
 

 

45 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

 

 

 

 

 

 

 

 

A Technical Framework for Data Sharing 

Wout Hofman1 and Madan Rajagopal1  

1
Dutch National Institute of Applied Science, Technical Science Department, P.O. Box 5050, 2600 GB Delft, The 

Netherlands, ((wout.hofman), (madan.rajagopal))@tno.nl 
 

Received 12 July 2013; received in revised form 31 January 2014; accepted 12 March 2014 
 

Abstract 

Open data is receiving considerable attention because of its potential for public and private sector innovation. 
Various governments have the policy of providing data sets to the public via open data portals. Data sets are 
published in a format defined by a source, which makes it difficult to discover a useful data set and requires 
user interpretation of structure and semantics. Meta data insertion and semantic annotation address these 
problems, but are not yet widely implemented for open data. Also privacy issues and commercial sensitivity 
have to be addressed, leading to (technical) interventions like access restrictions and billing functions. Users 
might also want to be informed only of data changes with publish/subscribe functions to increase the quality of 
decisions based on large data sets. Data transformation, billing, security, monitoring, and publish/subscribe 
functionality has to be associated with data sets that are available via Application Programming Interfaces. 
Application Programming Interface management platforms providing this type of functionality are central to 
implementing open data. This paper analyses required functionality for data sharing considering the above 
mentioned requirements and matches these requirements with functionality of available platforms.  

Keywords: Open data, API management, Linked data, Data plataforms, Big data 
 
 

 

http://www.jtaer.com/


 

 

46 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

1 Introduction 

Data is of growing importance to our society and economy. Most literature takes a so-called push approach in which 
data availability will contribute to public – and private sector innovation [29]. Jetzek et.al [17] have constructed and 
validated a model for value generation by open government data, where they have defined value from an economical 
and social perspective. In their approach, data user requirements are not specified, they either stem from innovation, 
participation, efficiency, and transparency. Data is provided to potential data users as is according a stage model [3]. 
Such a data push mechanism still has several technical aspects that need to be addressed [17], [29]. Each data 
provider is autonomous and has its particular implementation of processes, IT solutions, etc., although many 
processes and solutions of for instance municipalities could be identical as these municipalities manage the same 
data. Different implementations of similar processes lead to differences in data sets. A data user has to deal with 
these differences in data sets, e.g. different syntax and (slightly) different semantics, for realizing solutions based on 
various data sets. Semantics of data sets can also be specified implicitly, e.g. by element names of for instance XML 
(eXtensible Markup Language) documents. Although a software developer will have no problem of implementing 
these differences, they may lead to different solutions and thus potential inconsistencies in services provided to end-
users. Another issue of a data push mechanism is that a data user has to process large amounts of data (big data) of 
different sources to derive information out of that data. In crisis management applications, for instance, a data user 
requires a direct overview of potential problems to quickly decide on proper action. A requirement of a data user 
would be to receive only particular events and/or combine events of different data providers to take proper action. 
 
There are over 150 open data government portals (site 1). These portals publish data sets, either grouped under 
labels like the data provider, a particular subject and/or the geographic area covered by the data set (site 2). Some of 
these data sets have additional metadata like the last update provided, the volatility of the data set, etc. Labels and 
metadata are all types of metadata that can be used for discovery of proper data sets. The Dublin Core Metadata 
Initiative (DCMI, site 3) provides a set of metadata tags that can be used. 
 
This paper addresses functionality for data publication by data providers and retrieval of those data sets by data 
users by taking an empirical approach. Functional requirements for open data platforms are formulated addressing 
technical barriers identified in literature. As the literature on technical barriers is insufficient to identify required 
functionality, additional literature with respect to interoperability is reviewed to identify technical solutions. Also, the 
concept platform needs further refinement in a data value chain between data providers and - users, since there are 
many platform variants with different functionality [6]. Esmeijer et.al [10] provide a data value chain identifying data 
generation and - collection, -preparation, - integration, - storage, - analysis, - visualization, data driven action, and 
data governance and security. This contribution focusses on the stages from collection to storage and thus will not 
consider for instance data visualization platforms. The stages considered in this contribution enable system-to-
system data sharing, without providing details of the functionality of these systems. Each of these systems can have 
one of two roles, namely a data provider or – user. A visualization platform is an example of a data user system, but 
an app running on a smart device or an internal IT system supporting business processes of end-users are examples 
of systems with either or both the role of data user or - provider. Based on the evaluation of the stage model [5] that 
shows Application Programming Interfaces (APIs) are the most popular means of implementing open data, API 
management platforms are considered that have no data analysis and - visualization functionality. Data analysis and 
– visualization are thus outside the scope of this contribution.  
 
The structure of this paper is as follows. First of all, section 2 describes the literature review on functional 
requirements for open data functionality and provides criteria for selecting data platforms for further analysis. The 
functionality identified in literature and provided by available platforms, is the basis for a technical framework for data 
sharing (section 3). Section 4 applies the framework in analysing the platforms identified in section 2, whereas 
section 5 identifies potential gaps in required functionality. Finally, the paper will give conclusions and provide steps 
for further research.  

2 Methodology 

This section presents a literature review of technical functionality for open data and criteria for selecting platforms 
that are further analysed. The literature review and functionality of available platforms will be the basis for a technical 
framework for data sharing as presented in the next section. 

2.1 Literature Review 

Literature on required platform functionality for open government data is limited; most papers refer to potential 
technical barriers for implementing open government data. However, data sharing is not limited to open data. In this 
respect, a large selection of scientific papers and books are available that address technical aspects of 
interoperability. Also additional literature is available addressing data virtualization. This section briefly elaborates 
literature addressing technical barriers to open government data, interoperability, and data virtualization in the 
context of cloud computing.  

http://www.jtaer.com/


 

 

47 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

Zuiderwijk et.al [29] identify the following technical barriers to open data: difficult to process data sets, lack of good 
Application Programming Interfaces (APIs), data is not in machine readable format, sophistication required for linking 
and combining data, difficulties in changing formats, and no integrated tool set to combine data of different data 
providers. Jetzek et.al [17] mention technical aspects like infrastructure accessibility, storage and aggregation, 
integration, and analysis. Schema heterogeneity and lack of consistency are hindering value creation, and an 
increasing need for semantic interoperability with ontologies, data management, and identity resolution with multiple 
platforms are required. A value chain of storage, access, combination, and analysis is required [16]. From a big data 
perspective, others identify technical issues for storage and transport of data [18], but also issues like compliance, 
security, and data ownership.  Although Berners-Lee [4] has developed a model for publishing data, another study 
[5] identifies that this model is not always fully applied, hindering the implementation data combination and – fusion 
and barriers with respect to data quality, relevance, privacy.  
 
