation when the distribution of the HMM is known a priori, via the
Shannon-McMillan-Breiman theorem (12). That is, the value of the entropy rate H = H(X) can be
estimated accurately as long as it is possible to get a close approximation for the probability pn(Xn

1 )

of a long random sample Xn
1 . This calculation is, in principle, hard to perform, since it requires the

computation of an average over all possible state sequences yn
1 , and their number grows exponentially

with n. As it turns out, adapting an idea similar to the usual dynamic programming algorithm used
for HMM state estimation, the required probability pn(Xn

1 ) can actually be computed very efficiently;
similar techniques appear in various places in the literature, e.g., [59, 60]. Here we adopt the following
method, developed independently in [33].

First, generate and fix a long random realization xn
1 of the HMM X , and define the matrices M (k) by,

M
(k)
yy′ = Pyy′Qy′xk

, y, y′ ∈ A, k = 2, 3, . . . , n,

and the row vector b = (by),
by = π(y)Qyx1 , y ∈ A.

The following proposition says that the probability of an arbitrary xn
1 can be obtained in n matrix mul-

tiplications, involving matrices of dimension |A| × |A|. For moderate alphabet sizes, this can be easily
carried out even for large n, e.g., on the order of 106. Moreover, as the HMM process X inherits the
strong mixing properties of the underlying Markov chain Y , Ibragimov’s central-limit refinement [56]
to the Shannon-McMillan-Breiman theorem suggests that the variance of the estimates obtained should
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decay at the rapid rate of 1/n. Therefore, in practice, it should be possible to efficiently obtain a reliable,
stable approximation for the entropy rate, a prediction we have repeatedly verified through simulation.
To avoid confusion note that, although this method gives a very accurate estimate of the entropy rate of
an HMM, in order to carry it out it is necessary to know in advance the distributions of both the HMM
X and of the unobservable process Y .
Proposition 3.1. Under the above assumptions, the probability of an arbitrary xn

1 ∈ {0, 1}n produced
by the HMM X can be expressed as,

pn(xn
1 ) = b

[ n∏

k=2

M (k)
]
1,

where 1 is the column vector of |A| 1s.

Proof: Let yn
1 ∈ An denote any specific realization of the hidden Markov process Y n

1 . We have,

pn(xn
1 ) = Pr{Xn

1 = xn
1} =

∑
yn
1 ∈An

Pr{Y n
1 = yn

1 }Pr{Xn
1 = xn

1 |Y n
1 = yn

1 }

=
∑

yn
1 ∈An

π(y1)Qy1x1

n∏

k=2

Pyk−1,yk
Qykxk

=
∑
yn∈A

∑
y1∈A

by1

∑

yn−1
2 ∈An−2

n∏

k=2

M (k)
yk−1yk

=
∑
yn∈A

(
b
[ n∏

k=2

M (k)
])

yn

= b
[ n∏

k=2

M (k)
]
1.

2

3.1.4. Renewal Processes

A common alternative mathematical description for the distribution of a binary string is via the dis-
tribution of the time intervals between successive 1s, or, in the case of a binary spike train, the interspike
intervals (ISIs) as they are often called in the neuroscience literature [18, 26]. Specifically, let {ti} de-
note the sequence of times t when Xt = 1, and let {Yi = ti+1−ti} be the sequence of “interarrival times”
or ISIs of X = {Xn}. Instead of defining the joint distributions of blocks Xn

1 of random variables from
X , its distribution can be specified by that of the process Y = {Yi}. For example, if the Yi are i.i.d.
random variables with geometric distribution with parameter p ∈ [0, 1], then X is itself a (binary) i.i.d.
process with parameter p.

More generally, a renewal process X is defined in terms of an arbitrary i.i.d. ISI process Y , with each
Yi having a common discrete distribution P = (pj ; j = 1, 2, . . .).¶

¶The consideration of renewal processes in partly motivated by the fact that, as discussed in [33, 34], the main feature of
the distribution of real neuronal data that gets captured by the CTW algorithm (and by the MAP suffix set it produces) is an
empirical estimate of the distribution of the underlying ISI process. Also, simulations suggest that renewal processes produce
firing patterns similar to those observed in real neurons firing, indicating that the corresponding entropy estimation results are
more biologically relevant.
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Recall [61] that the entropy rates H(X) of X and H(Y ) of Y are related by,

H(X) = λH(Y ) = −λ

∞∑
j=1

pj log pj,

where λ = E(X1) = 1/E(Y1). This simple relation motivates the consideration of a different estimator
for the entropy rate of a renewal process. Given binary data xn

1 of length n, calculate the corresponding
sequence of ISIs ym

1 , and define,

Ĥn,renewal = −λ̂
∑

j

q̂j log q̂j,

where Q̂ = (q̂j) is the empirical distribution of the ISIs ym
1 , and λ̂ is the empirical rate of X , i.e., the

proportion of 1s in xn
1 . We call this the renewal entropy rate estimator.

