For patients affected by multiple and concomitant FA, allergen nonspecific therapies are strongly attractive. These approaches have cytokines, Toll-like receptors (TLRs), cells, IgE, probiotics, and genes as targets.
4.1. Anti-Cytokines Therapy
In light of evidence that cytokine signaling drives inflammatory responses, authors postulated that FA could be prevented by cytokine blocking agents [
24]. In a murine model, the administration of
Lactococcus lactis, transfected to secrete interleukin (IL)-10, provided protection from food-induced anaphylaxis [
25]. Similar results were obtained after the administration of recombinant mouse IL-21 or an IL-21 expression plasmid in a mouse model strongly-sensitized to peanuts. Specifically, the anaphylactic reaction was abolished, as well as a significant decrease in the serum total and specific IgE levels [
26]. In an ovalbumin food allergy murine model, oral administration of transforming growth factor-beta (TGF-β) allowed acquisition of ovalbumin tolerance, which was assessed by a decrease in ovalbumin specific IgE and IgG1 antibodies and T-cell reactivity, and confirmed by a reduction in the immediate-type skin reaction [
27]. The anti-IL-33 antibody, ANB020 (AnaptysBio, San Diego, CA, USA), has shown satisfactory results in a phase two placebo-controlled clinical trial designed to investigate efficacy and safety in an adult population affected by peanut allergy [
28]. No clinical trials have investigated the effectiveness of anti-cytokine therapies in the context of FA in children [
29].
4.2. Toll-Like Receptors (TLRs)
Toll-like receptors (TLRs) are a class of receptors expressed on dendritic cells (DC) and macrophages that, upon activation of an immune response, enhance a tolerogenic response and restore the T helper (Th)1/Th2 balance in Th2-mediated allergic disorders [
30]. TLRs may be stimulated by microbial particles (mainly lipopolysaccharide) as well as by specific agonists such as TLR7 agonist R848 [
31], TLR9 agonist CpG oligodeoxynucleotides [
32], and TLR4 agonist monophosphoryl lipid A [
33]. Of these, only the TLR9 agonist has been investigated in a murine model of FA. Following oral administration, a decrease in gastrointestinal inflammation, a reduction in levels of peanut-specific IgE and an increase in IgG2 values, as well as protection from peanut-anaphylaxis, were observed [
34]. No data are available in humans affected by FA.
4.4. Anti-IgE Therapy
The first investigation of anti-IgE therapy for the management of FA was performed in a double-blind, randomized, dose-ranging (150, 300, or 450 mg of anti-IgE antibodies (TNX-901)) trial in 84 patients, 12 to 60 years of age, with a positive history of peanut allergy. Although the highest TNX-901 dose significantly improved clinical symptoms and increased the threshold dose for peanuts, 25% failed to develop a tolerance to peanuts, suggesting a wide treatment response variability [
36]. A subsequent double-blinded, placebo-controlled study was started in children 6 years of age, but discontinued because of safety issues related to pre-omalizumab challenges [
37]. An open-label study in 14 adults between 18 and 50 years of age showed a significant increase in the mean tolerated dose of peanut protein (from 80 mg to 5080 mg) after 6 months of omalizumab; however, the administration of antihistamines and epinephrine was required in 10 of the 14 enrolled subjects [
38]. To increase the safety of immunotherapy and possibly enhance tolerance development, a combination of anti-IgE therapy and FA-AIT was investigated. Two small double-blind, placebo-controlled food challenge trials in patients (age, 7–25 years) with a peanut [
39] or cow’s milk [
40] allergy were conducted by using omalizumab in combination with rapid oral food desensitization. During a washout period, participants were generally treated with omalizumab for 2 to 5 months and subsequently continued on treatment until a maintenance dose of OIT was achieved. In the first study, 92% of patients tolerated the challenge, but 46% of children experienced moderate to severe adverse events [
39]. In the second trial, 9 out of 11 patients were able to complete dose escalation and only 1.8% of subjects still showed reactions requiring epinephrine [
40]. Subsequently, a phase one clinical trial was designed in 25 participants (median age 7 years) with multiple FA. Participants were receiving OIT for up to 5 allergens simultaneously with omalizumab. Anti-IgE therapy was administered for 8 weeks prior to and 8 weeks following the initiation of the OIT protocol. Adverse reactions were reported in 5.3% of subjects. Additionally, 94% of reactions were mild and only one subject experienced a severe reaction requiring epinephrine [
23]. Following this, a phase one double-blind, placebo-controlled food challenges study, enrolling patients aged 4–15 years with multiple FA, confirmed that adjunctive omalizumab with OIT provided a safe and rapid desensitization with a lower median rate of adverse events (27% vs. 68%). Interestingly, no serious or severe adverse events were recorded [
41].