Technical barriers for open data are addressed by interoperability in heterogeneous systems, since interoperability 
not only deals with semantics like open data does, but interoperability also addresses pragmatics of data sharing [20] 
Interoperability also addresses schema heterogeneity [12] and proposes various technical solutions. Chituc et.al [8] 
and Blommestein [6] address for instance seamless interoperability as the ability to share interoperability metadata 
before business data is actually shared. Metadata comprises aspect like semantics, syntax, and communication 
protocols; they allow communicating systems to establish transformation functions for sharing data. Messaging or 
web services, supported by for instance APIs, are the most used paradigm for data sharing in Business-to-Business 
(B2B) interoperability. Erl [9] presents the implementation of a so-called Enterprise Service Bus (ESB) supporting 
various integration patterns like adapters for transforming one interface into another [12]. To reduce interoperability 
maintenance costs, a common information model expressing semantics of all interfaces can be used to configure an 
ESB. Adapters transform between external formats and this common information model, thus reducing the number of 
transformations. Peristeras et.al [24] identify the need for the development of ontologies in the Ontology Web 
Language (OWL) for expressing semantics of shared data and actually sharing the data in Resource Description 
Framework (RDF) format. These ontologies can serve as a common information model for interoperability. However, 
expressing semantics by ontologies also provides the ability to request whatever data one would like to obtain with a 
query language for RDF (SPARQL). Ontologies can be the interface to data users: a data user is able to express its 
particular data requirement in terms of an ontology. By providing a so-called SPARQL endpoint to ones public data 
sets and providing data in RDF format, a data user is able to retrieve any required data of a set.  
 
With respect to data storage, the cloud computing model [7] allows computation – and data virtualization implying 
end-users are not aware of processing - and data storage facilities. From a computational perspective, data can be 
stored on servers of different providers. However, cloud computing solutions have not been developed with 
interoperability in mind, they are closed systems with respect to data storage. The creation of a common information 
space for data analysis, processing, and exchange can be facilitated if the cloud computing model is developed 
following the semantic approach that focuses on semantic interoperability [22]. Loutas et.al [22] argue to construct 
Cloud APIs for interoperability in this common information space. These types of issues are similar to data sharing 
from an open government data perspective. Similarly, a high-level market oriented cloud architecture [7] might be 
considered for open data, that also incorporates functionality like pricing, accounting and event dispatching. The 
latter is supported by a publish/subscribe mechanism [9]. 
 
The technical barriers identified by Zuiderwijk et.al [29] reflect a data user’s perspective, namely the current status of 
available open data as perceived by a potential user. One could conclude that a decoupling of data provider and 
user is required, where a data set of a data provider should have particular features to be useful for a data user. As 
literature review learns, these features relate to semantics and syntax of data. In terms of the stage model for data 
publication introduced by Berners-Lee [4], data must be structured in a syntax and the semantics of the data has to 
be clear and concise for data processing by IT systems of data users. Using syntaxes like RDF enables the ability for 
linking and combining data as identified in Zuiderwijk et.al [29] as described also by Berners-Lee [4], but requires 
data providers to establish and maintain those links instead of duplicating data themselves and combining it with 
their data. Scheme heterogeneity requiring data transformation is also still an issue that partly requires human 
intervention [6]. Semantic models represented as ontologies to address schema heterogeneity can be found in open 
data -, interoperability – and cloud computing literature. Opening data requires still an Application Programming 
Interface (API) that can be semantically annotated by an ontology, or a SPARQL endpoint that allows a data user to 
abstract from different data providers with their APIs and express data requirements in terms of ontologies. The latter 
requires functionality like data matching and – linking [28]. Implementation of these APIs by the Representational 
State Transfer (REST) protocol that is based on Uniform Resource Identifiers (URIs) of the http-protocol is the most 
commonly used approach.  

2.2 Selection of Platforms for Analysis 

There are many interpretations of platform. Operating systems and computer hardware are considered platforms for 
software applications and data storage, but similarly a transport infrastructure can be considered as a platform for 
vehicles (Site 4). With respect to data sharing, a platform should provide sufficient functionality to data users for 
accessing data and data providers to publish their data sets. From literature review, data publication should be with 
Application Programming Interfaces by which data can be obtained. The semantics of this data also needs to be 
clearly and concisely specified by for instance ontologies (see previous section), with as less as possible different 

http://www.jtaer.com/


 

 

48 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

interpretations. Basically, a platform has to support data sharing between heterogeneous computer systems of 
different organizations [8] with APIs. A software application, for instance a visualization platform or an app running on 
a smart device, are examples of data users. Also specific software tools that are able to gather data from different 
sources and provide visual analytics like the Data Delivery Engine of Data Market are outside the scope, although a 
company like Data Market serves as a visualization platform for open data. These software applications are outside 
the scope of a platform. Furthermore, tools for temporary data storage of data sets like Allegrograph, MonetDB, and 
MongoDB are not considered, but there could be a requirement to implement these tools as a component of a 
platform. These types of databases are able to store for instance RDF data and quickly answer queries on these 
data sets, although Allegrograph also states to support semantics of that data. 
 
API management is therefore one of the basic criteria for selecting a platform. From this perspective, data 
management platforms like CKAN and Socrata do not meet the criterion, although most open data portals of 
governments use CKAN.  Therefore, this paper also investigates functionality of data management platforms. 
 
Other important criteria for platform selection are: 
 

 API independent. A platform should be independent of a particular API and its semantics. A platform like 
UrbanOS focussing on smart city applications is thus not considered. 

 Software solutions. Each organization should be able to implement a platform. There are also service 
providers offering platform functionality, but these are not considered in the context of this paper. A software 
solution should be available that can be implemented by any organization. 

 Open source. A platform should be available as open source to ease its adaption to support particular 
functionality. Platforms like IBM Castlron, Layer 7, Virtuoso, and Talend are therefore not considered in this 
paper. 

 Data provider and – user support. A platform should provide support to both data providers and data users 
and serve as a decoupling point between both of them (although a data provider can also be a data user 
and vice versa). Adapters like DataTank that can be configured by semantics, are thus not considered. 

Considering these criteria, only a few software solutions for implementing a platform are available, namely WSO2 
API Management Platform and API Axle. To provide a broader overview of functionality, this paper also investigates 
functionality of a limited number of other commercial API management platforms. Additionally, an adapter like 
Datatank is considered while adapters are a well-known technology to implement for instance web-services [9], [14].  

3 A Technical Framework for Data Sharing 

This section presents a technical framework for data sharing between data providers and – users. The technical 
framework consists of a number of functions derived from a data value chain between data providers and – users. 
Firstly, the data value chain is presented,, secondly, the technical framework and finally organizational deployement 
is discussed. The data value chain assumes a sort of linear process in which a data provider makes data available to 
a data user. However, the data value chain can have a decoupling point, as will be discussed in the next section. 

3.1 Data Value Chain Functionality 

Esmeijer et.al [10] present a data value chain for sharing open data between a data user and - provider. It consists of 
processes like data generation, - collection, - preparation, - integration, - storage, - analysis, - visualization, data 
driven action, and data governance and security. Combining this data value chain with literature review leads to the 
following functionality, in which data visualization is considered out of scope (see section 1 of this contribution): 
 

 Data governance and security: the ability to distinguish between open data, data with access restrictions, 
and data that is not available outside a data source. 

 Data source management: available data sets of a data provider with its APIs and quality features 
expressed by metadata.  

 Data preparation: data enhancement and enrichment to increase its usefulness for data users. 

