Next Article in Journal
Association between the Vicious Cycle of Diabetes-Associated Complications and Glycemic Control among the Elderly: A Systematic Review
Previous Article in Journal
Comparison of Carotid Ultrasound Indices and the Triglyceride Glucose Index in Hypertensive and Normotensive Community-Dwelling Individuals: A Case Control Study for Evaluating Atherosclerosis
Article Menu
Issue 5 (November) cover image

Export Article

Open AccessReview

Lower Airway Virology in Health and Disease—From Invaders to Symbionts

Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
Author to whom correspondence should be addressed.
Medicina 2018, 54(5), 72;
Received: 1 October 2018 / Revised: 10 October 2018 / Accepted: 10 October 2018 / Published: 13 October 2018
PDF [305 KB, uploaded 13 October 2018]


Studies of human airway virome are relatively recent and still very limited. Culture-independent microbial techniques showed growing evidence of numerous viral communities in the respiratory microbial ecosystem. The significance of different acute respiratory viruses is already known in the pathogenesis of chronic conditions, such as asthma, cystic fibrosis (CF), or chronic obstructive lung disease (COPD), and their exacerbations. Viral pathogens, such as influenza, metapneumovirus, parainfluenza, respiratory syncytial virus, or rhinovirus, have been associated with impaired immune response, acute exacerbations, and decrease in lung function in chronic lung diseases. However, more data have attributed a role to Herpes family viruses or the newly identified Anelloviridae family of viruses in chronic diseases, such as asthma, idiopathic pulmonary fibrosis (IPF), or CF. Impaired antiviral immunity, bacterial colonization, or used medication, such as glucocorticoids or antibiotics, contribute to the imbalance of airway microbiome and may shape the local viral ecosystem. A specific part of virome, bacteriophages, frames lung microbial communities through direct contact with its host, the specific bacteria known as Pseudomonas aeruginosa or their biofilm formation. Moreover, antibiotic resistance is induced through phages via horizontal transfer and leads to more severe exacerbations of chronic airway conditions. Morbidity and mortality of asthma, COPD, CF, and IPF remains high, despite an increased understanding and knowledge about the impact of respiratory virome in the pathogenesis of these conditions. Thus, more studies focus on new prophylactic methods or therapeutic agents directed toward viral–host interaction, microbial metabolic function, or lung microbial composition rearrangement. View Full-Text
Keywords: chronic airway disease; respiratory virome; bacteriophages; antiviral immunity; host–virus interaction; treatment chronic airway disease; respiratory virome; bacteriophages; antiviral immunity; host–virus interaction; treatment
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Jankauskaitė, L.; Misevičienė, V.; Vaidelienė, L.; Kėvalas, R. Lower Airway Virology in Health and Disease—From Invaders to Symbionts. Medicina 2018, 54, 72.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics



[Return to top]
Medicina EISSN 1010-660X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top