The determination of the specific role of omalizumab in tolerance development was first investigated in a double-blind placebo-controlled trial comparing omalizumab with a placebo as an adjunctive therapy for cow’s milk OIT in 57 subjects (7–32 years) with severe cow’s milk allergy. During a washout period, participants received 4 months of omalizumab and were subsequently continued on treatment until a maintenance dose of OIT was achieved (at 28 months). Although no differences were detected in the rates of desensitization, significantly fewer reactions requiring epinephrine occurred in the omalizumab-treated group as compared to the placebo-treated group (2 vs. 18 doses) [
22]. These findings were confirmed in a subsequent case series on 14 egg-allergic and cow’s milk–allergic children (age, 4 months to 11 years). All patients were able to tolerate OIT only when omalizumab was administered as a pretreatment and in conjunction with OIT [
42]. Lastly, in a post-hoc analysis, Bedoret et al. postulated that an anergy of the milk-specific CD4-T cells could be implicated in omalizumab-mediated allergen desensitization [
43]. Taken together, these data suggest the possibility of using omalizumab as a therapeutic weapon to increase threshold tolerance levels, providing more protection in cases of accidental ingestion in patients with FA [
39,
40,
41,
42,
43,
44]. However, to date, omalizumab is still an off-label treatment with no established dosages. Recently, an individualized anti-IgE treatment, both in terms of dose and length, has been proposed through monitoring of basophil allergen threshold sensitivity [
45]. To fill the gap in the evidence supporting omalizumab as a monotherapy or in combination with OIT for food allergy treatment, a clinical development plan is currently ongoing (
Table 2).
4.5. Probiotics
The use of probiotics in the prevention or treatment of FA is based on the concept of colonizing the gastro-intestinal tract with health-promoting organisms with positive benefits. Immune-modulation, competitive exclusion, and release of gut mucin secretion, as well as the production of compounds inhibiting the growth of other bacteria have been postulated as mechanisms of action for probiotics [
46]. Following encouraging findings from experimental models [
47,
48], several studies have been designed to examine the efficacy of probiotics in the prevention and/or treatment of FA in humans [
49].
To investigate the effect of probiotics on the prevention of FA, a double-blind, placebo-controlled trial was performed on pregnant mothers who were either receiving
Lactobacillus GG (LGG) or a placebo during the last 4 weeks of pregnancy and during subsequent breastfeeding until the infant reached 3 months of age. When compared to the control group, the probiotic group showed significantly higher serum TGF-β2 levels and a lower incidence in atopic eczema [
50]. However, these findings were not replicated in a 4-year follow-up of a randomized placebo-controlled trial, in which both prenatal and postnatal supplementation failed to show any effect on IgE sensitization to food or environmental allergens [
51]. Overall, a systematic review and meta-analysis by Zhang et al., evaluating the results of 17 trials involving 2947 infants, concluded that when administered prenatally to the pregnant mother and postnatally to the child, probiotics significantly reduced the risk of atopy (relative risk (RR) 0.78; 95% confidence interval (CI) 0.66–0.92; I2 = 0%). No effects on atopy and food hypersensitivity were recorded when probiotics were administered either prenatally or postnatally [
52].
With regard to the efficacy of probiotics in food allergy treatment, clinical trials of probiotic supplementation with LGG, combined with extensively hydrolyzed casein formula in milk-allergic children, demonstrated increased rates of milk allergy resolution after 1 [
53], 6 [
54] and 12 months [
55], compared with a control group receiving the formula alone. At follow-up at 1 month, fecal eosinophil cationic protein and tumor necrosis factor-alpha (TNF-a) were significantly decreased in children receiving LGG in their extensively hydrolyzed formula [
53]. Also, a clinical resolution was recorded at 6 and 12 months follow-up in the experimental arm compared with control group [
54]. However, no differences in the cumulative percentage of tolerance to cow’s milk were reported among groups at 12 months [
55]. As the benefits of probiotics were thought to result from their ability to restore the natural balance of gut bacteria, Berni et al. [
56] tested this hypothesis by comparing stool from cow’s milk allergic children to that from healthy infants before and after treatment with extensively hydrolyzed formula with or without LGG. The authors noted that the gut microbiome of infants which achieved the immune tolerance was enriched in
Blautia and
Roseburia and possessed higher concentrations of the short-chain fatty acid butyrate. This led the researchers to hypothesize that probiotics, through modulation of the host–gut ecosystem and, consequently, the local metabolism, work positively to favor the acquisition of ‘tolerance-associated’ microbial profiles [
56]. Recently, authors evaluated the baseline presence of
Bifidobacterium longum BB536 (BL),
Bifidobacterium breve M-16V (BB) and
Bifidobacterium infantis M-63 (BI) in children, aged 10–14 months, with an IgE-mediated cow’s milk allergy before, during, and after administration of multi-strain probiotics containing 3.53109 UFC of BL, BB and BI. Following probiotics administration, a significant increase in BI concentration was observed, demonstrating the health-promoting effects of probiotics [
57].
The rationale for an effect of probiotics on other FA has also been translated on other food allergens, including peanut allergy. The effect of probiotics as an adjuvant to OIT has been evaluated in a double-blind placebo-controlled randomized trial involving a pediatric population (1–10 years) affected by peanut allergy. Co-administration of
L. rhamnosus CGMCC1.3724 and peanuts led to sustained desensitization and reduced serum specific IgE levels [
58]. These positive effects were maintained over time. A follow-up study 4 years after treatment cessation reported that participants from the probiotic and peanut OIT (PPOIT) group were significantly more likely than those from the placebo group to have continued eating peanuts (
p = 0.001), also showing smaller wheals in peanut skin prick tests and significantly higher peanut serum (s)IgG4:sIgE ratios when compared to the placebo [
58]. However, due to the lack of individuals in the OIT-only or probiotic-only group, the efficacy attributable to the probiotic remains unclear.
The evidence for preventive and therapeutic effects of probiotics on FA in human subjects is still sparse [
59,
60]. More data are needed to support probiotic supplementation for FA. Regarding the instances where a reduction in clinical symptoms in infants was reported, the effects were not consistent between studies and caution is advised due to methodological aspects, excess losses in patient follow-up, and substantial heterogeneity among included studies in regard to type of strains, duration of treatment, and doses administered [
61].