 Temporary data storage: a decoupling point between data providers and – users for storing to improve 
processing on behalf of a data user request. 

 Data retrieval: functionality to retrieve required data, which might include integration of data from one or 
more data sources (also called: data combining, Zuiderwijk et.al [29]). 

http://www.jtaer.com/


 

 

49 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

 Data driven action: the ability to take action upon particular data changes. 

 Analytics and support: analysis of the shared data, including accountability. 

This functionality is discussed in more detail hereafter, identifying relevant software components. A technical 
framework of these software components will be given in section 3.2. Whereas data governance and security  and 
data source management are settings for every data set, the other processes support actual data sharing. Data 
governance and security and data source management is thus only done once for each data set, whereas they 
provide information to all other processes. 
 
Data governance and security offer functionality to a data provider to control access and use of data. Data 
governance allows a data provider to qualify data as open, restricted to (roles of) data users, or restricted for internal 
use. Whereas open data is accessible to anyone, data with access restrictions requires identification, authentication, 
and authorization mechanisms. Filtering is an example of an intervention supporting data governance and allows to 
hide specific data to particular data users on attribute level, called attribute-based access control [25]. It allows a 
data provider to provide a common API for a data set, filtered for instance on commercial - or private sensitive data 
at data preparation like price or person name, with different output to different data users. Filtering tailors one 
common API of a data set to user requirements, thus virtually resulting in a specific API per (role of a) data user. In 
case a data user is able to formulate query on a semantic model, e.g. by SPARQL, data governance and - security 
needs further research. A semantic model can potentially express particular access restrictions by a (role of) data 
user. This semantic model can in its turn be expressed in the semantic model of a data set, thus constructing a 
networked ontology for authorization. For instance, Dutch Customs Authority is allowed to access data of all trade 
flows to the Netherlands from a foreign trader, but not those flows of that trader to other countries [26]. Homomorphic 
encryption [13] is another intervention mechanism that allows querying encrypted data from different data providers, 
without decrypting that data. These types of interventions require a clear data governance model, which is yet 
lacking. 
 
Data governance is not only applicable to a data provider. A data user can also implement particular governance 
mechanism according agreements with one or more data providers, e.g. never to provide data obtained from a data 
provider to another data user without that provider’s consent or to qualify privacy sensitive data obtained from a data 
provider as restricted to internal use by that data user only. The latter could be applicable to for instance statistics 
authorities that obtain private or commercial sensitive to produce statistical overviews. A data user should be able to 
provide proof of his behaviour, e.g. by implementing an audit trail and log of data obtained from various data 
providers. 
 
Data source management considers a registry of data sets of data providers, the data quality of each set and its 
accessibility. Central or distributed registries can be composed with different (open source) solutions [9]. For 
instance, Kademlia (site 4) is used to implement a distributed registry in peer-to-peer networks. Each data provider 
has to be able to register data sets with their API(s), add quality features to an API by means of metadata, and 
annotate each API with semantics, preferably via a common information model or ontologies. Quality features are 
implemented by metadata [6] and represent aspects like volatility and completeness [2], but also the syntax in which 
data is produced. Metadata insertion is done once for each API and is automatically added to data when it is 
retrieved during data preparation. Not all data providers will have an API [5], in which case data needs to be 
uploaded to a temporary data store and an API for that data can be created. A data user can access this data from a 
temporary store via its API. Data source management can also imply the configuration of transformation, required for 
actual data sharing (see the next process). 
 
A data user can also utilize a data source management function, but from the perspective of data retrieval (see 
further). 
 
Data preparation provides functionality to offer the data in a format required for retrieval. Transformation, filtering and 
cleaning, verification, and metadata insertion are part of data preparation. Data can be transformed to a common 
format, see for instance [17], [24], or a format required by a data user. A data provider can also submit the data as is, 
implying that potentially a data user will be in need of transforming the data. Transformation is required for matching 
and combining data of different data sets or providing a generic query interface according a common information 
model or a set of ontologies. Transformation also validates the correctness of the data format and potentially the 
data by comparing with allowed data formats and constraints formulated by ontologies. The comparison with allowed 
data formats can be based on validating against an external source. For instance, time and place are provided in 
proper formats and contain agreed values like whether a place or address in the Netherlands actually exists. The 
address is validated by for instance a web service call to an address registry. In case of validation errors, particular 
metadata with respect to data quality can be set. By APIs provided by conversion algorithms, data transformation is 
also able to convert data types, e.g. the notation of time can be changed and a conversion between currencies and 
temperatures can be supported. Filtering and cleaning are other functions of data preparation and are an intervention 
mechanism supporting data governance (see before). These functions remove data from source data that is private, 
commercial, or otherwise sensitive, but also apply any access restrictions to a particular data user (see data 
governance). Examples are to remove commercial sensitive trading relations, container content data that is not 
required by a carrier, and person identification. These trading relations and container content data are required by for 

http://www.jtaer.com/


 

 

50 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

instance customs and will thus not be filtered [26]. Cleaning improves data quality by removing duplicate data, 
validate data on its consistency, and so on. Verification is the validation of completeness and correctness. The latter 
is also a function of transformation, but verification is required in case transformation is not applied. The last function 
for data preparation is metadata insertion. Whereas data source management also provides metadata for a given 
data set, the actual metadata can be added to any data retrieved. Metadata comprises for instance the specification 
of data quality in terms of aspects like completeness, consistency, and velocity [2]. Velocity is of importance to data 
relevance.  
 
Temporary data storage is required to meet data users’ requirements for data combination and fusion or to support 
particular quality of service of a data provider. In principle, data storage solutions need not to be known by 
supporting APIs for data access [5]; data is accessed at its source. From a performance, availability, and 
accessibility perspective, temporary data storage by a platform needs to be considered. Data storage needs to be 
combined with data management functionality that keeps track of changes (velocity) provides functionality with 
respect to data quality (e.g. completeness, consistency). 
 
Data retrieval supports data users in accessing and retrieving data. A data user can real time select and initiate an 
API for a data provider, compose its own API based on available APIs or formulate a query on a common format 
known by the data provider, or configure the APIs and supporting functionality before actually retrieving data. In case 
APIs for data retrieval are statically configured, a data user can configure several functions like transformation, data 
fusion, etc. API composition requires data fusion, - combination, and – linkage. Data fusion and combination 
composes output based on two or more inputs. A data users’ API calls two different APIs and combines their results. 
Data linkage implies the existence of links in data to other data [15].  Based on a link retrieved from data set, data of 
another set is retrieved, e.g. a trading relation in a data set provided by a trader  to customs could serve as a link for 
customs to retrieve data of that other trading relation or to validate trustworthiness of that other trader against an 
external data provider. The end result of data linkage might still be the combination of data from two or more 
resources. Data retrieval needs to consider precision and recall. Precision indicates that all retrieved results meet a 
data user’s query or API and recall the completeness of the results. Thus, the result only presents data that meets a 
query (precision) and all available data meeting a query is retrieved (recall) to provide a data user with the best and 
complete data set meeting its query. Of course, completeness of the retrieved data also relates to data quality: if the 
available data is incomplete, a data user will never have the optimal data set meeting its query. In case there is 
insufficient data meeting a query, a ranking algorithm can be applied indicating how the results meet the query [21]. 
The latter is specifically the case if data semantics of a data user differs from that of a data provider and a real time 
query is formulated. So-called genetic algorithms can be applied, utilizing for instance databases like Wordnet [1]. 
 