When the data are indeed generated by a renewal process, the law of large numbers guarantees that
Ĥn,renewal will converge to H(X), with probability one, as n → ∞. Moreover, under rather weak
regularity conditions on the distribution of the ISIs, the central limit theorem implies that the variance of
these estimates decays like O(1/n). But the results of the renewal entropy estimator remain meaningful
even if X is not a renewal process. For example, if the corresponding ISI process Y is stationary and
ergodic but not i.i.d., then the renewal entropy estimator will converge to the value λH(Y1), whereas the
true entropy rate in this case is the (smaller) quantity,

H(Y ) = lim
i→∞

λH(Yi |Yi−1, . . . , Y2, Y1).

Therefore, the renewal entropy estimator can be employed to test for the presence or absence of renewal
structure in particular data sets, by comparing the value of Ĥn,renewal with that of other estimators; see
[33, 34] for a detailed such study.

3.2. Bias and Variance of the CTW and the LZ-based Estimators

In order to compare the empirical bias and variance of the four LZ-based estimators and the CTW
estimator with the corresponding theoretical predictions of Sections 2.4 and 2.5, the five estimators are
applied to simulated (binary) data. [In this as well as in the following section, we only present results
for the infinite-suffix-depth CTW estimator Ĥn,∞, ctw; recall the discussion at the very end Section 2.5.]
The simulated data were generated from four different processes: An i.i.d. (or “homogeneous Poisson”)
process, and three different Markov chains with orders ` = 1, 2, and 10. For each parameter setting
of each model, 50 independent realizations were generated and the bias of each method was estimated
by subtracting the true entropy rate from the empirical mean of the individual estimates. Similarly, the
standard error was estimated by the empirical standard deviation of these results.

Specifically, for Ĥn,k and H̃n,k, first a window size n and a number of matches k were selected,
and then 50 independent realizations of length N = 2n + k were generated. The bias and standard
error are plotted in Figure 1 against O(1/ log n) and O(1/

√
k), respectively. The approximately linear

curves confirm the theoretical predictions that the bias and variance decay to zero at rates O(1/ log n)

and O(1/k), respectively. Note that, although H̃n,k is always larger than Ĥn,k, there is no systematic
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Figure 1. Results obtained by Ĥn,k (shown as red lines with circles), by H̃n,k (blue lines
with triangles), and by the CTW estimator ĤN,∞, ctw (green lines with squares), applied to
data from four different processes. For Ĥn,k and H̃n,k, the first row shows the bias plotted
against 1/ log n, for window lengths n = 103, 104, 105, 106, and with a fixed number of
matches k = 106; the second row shows the standard error plotted against 1/

√
k, where

k = 104, 105, 106, with fixed n = 106. For ĤN,∞,ctw, the first row shows the bias when
applied to data of the same total length N = n + 2k; for its standard error see Figure 2.
The true values of the entropy rates of the four processes are H = 0.1414, H = 0.4971,
H = 0.7479 and H = 0.6946, respectively.
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trend regarding which one gives more accurate estimates. Also plotted on Figure 1 is the bias of infinite-
suffix-depth CTW estimator, ĤN,∞,ctw, applied to data with total length N = 2n + k. [The estimated
standard error of the CTW estimator is not shown in Figure 1, because it cannot be compared to the
behavior of the LZ-based estimators as the number of matches k varies; see Figure 2 for estimates of the
CTW standard error on the same set of experiments.]

The results of the CTW are generally much more accurate than those of the LZ estimators, except in
the case of the 10th order Markov chain with small data size, where the LZ-based methods seem to get
better results.