Data retrieval can be considered from a historical or real-time perspective, but also a geo-perspective can be taken. 
Precision and recall can be supported by metadata, e.g. a semantic model of one or more APIs might serve as a 
means to locate the proper data set and initiate an API to retrieve data from that set, and various algorithms and 
external data providers providing input to these algorithms. From the perspective of data governance, an audit trail 
needs to be available (see before).  
 
Data driven action requires a data user to take proper action on data retrieved from one or more data providers. 
Since potentially many data providers are able to provide data, either static or real time data, the amount of data 
provided to a data user requires either data analysis or restricted data retrieval based on data changes. Event 
mechanisms [19] with publish/subscribe functionality [9] can be used to inform data users of any relevant data 
changes. These mechanisms require implementation of data management by a data provider to detect relevant data 
changes and generate events to subscribers.  
 
Analytics and support control quality of service and monitor data sharing between a user and one or more data 
providers, both from a data user and – provider perspective. Control of quality of service is for instance by providing 
different performance and availability levels to data users, e.g. offering a particular response time for an API call. By 
monitoring every query or API call, a data provider can gain insight on its usefulness and decide to delete the API in 
case it is not used. Analytics and support can thus be used for API lifecycle management and provide input to billing 
and accounting [7]. Analytics and support also provides an audit trail for accountability purposes. Accountability 
implies that a data provider can prove and also analyse that particular data is shared according access control 
restrictions and a data user can prove and analyse the data that is obtained from one or more data providers in 
accordance with agreed governance mechanisms of that user. 

3.2 Functional Components for Data Sharing 

The data value chain identifies a set of functional components for a data provider and – user. We group these 
components into Registration and Adapter like shown in figure 1. This grouping is identical to the approach taken for 
web services that distinguishes between registries and adapters (Erl [9]). Registration considers data governance 
and – source management and can be done once for each data set. The latter registries allow a data provider to 
register its API and apply intervention mechanisms to support data governance and security mechanisms for a given 
(group of) user(s). Of course, a data provider can also be a data user and vice versa and data governance rules of a 
provider can differ from that of a user. Data governance rules can be expressed as behavioural rules agreed and 
applied by providers and users (see before). 

http://www.jtaer.com/


 

 

51 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

We distinguish a data provider and – user adapter. A provider adapter supports functionality like data transformation, 
access control and verification which covers filtering, cleansing, and data enhancement by adding metadata if 
required. The figure also shows a data management function for analysing state changes of data and generating 
events to those data users that have subscribed to these state changes. A data provider can also generate events 
itself, those have to be processed by data management to determine the subscription. A publish/subscribe 
functionality can also be distributed, utilizing existing peer-to-peer protocols. 
 
A data user is able to present data in the format required by a system or an end-user. A user adapter is able to 
combine and link data from more than one data source and supports query formulation in a language like SPARQL.  
 

 
 

Figure 1: Functionality for sharing open (government) data 
 
In the proposed framework, a data user can also be a data provider and vice versa. It can be a software algorithm 
computing particular data values and providing these data values as open data, e.g. transformation of degrees 
Fahrenheit to Celsius, calculating the estimated arrival time based on speed and location of a vehicle, or truck 
planning based on pick up and drop off locations. These algorithms can be triggered by events or can for instance on 
timely basis access data providers to retrieve any changes of data triggered by an event. A data user can also be a 
visualization platform or functionality offered to an end-user on a smart device. The latter is also applicable to a data 
provider: it can also be an app of an end-user on a smart device or sensor functionality of a smart device providing 
data.  
 
The previous figure shows a number of data stores that we will explain. Semantic models represented for instance 
as ontologies are the basis for data transformation, access control and validation, filtering, fusion, linking and 
combining, query formulation, and data management to offer publish/subscribe functionality. A data provider can 
have a different semantic model for each data set, but data provider(s) and – user(s) could also agree to use a 
common model [24]. The same is applicable to behaviour rules: a community can agree to use a set of rules, but a 
provider and user are also able to formulate their own rules. A Registry contains all details of a data provider, its 
APIs, data governance - and any quality features for a data set, and data users, the data governance rules they 
apply, and any composite APIs that they use. A temporary store, an audit trail, and a publish/subscribe registry can 
be part of an adapter of a data provider and a data user. 
 

http://www.jtaer.com/


 

 

52 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

3.3 Functionality Deployment 

The previous figure does not show a deployment model, e.g. governing functionality of semantics, registries and 
adapters. Each organization or a platform provider can implement the functionality. In the first case, a peer-to-peer 
solution based on peer-to-peer protocols between registries and publish/subscribe is realized. In this case, registries, 
a publish/subscribe, and event mechanism require implementation of protocols like Data Distribution Service (DDS, a 
standard developed by the Object Management Group used in time critical applications), Advance Message 
Queueing Protocol (AMQP, supported by for instance Microsoft and open source solutions), and Pubsubhubbub on 
particular topics. APIs provide data representing topics users could subscribe to. There are also services like Pubnub 
to construct a data ecosystem including pricing strategies, Pusher, and many others. 
 
Any organization can have its registry and a data provider and – user adapter with particular data management and 
analytics. Agreement between data providers and – users in a peer-to-peer environment could encompass several 
aspects, e.g. technical interoperability in terms of API protocols, syntactical interoperability of data provided, and 
semantic interoperability (see also Tolk et.al [28]). REST is for instance an API protocol, utilizing XML or JSON 
(JavaScript Object Notation) as data sharing syntax. In case there is no agreement on any level, a data user has to 
deal with protocols and syntaxes offered by a provider. An enterprise like for instance eBay implements its own 
protocols and publishes them via a registry function. Such an organization provides its APIs based on its particular 
semantics. In case a data user requires the integration of this functionality in his system, he needs to configure his 
adapter in the appropriate manner. An organization could also adhere to standards like REST for the API protocol 
and XML as data sharing syntax. In that particular case, that organization still only has a registry and a data user will 
have to implement transformation, if required, by interpreting the data structures.  
 
In case organizations agree on common semantics, the semantic models and potentially their syntactical 
representation needs to be governed. Organizations have to install a central governance organization providing 
various support activities (see for instance Folmer & Punter [11]). The semantic models can be available by 
reference and each data provider and – user can use them to configure their adapter.   
 
A platform provider can also provide all functionality: a registry, adapters, and publish/subscribe mechanisms. To 
optimize its management, such a platform can use a common information model to configure transformations in 
provider – and user adapter. Data can be stored internally in a common format according the models used. These 
common models can be based on open, available ontologies. A platform provider can perform harvesting data of 
different providers and publish particular (composed) APIs on that data to users. A platform provider could also use 
the harvested data for analysis purposes. The adapters also support API protocol and syntax transformation, thus 
decoupling data providers and – users. A platform provider needs to address non-functional quality of service 
requirements. 
 
A platform provider is able to provide a decoupling point between data providers and – users by providing 
transformations between API protocols, syntax, and semantics. Harvesting data of data providers abstracts from the 
quality of service offered by a data provider and compose new APIs based on harvested data. Agreed semantic 
models can also serve as a type of decoupling point, but require the configuration of adapters by each data user and 
– provider. However, each organization is also able to tailor its adapters to meet particular requirements, thus 
leading to potentially a large variety of data driven applications.  

4 Analysis of Data Platforms 

The previous section provided a technical framework for data sharing in which data sets either stored at their source 
or in a temporary data store of a platform are accessible via an API. Registries supporting API management are the 
core of a such a data platform and can be implemented distributed or by a platform provider. There is quite a number 
of API management platforms, a limited set of free source data platforms, and some adapters to retrieve data (see 
section 2). This section analyzes these platforms from the perspective of the proposed technical framework and, 
secondly, from an API management approach.  
 
First of all, this section presents the analysis of platforms against the functionality of the data value chain. Secondly, 
the API management functionality support of platforms is analyzed in more detail.  

4.1 Data Value Chain Support by Platforms 

The following table presents an overview of available tools and their functionality. The functionality is based on the 
processes of the data value chain (section 3.1) and functionality offered by solutions, also considering lists of 
required functionality of so-called data hubs or Data Management Systems (DMS, see for instance Wikipedia). 
Details are included based on functionality provided by a platform as in some occasions this detailed functionality is 
common to two or more platforms. Functionality is only listed, if it is supported by more than one platform. Platform 

http://www.jtaer.com/


 

 

53 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

specific functionality is not presented. In case functionality is not clear and requires further research, the functionality 
is not listed in the tables in this section.  

 
Table 1: Overview of platform support of the technical framework 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

API Management Platforms 
Data 

Management 
Platforms 

Adapter 

W
S

O
2

 A
P

I 
M

a
n

a
g

e
r 

3
S

c
a
le

 A
P

I 

M
a

n
a

g
e
m

e
n

t 

P
la

tf
o

rm
 

A
p

ig
e

e
 

M
a

s
h

e
ry

 

A
P

I 
A

x
le

 

M
a

s
h

a
p

e
 

In
te

l 
e

x
p

re
s
s

w
a

y
 

A
P

I 
m

a
n

a
g

e
r 

V
o

rd
e

l 
A

P
I 

s
e
rv

e
r 

S
o

c
ra

ta
 

C
K

A
N

 

D
a
ta

 T
a

n
k

 

Data Retrieval 
 Modify and enhance 
 Combine 
 Precision and recall 

 Themes 

 Promote 

 Geospatial 

 Data preview 

 (e.g. social web 

 platforms) 
 Query formulation - user 

dashboard 
 Events 

(publish/subscribe) 
 
Temporary storage 
Data Preparation 

 Publish 
 Semantics 

 Metadata 

 Semantic support 
 
Security 
Analytics and support 

 Analytics and reporting 
 Billing 

 end-user billing 

 developer billing 
 Performance 

 etc. 

 SLA management 
 Developer community 
 API support 

 Any 

 Limited (e.g. REST or 
RDF) 

 API lifecycle management 

 

 

x 

x 

x 

x 

 

 

 

 

 

x 

x 

 

 

x 

 

x 

 

 

x 

 

x 

 

x 

x 

 

x 

 

x 

 

x 

 

 
x 

 

 

 

x 

 

x 

 

 

 

 

 

x 

 

 

 

x 

 

 

 

 

x 

 

x 

 

x 

 

 

x 

x 

x 

 

x 

 

 

 

 

 

x 

 

x 

x 

 

 

 

 

 

x 

 

x 

 

x 

 

 

 

 

x 

 

x 

 

x 

 

 

x 

x 

x 

 

 

 

 

 

 

x 

 

 

x 

x 

 

 

 

 

 

x 

 

 

 

x 

 

 

 

 

x 

 

x 

 

 

 

 

x 

 

 

 

 

 

 

x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

 

x 

 

 

 

 

x 

 

 

 

 

 

x 

 

 

 

 

 

 

 

 

 

 

 

 

x 

 

 

 

 

 

 

 

 

 

 

x 

 

x 

 

 

 

 

x 

 

 

 

 

 

 

x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

 

x 

 

 

x 

 

x 

 

x 

 

 

x 

 

x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

 

x 

 

 

 

 

x 

x 

 

 

 

 

 

x 

 

x 

 

x 

x 

x 

x 

x 

 

x 

 

x 

 

x 

 

 

 

x 

 

 

x 

 

x 

 

 

 

 

 

 

x 

 

 

 

x 

 

 

x 

 

x 

x 

 

x 

x 

 

x 

 

x 

 

x 

 

 

 

x 

? 

 

 

 

x 

 

 

 

 

 

 

x 

 

 

 

x 

 

 

x 

 

x 

 

 

 

 

 

 

 

 

 

 

 

x 

 

x 

x 

 

 

 

x 

 

 

 

 

 

 

 

 

 

 

x 

 

 
Table 1 shows that all tools have analytics like discussed in section 3. Most API management platforms support 
information security features and some of them include billing functionality, which makes these tools useful in closed 
communities or support of commercial data platforms. Since API management platforms do not store data, search 
and find is on the APIs, e.g. by themes or promote particular APIs. Almost all open data portals of governments use 
CKAN as data platform, although there are more that provide APIs to their data. It has API management functionality 
with metadata support, including the ability for end-users to add their metadata. Data Tank, which is an adapter, is 
the only tool with semantic support, the Data Tank Semantifier, although the functionality is not clear from 
documentation.  
 

http://www.jtaer.com/


 

 

54 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

Table 1 shows functionality for supporting non-functional requirements, e.g. flow control, throttling, and management 
of particular service levels (SLA: Service Level Agreement) reflecting quality of service parameters identified in 
section 3.1. Furthermore, developer communities can use API management platforms, including lifecycle 
management of the APIs. 
 

Table 2: API support by API management platforms 
 

 
 
 
 
 
 
 
 
 
 W

S
O

2
 A

P
I 

M
a
n

a
g

e
r 

A
p

ig
e

e
 

3
S

c
a
le

 

M
a

s
h

e
ry

 

A
p

ia
x

le
 

V
o

rd
e

x
 A

P
I 

s
e

rv
e

r 

In
te

l 
E

x
p

re
s

s
w

a
y
 A

P
I 

M
a

n
a

g
e
r 

API Discovery 
 Catalog 
 Search 
 Provisioning 

 
API Security Protocols 

 SSL 
 PKI 
 Role Based Access 

 
API Identity Management 

 API key 
 Oauth 
 SAML 
 Multifactor 
 Token translation & mngt 

 
API Lifecycle Governance 

 Create, publish, delete, 
update, depreciate 

 Versioning 
 
API Analytics & Billing 

 Analytics and monitoring 
 API billing/invoicing 

 
API Quality of Service 

 Rate limiting (throttling) 
 Response caching 
 Tier management 

 
Platform Quality of Service 

 Clustering 
 Scalability 

 
Events, Publish/Subscribe 
Open Source 

 
x 
x 
x 
 
 
x 
 
x 
 
 
x 
x 
x 
 
 
 