The values of the bias and standard error of Ĥn,k and H̃n,k in Figure 1 suggest that, in order to
minimize the total mean squared error (MSE) of the LZ-based estimates, the number of matches k

should be chosen to be small relative to the window length n, since the variance clearly appears to decay
much faster than the square of the bias. This is further confirmed by the results shown in Table 1, which
shows corresponding estimates for an i.i.d. process with p = 0.25 and data length N = 106. The values
of n and k satisfy n + k = N − 2 log N . The ratio n/k ranges from 1 to 10,000.

Next, the validity of the bootstrap procedure for the standard error of the LZ estimators Ĥn,k and
H̃n,k is examined; recall the description in Section 2.4. For data generated from the same four processes,
the bootstrap estimate of the standard error is compared to that obtained empirically from the sample
standard deviation computed from 50 independent repetitions of the same experiment. Since that the
natural domain of applicability of the bootstrap method is for large values of k, Tables 2 and 3 contain
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Table 1. Choosing n and k to minimize MSE. Data are generated from an i.i.d. process with
p = 0.25, the true entropy rate is H = 0.8113, the data length N = 106, and n + k =

N − 2 log N .

Ĥn,k H̃n,k

n/k n k bias std err MSE bias std err MSE
1 499980 499980 -0.0604 0.0010 0.1824 -0.0325 0.0009 0.0528

10 909054 90906 -0.0584 0.0018 0.1705 -0.0318 0.0019 0.0507
100 990059 9901 -0.0578 0.0066 0.1692 -0.0315 0.0067 0.0517

1000 998961 999 -0.0553 0.0200 0.1732 -0.0297 0.0210 0.0663
10000 999860 100 -0.0563 0.0570 0.3209 -0.0356 0.0574 0.2280

simulation results for k = 105 and k = 106, with n = 103. The results clearly indicate that the bootstrap
procedure indeed gives accurate estimates of the standard error.

Table 2. Comparison between the bootstrap standard error and the empirical estimate of the
standard deviation for the four different processes. The window size n is fixed at 103.

Ĥn,k

k = 105 k = 106

case bootstrap std dev bootstrap std dev
1 0.0018 0.0025 0.0006 0.0009
2 0.0025 0.0023 0.0008 0.0009
3 0.0015 0.0019 0.0005 0.0007
4 0.0061 0.0073 0.0017 0.0023

Table 3. Comparison between the bootstrap standard error and the empirical estimate of the
standard deviation for the four different processes. The window size n is fixed at 103.

H̃n,k

k = 105 k = 106

case bootstrap std dev bootstrap std dev
1 0.0033 0.0033 0.0011 0.0010
2 0.0031 0.0025 0.0010 0.0009
3 0.0017 0.0016 0.0006 0.0006
4 0.0032 0.0031 0.0009 0.0010

Corresponding experiments were performed for Ĥn and H̃n, applied to data from the same four types
of processes. Although for these estimators there is little in the way of rigorous theory that can be used
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as a guideline to compute their mean and variance, simple heuristic calculations strongly suggest that
they should decay like O(1/ log n) and O(1/n), respectively. Figure 2 shows the bias and standard error
computed empirically as for Ĥn,k and H̃n,k, and plotted against 1/ log n and 1/

√
n, respectively. Once

again, the fact that the resulting empirical curves are approximately linear agrees with these predictions.
Observe that the bias of H̃n can be either positive or negative; the same behavior was observed for Ĥn in
numerous simulation experiments.

The fact that the standard error converges much faster than the bias strongly suggests that, for all
four LZ-based estimators, it is the bias that dominates the estimation error, even in these simple cases of
processes with fairly short memory.

Figure 2. Results obtained by Ĥn (shown as red lines with circles), by H̃n (blue lines with
triangles), and by the CTW estimator (green lines with squares), applied to data from four
different processes. For Ĥn and H̃n, the first row shows the bias plotted against 1/ log n, for
window lengths n = 5000, 104, 105, 106, and the second row shows the standard error plotted
against 1/

√
n. Similarly, for Ĥn,∞,ctw, the two rows show the bias and standard error when

the estimator is applied to data of the same total length. The true values of the entropy rates
of the four processes are the same as before.
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Figure 2 also shows the bias and standard error of the CTW estimator Ĥn,∞, ctw. Its bias appears to
generally converge significantly faster than that of the LZ-based methods, while its standard error is very
close to that of Ĥn and H̃n, apparently converging to zero at a very similar rate. Nevertheless, the results
show that the main source of error of the CTW is again from the bias.