 
 
x 
x 
 
 
x 
x 
 
 
x 
x 
x 
 
 
x 
x 
 
x 
x 

 
x 
x 
x 
 
 
? 
 
x 
 
x 
 
 
 
 
 
 
 
 
x 
? 
 
 
x 
x 
 
 
x 
 
x 
 
 
 
x 
 
 
? 

 
x 
x 
x 
 
 
? 
 
x 
 
 
x 
x 
 
 
 
 
 
 
x 
? 
 
 
x 
x 
 
 
x 
 
x 
 
 
 
x 
 
 
? 

 
x 
x 
x 
 
 

? 
 
x 
 
 
x 
 
x 
 
 
 
 
 
x 
? 
 
 
x 
 
 
 
x 
x 
x 
 
 
 
x 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
x 
 
 
 
x 
 
 
 
 
 
 
 
x 
 
 
 
x 
x 
 
 
 
 
 
 
 
x 

 
x 
 
x 
 
 
 
 
x 
 
 
x 
x 
x 
x 
 
 
 
 
x 
x 
 
 
x 
 
 
 
x 
x 
 
 
 
 
 
 
 
 

 
x 
x 
 
 
 
 
 
 
 
 
x 
x 
 
 
x 
 
 
 
x 
x 
 
 
x 
 
 
 
x 
 
 
 
 
x 
x 
 
 
 

 
Events supported by publish and subscribe functionality are only supported by one of the API management platforms 
analyzed, namely WSO2 API Management. This platform offers an Enterprise Service Bus (ESB) with adapters and 
all types of transformation functions see [9], [12]. Additionally, WSO2 API Management provides business process 
support functionality. Both functions, ESB and business process management need further study to know if they 
support data fusion and - linkage respectively.  

4.2 Detailed Platform Functionality for API Management  

Whereas the previous section provided an analysis of platform functionality in terms of processes in the data value 
chain, this section takes the perspective of APIs management. Thus, data platforms and adapters are not analyzed 
in this respect, since these do not provide API management functionality. Table 2 provides an overview of API 
management support.  

http://www.jtaer.com/


 

 

55 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

Table 2 shows platform analysis by which data value chain processes are reviewed from the perspective of API 
management. It implies for instance that data retrieval – precision and recall is renamed to API discovery. In a similar 
manner, all others are renamed, e.g. security is renamed to API security protocols reflecting encryption and access 
control, and API Identity Management reflecting identification and authentication of data provider and – user. 
 
Precision and recall required for data retrieval is based on available APIs. Data retrieval cannot be based on 
common models. In terms of a large amount of data providers accessible via different platforms [17], discovery of the 
proper data provider can be a burden. The question marks in table 2 indicate that the functionality is available 
according platform provider documentation and websites, but is not clearly specified. 

5 Evaluation and Discussion 

The previous sections showed the support of the proposed data value chain and technical framework by available 
platforms for API management and (temporary) data storage. Table 3 lists platform completeness in terms of data 
value chain processes, including an indication of open source. Completeness is not only expressed by support of the 
data value chain, of which details are provided by tables 1 and 2, but also by support provided for installation and 
deployment, installed base, integration with other components, extendibility with new functionality. 
 

Table 3: Completeness of API management platforms 
 

 
 
 
 
 
 
 
 

API platform completeness W
S

O
2
 A

P
I 

M
a
n

a
g

e
r 

3
S

c
a
le

 A
P

I 

M
a
n

a
g

e
m

e
n

t 

P
la

tf
o

rm
 

A
p

ig
e
e
 

M
a
s
h

e
ry

 

A
P

I 
A

x
le

 

M
a
s
h

a
p

e
 

In
te

l 
e
x
p

re
s
s

 w
a

y
 

A
P

I 
m

a
n

a
g

e
r 

V
o

rd
e
l 

A
P

I 
s

e
rv

e
r 

Data value chain 
 Data retrieval 
 Data source management 
 Temporary data storage 
 Data preparation 
 Security & Identity Management 
 Analytics 
 Data driven action (events, 

publish/subscribe) 
Support 
Installed base 
Extendibility 
Open source 

x 
x 
x 
 
x 
x 
x 
 
x 
x 
x 
x 
x 

x 
x 
x 
 
x 
x 
x 
 
 
x 
x 
 
 

x 
x 
x 
x 
x 
x 
x 
 
 
x 
x 
 

x 
x 
x 
 
x 
x 
x 
 
 
x 
x 
 

x 
x 
x 
 
 
x 
x 
 
 
 
x 
 
x 

x 
x 
 
 
 
 
x 
 
 
 
x 

x 
x 
x 
 
 
x 
x 
 
 
 
x 

x 
x 
x 
 
 
x 
x 
 
 
 
x 

 
Table 3 shows that WSO2 API Manager provides the most functionality and is also an open source platform. 
Extendibility can be used to support temporary data storage. Detailed analysis has learned that the technical 
framework provided in section 2.2 is not fully supported by any of the platforms, as we will discuss here. 
 
Analysed platforms function as intermediates between a data provider and data user, not necessarily altering data 
when shared between a provider and user. API management platforms combine the functionality of a registry and 
monitor (secure) API calls over the platform, data management platforms (temporarily) store data of different 
sources. Data replication to a platform might potentially lead to a decrease of governance by a data provider and 
inconsistency with source data. Decrease of data governance is important for sensitive data. As table 3 shows, only 
security and identity management is supported by platforms. Data governance supported by interventions 
implemented by a platform can be supported, but are not easy to use. It is up to a platform user to configure for 
instance a filter as part of transformation functionality for hiding commercial or privacy sensitive data. 
 
Data manipulation functionality like transformation and filtering required for data preparation and - retrieval seem to 
be implemented only by the ESB and business process management functionality of WSO2 API management 
platform, but the use of this functionality does not seem to be tailored to open data. The platform does not provide 
functionality by which a data user or – source is able to (simply) configure particular functionality for data preparation 
and/or – retrieval. Data link evaluation, data fusion, and data combination are not supported by the analyzed 
platforms. Possibly, business process management functionality of WSO2 API management can be used for this 
purpose, but it still requires developers or a platform provider to construct new APIs. Real time API (de)composition 
by data users is not supported and may also be complex [14]. Data management costs at a source are increased, 
since each source has to implement a different API for filtering sensitive data. Filtering data of one API providing 
data to different data users is expected to have lower Total Cost of Ownership (TCO). Further research into the 

http://www.jtaer.com/


 

 

56 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

application of an ESB combined with business process management functionality is required to determine the ease 
of use and configuration of these functions. Many ESBs combining these functions, complemented with an Event 
Driven Architecture, have already been applied for web services [9]. 
 