Finally we note that, in the results shown, as well as in numerous other simulation runs, we found that
the two increasing-window LZ estimators Ĥn and H̃n generally performed better, and always at least
as well, as the corresponding sliding-window estimators Ĥn,k and H̃n,k. Specifically, the simulation
results show that the optimal choice of parameters for Ĥn,k and H̃n,k leads to estimates whose bias is
very similar to that of Ĥn and H̃n, whereas the increasing-window estimators have significantly smaller
variance.
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3.3. Comparison of the Different Entropy Estimators

This section contains a systematic comparison of the performance of all the estimators introduced
so far: The plug-in method, the LZ-based estimators, the CTW algorithm, and the renewal entropy
estimator. All the estimators are applied to different types of simulated binary data, generated from
processes with different degrees of dependence and memory. The main figure of merit adopted here
is the ratio

√
MSE
H

, between the square-root of the mean square error (MSE), and the true entropy rate.
The corresponding ratios of the bias to the entropy and of the standard error to the entropy are also
considered.

Since, as noted earlier, the two increasing-window LZ estimators Ĥn, H̃n generally perform better or
at least as well as their sliding-window counterparts, Ĥn,k, H̃n,k, from now on we restrict attention to
Ĥn and H̃n.

Table 4 shows the results obtained by the plug-in for word-lengths w = 15 and w = 20, the LZ-
estimators Ĥn and H̃n, and the CTW estimator Ĥn,∞, ctw, on data generated from the same four finite-
memory processes as above: An i.i.d. process and three Markov chains of order ` = 1, 2 and 10. Again
we observe that the main source of error is from the bias for all five estimators. The CTW appears to have
the smallest bias, while the standard error varies little among the different estimators. More specifically,
the results demonstrate that, for short memory processes, the plug-in estimates are often better than those
obtained by the LZ estimators, whereas for the 10-th order Markov chain the plug-in with word-length
w = 20 is much worse than Ĥn and H̃n because of the undersampling problem mentioned earlier. The
CTW estimator performs uniformly better than all the other estimators, for both short and relatively long
memory processes. Its fast convergence rate outperforms the LZ-based estimators, and its ability to look
much further into the past makes it much more accurate than the plug-in.

Table 5 shows corresponding results for data generated by two different binary HMMs; recall the
relevant description from Section 3.1.3. The first one has three (hidden) states, A = {r1, r2, r3}, where
r1 = 0.005, r2 = 0.02, r3 = 0.05. The transition matrix of Y has Pr{Yn+1 = r |Yn = r} = 1 − ε, and
Pr{Yn+1 = r′ |Yn = r} = ε/2, for any r and r′ 6= r, where ε = 0.001. Given the sequence Y = {Yn}
of hidden states, the observations X = {Xn} are conditionally independent samples, where each Xn is
a binary random variable with Pr{Xn = 1|Yn = r} = 1 − Pr{Xn = 0|Yn = r} = r. In the second
example, the hidden process Y = {Yn} takes values in the set A of 50 real numbers evenly spaced
between 0.001 and 0.1. The evolution of the process Y = {Yn} is that of a nearest-neighbor random
walk; Yn stays constant with probability (1 − ε) and it moves to either one of its two neighbors with
probability ε/2, with ε = 0.02. The conditional distribution of X given Y is the same as before.

In both cases, the “true” entropy of the underlying HMM was computed using the approximation
procedure described earlier. In the first example, 10 independent realizations of the HMM were used
according to the formula of Proposition 3.1, and the average of the resulting estimates was taken to be
the true entropy rate in the calculations of the bias and standard error in Table 5. The same procedure
was applied to three independent realizations of the second example.

The results on HMM data are quite similar to those obtained on processes with short memory shown
in Table 4. The LZ-based estimators have heavy biases, whereas both the plug-in and the CTW method
give very accurate estimates. This is probably due to the fact that, although HMMs in general have
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Table 4. Comparison of the ratios between the bias, the standard error and the square-root
of the MSE over the true entropy rate. Five estimators are used on four different types of
data. All estimators are applied to data of the same length n = 106. Results are shown as
percentages, that is, all ratios are multiplied by 100.

plug-in plug-in
Data model w = 15 w = 20 Ĥn H̃n CTW

i.i.d. % of bias 0.001 -0.10 -14.47 9.98 0.04
% of stderr 0.57 0.51 0.77 0.83 0.51

% of
√

MSE 0.57 0.52 14.49 10.01 0.52
1st order MC % of bias -0.11 -0.78 -10.38 0.70 0.02

% of stderr 0.22 0.16 0.15 0.12 0.21
% of

√
MSE 0.25 0.80 10.38 0.71 0.21

2nd order MC % of bias 4.16 1.72 -5.32 -1.56 0.02
% of stderr 0.08 0.08 0.04 0.04 0.09

% of
√

MSE 4.16 1.73 5.32 1.56 0.09
10th order MC % of bias 16.04 10.03 -2.66 6.23 0.77

% of stderr 0.19 0.14 0.13 0.12 0.16
% of

√
MSE 16.04 10.04 2.66 6.24 0.78

Table 5. Comparison of the ratios between the bias, the standard error and the square-root
of the MSE over the true entropy rate. Five estimators are used on data generated from two
different HMMs. All estimators are applied to data of the same length n = 106. Results are
shown as percentages, that is, all ratios are multiplied by 100.

plug-in plug-in
HMM w = 15 w = 20 Ĥn H̃n CTW

3 states % of bias 4.05 3.69 -43.41 11.46 2.51
% of stderr 2.43 2.43 1.79 2.64 2.41

% of
√

MSE 4.74 4.43 43.47 11.75 3.50
50 states % of bias 2.98 2.53 -35.62 5.39 2.31

% of stderr 3.26 3.25 3.15 3.35 3.26
% of

√
MSE 4.43 4.12 35.76 6.33 4.00

infinite memory, the memory of an HMM with a finite number of states decays exponentially, therefore
only the short-range statistical dependence in the data is significant.

To simulate binary data strings with potentially longer memory (and with characteristics that are
generally closer to real neuronal spike trains), we turn to renewal processes X = {Xn} with ISIs
Y = {Yi} that are distributed according to a mixture of discretized Gamma distributions; recall the
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description of Section 3.1.4. Here the Yi are taken to be i.i.d. with distribution P = (pj) given by,

pj = µf1(j) + (1− µ)f2(j), j = 1, 2, 3, . . . ,

where µ ∈ (0, 1) is the mixing proportion and each fi is a (discretized) Gamma density with parameters
(αi, βi), respectively.

If the ISI distribution P was simply Gamma(α, β), then the rate E(X1) of the binary process X

would be the reciprocal of E(Y1) = αβ; therefore, taking a mixture of two Gamma densities, one with
αβ small and one with αβ large, gives an approximate model of a “bursty” neuron, that is, a neuron
which sometimes fires several times in rapid succession, and sometimes does not fire for a long period.
Figure 3 shows the result of such a simulated process X . The empirical ISI density resembles a real
neuron’s ISI distribution, and the peak near the zero lag in the autocorrelogram of {Xn} indicates the
bursty behavior.

Figure 3. Simulated binary renewal process with characteristics similar to those of a bursty
neuron. The ISI distribution is given by a mixture of discrete Gammas, 9

10
f(2,10) + 1

10
f(50,50).

The “rate” of the process is E(X1) = 0.00398. The first plot shows the first 10000 simu-
lated bits of X; the second plot shows the empirical ISI distribution; the last plot shows the
autocorrelogram of X for values of the lag between 0 and 500.
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Table 6 shows the results of the estimates obtained by the renewal entropy estimator, the plug-in with
word-length w = 20, the two increasing-window LZ-based estimators, and the CTW method, applied to
data generated by a binary renewal process. The ISI distribution P is a mixture of two (discrete) Gamma
densities f1 and f2, where f1 has fixed parameters (α1, β1) = (2, 10) that represent the bursting regime,
and f2 takes three different sets of (much larger) parameters (α2, β2), representing low frequency firing.
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Table 6. Comparison of the ratios between the bias, the standard error and the square-root
of the MSE over the true entropy rate. Five estimators are used on three different data sets
generated by a renewal process whose ISI distribution P is a mixture of Gammas, P =

µf(2,10) + (1− µ)f(α2,β2). The mixing parameter µ = 0.8 in the first two cases, and µ = 0.9

in the last case. All estimators are applied to data of the same total length n = 106. Results
are shown as percentages, that is, all ratios are multiplied by 100.

renewal plug-in
(α2, β2) entropy w = 20 Ĥn H̃n CTW
(10,20) % of bias -0.06 6.09 -20.98 21.84 1.66