Precision and recall are important for data retrieval [21]. Data searches are either supported by API discovery or 
portals constructed on top of these platforms with for instance themes and faceted search mechanisms based on a 
data set classification provided by metadata. Particular functionality to increase precision and recall for data 
discovery, for instance geo-fencing or filtering, needs to be developed by a data user or a platform provider upon 
request of data users. Another aspect of precision is support of events with publish/subscribe functionality. Only 
WSO2 API management platform seems to implement this function, thus allowing a data user to subscribe to data 
updates of one or more sources. It requires data management functionality of data providers that is able to generate 
updates. Since most open government data is rather static, these mechanisms are not provided. Particular 
applications like traffic management might support these mechanisms, but these are mostly not considered as open 
government data applications. Recall is on the one hand defined by data provided by data providers and on the other 
hand the quality of that data. Current platforms do not support any functionality in this respect. 
 
Only Mashape supports real time query formulation by data users, although its support in relation to data sources is 
not clear. There is not yet a platform supporting for instance SPARQL on a semantic model. There are of course 
SPARQL endpoints on database management systems, like those provided by Oracle and also SPARQL adapters 
that transform a query formulated on a semantic model into a database query, are under development.  
 
A conclusion would also be the lack of an agreed architecture for large scale data sharing based on (common) 
semantic models. It is up to developers to construct, publish, search, compose new APIs and implement these APIs 
in end-user applications by interpreting the semantics. Semantic API annotations based on approaches developed 
for web services (SA-WSDL: Semantically Annotated Web Service Definition Language) are not yet supported by the 
analyzed platforms. Yet, APIs seem the best solution to meet data governance requirements of data providers, since 
data is not replicated and APIs are able to support real time data access by providers.  
 
This contribution analyzed solutions against a technical framework, where a data provider, data user, or platform 
provider can implement these. As discussed, platforms do not yet provide (easy to use) functionality to data users 
and – providers, especially in the context of data governance, data transformation, and data linkage and - fusion. A 
distributed implementation, in which each organization implements the required functionality, requires search 
mechanisms to increase precision and recall. Semantically enriched APIs or APIs operating on semantic models will 
improve precision and recall, by allowing data users to search for particular data from different perspectives of a 
semantic model, e.g. particular objects in place and time [15]. These searches result in appropriate API calls 
providing the required data. Although a semantic model [17] seems to be required, its added value is yet to be 
defined for open data. A distributed implementation combined with semantic models, enables in our view large scale 
decoupling of sources and consumers. It gives full flexibility to data users to specify their data requirements based on 
(linked) semantic models supported by APIs of different data providers. 
 
A last aspect of importance is security. Open data basically does not require additional security features, but 
complementing an open data infrastructure with a security infrastructure allows sharing of not only open, publicly 
available data, but also data with access restrictions. Requirements of such a closed data infrastructure is given by 
the customs compliance architecture [16]. Security protocols to construct such a closed data infrastructure are 
specified by Pruksasri et.al [26]. Analyzed platforms implement security mechanisms, but these can only be set by a 
data provider. Combining a peer-to-peer data sharing architecture complemented with semantic models, (distributed) 
registries and security protocols enables all types of innovative applications based on real time source data. 

6 Conclusions 

This contribution builds upon a data value chain model developed by Esmeijer et.al [] and provides a technical 
framework supporting the data value chain. Platforms are analyzed with respect to their support of the data value 
chain its supporting technical framework. The data value chain and the technical framework both contribute to 
technical barriers identified in open data, interoperability, and cloud computing literature with respect to data sharing.  
 
A first conclusion drawn from platform analysis given in this contribution is that an API registry implemented by API 
management platforms is the minimal required functionality for large scale open data implementation. Implementing 
APIs provides data governance to data providers, although these data providers cannot prevent the creation of 
potential new privacy or commercial sensitive data sets based on (filtered) data providers by a data user. There are 
quite a number of API management platforms available. They offer functions to publish and access data, both in an 
open and a closed environment, and support billing functionality. The latter enables the implementation of data 
sharing requiring payment based on APIs, e.g. like provided by Cadaster. 
 
Further experience will be gained by implementing one of these platforms to support the proposed technical 
framework. Semantics is not yet supported according to the four rules for publishing linked open data [4]. URIs to 
name spaces and definitions used by APIs are part of these APIs, but are not linked to concept definitions and 

http://www.jtaer.com/


 

 

57 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

associations between those concepts. As APIs based on REST are an implementation of web services, research in 
that particular area might be applied to add this functionality, e.g. approaches like Uniform Service Description 
Language (USDL, [23]) or Semantic Annotations for Web Services (SA-WSDL).  
 
A second conclusion is that the market for these type of platforms and its required functionality is not yet mature. 
First of all, a data sharing architecture covering distributed registries and data sharing with semantic models, 
complemented with security functionality, is yet to be developed and agreed upon. Furthermore, one can argue that 
semantic models are required for data sharing and linking different data providers, but development and relating 
these models to existing APIs is yet for further research. Lack of technology to implement APIs from a semantic 
model also makes it costly to develop an infrastructure providing this functionality. As there is no business case for 
semantic or common models for data sharing, it is also difficult to implement real time query formulation on 
heterogeneous data providers [5]. Many software developers are able to implement APIs as is. The technical 
framework proposed in this contribution identifies data sharing functionality, but the distribution of this functionality is 
yet to be defined. A data provider can implement and deploy the functionality, a data user or data provider can do the 
same with limited central governance, e.g. governance of semantic models. The analyzed software solutions 
currently support individual organizations publishing their APis or a central data store for open government data 
implementing an open data portal. These open data portals provide themes, faceted search and other types of 
metadata for data discovery; some of them also support API discovery. It implies that open data providers provide 
(bulk) data and yet have to transform to API support. In terms of the stage model of Berners-Lee [4], this bulk data is 
structured, but has implicit links to other data, for instance geodata. 
 
Whereas the focus of this paper is a technical framework of open data between any data provider and – user, 
platform analysis learns that also restrictions to data access can be supported based on supported security and 
identity management solutions. Furthermore, platforms can also support billing and invoicing, which enables a data 
provider to charge for data access. Thus, platforms are available to support any data driven applications, either 
open, with access restrictions, with billing and invoicing, and organization internally. 
 
Whilst current solutions do not yet solve all barriers for open data formulated in literature (section 2.1), one can 
conclude that large scale implementations of open government data are not yet feasible or require additional 
investments. Jetzek et.al [17] have found a contribution of open data to innovation and participation, under the 
assumption that all participants are able to collaborate. Additional investments for large scale implementation is a 
potential barrier to this contribution of open data to innovation and participation. 
 
A final conclusion relates to potential use cases of (open) data. Literature identifies a relation between innovation by 
open data and a positive economic and social business case [17], but actual use cases supporting improved 
decision making with situational awareness are not yet considered. It is expected that data sharing will have a large 
impact on economy and society by improving decision support based on situational awareness [27]. 

Acknowledgments 

The authors would like to gratefully acknowledge the support of the Next Generation Infrastructure program, a 
collaboration of the Rotterdam Port Authority and Technical University of Delft, for this research. This paper results 
from research done in this program within the AOHA project on apps development for the Port of Rotterdam. 