% of stderr 0.73 0.77 0.66 0.95 0.72
% of

√
MSE 0.74 6.14 20.99 21.86 1.81

(50,20) % of bias -1.53 25.90 -30.38 81.40 7.64
% of stderr 2.37 3.03 0.79 2.67 2.38

% of
√

MSE 2.82 26.08 30.39 81.45 8.00
(50,50) % of bias -5.32 34.35 -50.64 85.61 3.58

% of stderr 2.36 3.12 0.69 2.67 2.42
% of

√
MSE 5.82 34.49 50.65 85.65 4.32

The CTW and renewal estimator consistently outperform the other methods, and, on the other ex-
treme, the LZ-based estimators have high biases and give relatively poor results. The plug-in estimator
only considers what happens in 20-bit-long windows, and therefore it misses all the data features beyond
this range. Especially in the case of large parameters (α2, β2) where the ISI distribution has heavier tails,
the structure and the dependence in the data becomes significantly longer in range. Also, in that regime,
the resulting number of ISI data points yi is much smaller, and therefore, the empirical ISI distribution
is less accurate; as a result, the renewal entropy estimator also becomes less accurate. The situation is
similar for the CTW. As shown in [33, 34], the CTW method also essentially approximates the empirical
ISI distribution (although it does so in a different, more efficient way than the renewal entropy estimator),
and for larger values of (α2, β2) its estimates become less accurate, in a way analogous to the renewal
entropy estimator.

4. Summary and Concluding Remarks

A systematic and extensive comparison between several of the most commonly used and effective en-
tropy estimators for binary time series was presented. Those were the plug-in or “maximum likelihood”
estimator, four different LZ-based estimators, the CTW method, and the renewal entropy estimator.

Methodology. Three new entropy estimators were introduced; two new LZ-based estimators, and the
renewal entropy estimator, which is tailored to data generated by a binary renewal process. A bootstrap
procedure, similar to the one employed in [21], was described, for evaluating the standard error of the
two sliding-window LZ estimators Ĥn,k and H̃n,k. Also, for these two estimators, a practical rule of
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thumb was heuristically derived for selecting the values of the parameters n and k in practice.

Theory. It was shown (Theorem 2.1) that the two new LZ-based estimators H̃n,k and H̃n are universally
consistent, that is, they converge to the entropy rate for every finite-valued, stationary and ergodic pro-
cess. Unlike the corresponding estimators Ĥn,k and Ĥn of [9], no additional conditions are required.
An effective method was derived (Proposition 3.1) for the accurate approximation of the entropy rate
of a finite-state HMM with known distribution. Heuristic calculations were presented and approximate
formulas derived for evaluating the bias and the standard error of each estimator.
Simulation. Several general conclusions can be drawn from the simulation experiments conducted.

(i) For all estimators considered, the main source of error is the bias.

(ii) Among all the different estimators, the CTW method is the most effective; it was repeat-
edly and consistently seen to provide the most accurate and reliable results.

(iii) No significant benefit is derived from using the finite-context-depth version of the CTW.

(iv) Among the four LZ-based estimators, the two most efficient ones are those with increasing
window sizes, Ĥn, H̃n. No systematic trend was observed regarding which one of the two
is more accurate.

(v) Interestingly (and somewhat surprisingly), in many of our experiments the performance
of the LZ-based estimators was quite similar to that of the plug-in method.

(vi) The main drawback of the plug-in method is its computational inefficiency; with small
word-lengths it fails to detect longer-range structure in the data, and with longer word-
lengths the empirical distribution is severely undersampled, leading to large biases.

(vii) The renewal entropy estimator, which is only consistent for data generated by a renewal
process, suffers a drawback similar (although perhaps less severe) to the plug-in.

In closing we note that much of the work reported here was done as part of the first author’s Ph.D.
thesis [33]. Several new estimators and results have appeared in the literature since then, perhaps most
notably in [14]. There, a different entropy estimator is introduced based on the Burrows-Wheeler trans-
form (BWT), it is shown to be consistent for all stationary and ergodic processes, and bounds on its
convergence rate are obtained. Moreover, simulation experiments on binary data indicate that it signifi-
cantly outperforms the plug-in estimator as well as a modified version of the LZ-based estimator Ĥn of
[9]. In view of the present results, interesting further work would include a detailed comparison of the
BWT estimator of [14] with the CTW method.
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