Websites List 

Site 1: ePSIplatform: Europe’s One-Stop Shop on Public Sector Information (PSI) Re-Use 
www.epsiplatform.eu    
 
Site 2: The Open Data Portal of the Dutch Government 
www.data.overheid.nl   
 
Site 3: Dublin Core Metadata Initiative 
www.dublincore.org    
 
Site 4: Kademlia, a distributed hash table for peer-to-peer networks 
www.en.wikipedia.org/wiki/Kademlia  

References 

[1]  M. Al Boni, D.T. Andersen and R.L. King, Constraint preserving genetic algorithm for learning fuzzy measures 
with an application to ontology matching, in Advance Trends in Soft Computing (M. Jamshidi, V. Kreinovich and 
J. Kacprzyk, Eds.). San Antonio, Texas: Springer, 2014, pp. 93-104. 

[2]  C. Batini, M. Scannapieco, Data Quality: Concepts, Methodologies, and Techniques. Heidelberg: Springer-
Verlag, 2006. 

http://www.jtaer.com/
http://www.epsiplatform.eu/
http://www.data.overheid.nl/
http://www.dublincore.org/
http://www.en.wikipedia.org/wiki/Kademlia


 

 

58 

 
Wout Hofman 
Madan Rajagopal 

 
Technical Framework for Data Sharing 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 9 / ISSUE 3 / SEPTEMBER 2014 / 45-58 
© 2014 Universidad de Talca - Chile 
 

This paper is available online at 
www.jtaer.com 
DOI: 10.4067/S0718-18762014000300005 
 

[3]  T. Berners-Lee, J. Hendler and O. Lassila, The semantic web, Scientific American, vol. 284, no. 5, pp. 28-37, 
2001. 

[4]  T. Berners-Lee. (2009, June) Linked data – four rules. W3 Org. [Online]. Available:     http://www.w3.org/Design 
Issues/LinkedData.html        

[5]  C. Bizer, T. Heath and T. Berners-Lee, Linked Data - the story so far, International Journal on Semantic Web 
and Information Systems, vol. 5, no. 3, pp. 1-22, 2009. 

[6]  F. v. Blommestein, Structured Communication for Dynamic Business - an Architecture for  
Flexible B2B Communication. Groningen: University of Groningen, 2013. 

[7]  R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, Cloud computing and emerging IT platforms: 
Vision, hype, and reality for delivering computing as the 5th utility, Future Generation Computer Systems, vol. 
25, no. 6, pp. 599-616, 2009. 

[8]  C.M. Chituc, A. Azevedo and C. Toscano, A framework proposal for seamless interoperability in a collaborated 
network environment, Computers in Industry, vol. 60, no. 5, pp. 317-338, 2009. 

[9]  T. Erl, Service Oriented Architecture - Concepts, Technology and Design. Boston, MA: Prentice-Hall, 2005. 
[10]  J. Esmeijer, T. Bakker, S.D. Munck. Thriving and surviving in a data-driven society. TNO. Delft: TNO, 2013. 
[11]  E. Folmer, M. Punter, Management and Organization of Open Standards (BOMOS), NOIV, Enschede, 2010. 
[12]  E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns – elements of re-usable object-oriented 

software, Addison-Wesley, 1995. 
[13]  C. Gentry, A fully homomorphic encryption scheme, Ph.D. dissertation, Department of Computer Science, 

Stanford University, Palo Alto, CA, 2009. 
[14]  E. Goncalves da Silva, Supporting dynamic service composition at runtime based on end-user requirements, 

user generated services workshop, in Proceedings International Conference on Service Oriented Computing 
(ICSOC), Stockholm, Sweden, 2009, pp. 23-27. 

[15]  T. Heath and C. Bizer, Linked Data - Evolving the Web into a Global Data Space, Synthesis Lectures on the 
Semantic Web: Theory and Technology. San Rafael: Morgan & Claypool Publishers, 2011. 

[16]  W. Hofman and H. Bastiaansen, A global IT infrastructure improving container security by data completion, in 
Proceedings European Conference on ICT for Transport Logistics (ECITL), Zaragoza, Spain, 2013. 

[17]  T. Jetzek, M. Avital and N. Bjørn-Andersen, Generating value from open government data, in Proceedings 34th 
International Conference on Information Systems, ICIS, Milan, Italy, 2013, p. 11. 

[18]  S. Kaisler, F. Armour, J. Espinosa, and J. Money, Big data: issues and challenges moving forward, in 
Proceedings 46th Hawaii Internation Conference, Hawaii: IEEE, 2013, pp. 995-1004. 

[19]  J. Kim, Supervenience and Mind: Selected Philosophical Essays.  New-York: Cambridge University Press, 
1993. 

[20]  J.C. King and J. Stanley, Semantics, pragmatics, and the role of semantic contents, in Semantics vs. 
Pragmatics (Z. Szabo, Ed.).  New York: Oxford University Press, 2004, pp. 111-164. 

[21]  B. Long and Y. Chang, Relevance Ranking for Vertical Search Engines. Waltham, MA: Morgan Kaufman, 2014. 
[22]  N. Loutas, E. Kamateri, F. Bosi, and K. Tarabanis, Cloud computing interoperability: the state of play, in 

Proceedings Third IEEE International Conference on Cloud Computing Technology and Science IEEE 
Computer Society, Athens, Greece, 2011, pp. 752-757. 

[23]  D. Oberle, A. Barros, U. Kylau, and S. Heinzl, A unified description language for human to automated services, 
Information Systems, vol. 38, no. 1, pp. 155-181, 2013. 

[24]  V. Peristeras, K. Tarabanis and S.K. Goudos, Model-driven eGovernment interoperability: a review of the state 
of the art, Computer Standards & Interfaces, vol. 31, no. 4, pp. 613-628, 2009. 

[25]  T. Priebe, W. Dobmeier and N. Kamprath, Supportinga attribute-based access control with ontologies, in 
Proceedings of The first International Conference on Availability, Reliability and Security (ARES2006), Vienna, 
2006, pp. 465-472. 

[26]  P. Pruksasri, J. v.d. Berg, W. Hofman, and S. Deskapan, Multi-level access control in the data pipeline of the 
international supply chain system, in Proceedings International Conference on E-business Technology and 
Strategy (iCETS), Macau, 2013, pp.79-90. 

[27]  The Economist. (2014, January) The future of jobs: the onrushing wave. The Economist. [Online]. Available: 
http://www.economist.com/news/ briefing/21594264-previous-technological-innovation-has-always-delivered-
more-long-run-employment-not-less 

[28]  A. Tolk, C.D. Turnitsa, S.Y. Diallo, and L.S. Winters, Composable M&S web services for net centric applications, 
JDMS, vol. 3, no. 1, pp. 27-44, 2006 

[29]  Zuiderwijk, N. Helbig, J. Gil-Garcia, and M. Janssen, Guest Editors' Introduction. Innovation through open data: 
a review of the state-of-the-art and an emerging research agenda, Journal of Theoretical and Applied Electronic 
Commerce Research, vol. 9, no. 2, pp. I-XIII, 2014. 

 
 
 

http://www.jtaer.com/
http://www.economist.com/news/briefing/21594264-previous-technological-innovation-has-always-delivered-more-long-run-employment-not-less
http://www.economist.com/news/briefing/21594264-previous-technological-innovation-has-always-delivered-more-long-run-employment-not-less
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

