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Abstract

There is currently a strong focus worldwide on the potential of large-scale Electronic Health Record (EHR) systems to cut
costs and improve patient outcomes through increased efficiency. This is accomplished by aggregating medical data from
isolated Electronic Medical Record databases maintained by different healthcare providers. Concerns about the privacy and
reliability of Electronic Health Records are crucial to healthcare service consumers. Traditional security mechanisms are
designed to satisfy confidentiality, integrity, and availability requirements, but they fail to provide a measurement tool for data
reliability from a data entry perspective. In this paper, we introduce a Medical Data Reliability Assessment (MDRA) service
model to assess the reliability of medical data by evaluating the trustworthiness of its sources, usually the healthcare provider
which created the data and the medical practitioner who diagnosed the patient and authorised entry of this data into the
patient’s medical record. The result is then expressed by manipulating health record metadata to alert medical practitioners
relying on the information to possible reliability problems.
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1 Introduction

The healthcare domain stands to gain enormously from the increased adoption of Information and Communica-
tions Technologies (ICT). Electronic Health Record (EHR) systems are the latest evolution of healthcare ICT, and
countries such as Australia, the United Kingdom, and the USA are working on plans for national EHR systems [3].

An Electronic Health Record is defined by Iakovidis [4] as “digitally stored healthcare information about an indi-
vidual’s lifetime with the purpose of supporting continuity of care, education and research, and ensuring confi-
dentiality at all times”. It is a mechanism for integrating healthcare information currently collected in both paper
files and Electronic Medical Record (EMR) databases by a variety of healthcare providers [17]. Electronic Health
Records (EHRs) enable the efficient communication of medical information, and thus reduce costs and adminis-
trative overheads [1], [3]. Furthermore, they aim to provide authorised healthcare professionals with legitimate
access to a wealth of historical medical data at one access point.

However, to achieve these potential benefits, the healthcare industry needs to overcome several significant ob-
stacles, in particular having confidence in the reliability of the EHRs’ medical data. Concern about data reliability
is a crucial factor that may have a strong effect on how medical practitioners use EHRs [4]. This issue arises
because the EHR’s medical data is composed from different healthcare providers’ Electronic Medical Record
(EMR) systems and from paper-based medical reports and referrals that patients received from those healthcare
providers who do not have an EMR system or an electronic connection to the EHR system. By using the EHR
system, a medical practitioner will be exposed to historical medical data with varying levels of reliability; the data
might originate from a healthcare provider that does not satisfy patient safety requirements, e.g. is known to
habitually enter inaccurate or incomplete data, or be entered by a medical practitioner who fails to satisfy medical
safety practices, e.g. is known to violate medical procedures. As a consequence, the reliability of the EHR medi-
cal data depends on the trustworthiness of the source and the creator of the captured data. However, in medical
practice medical data is usually assumed reliable a priori so, in the absence of a reliability evaluation technique,
all data will be valued equally. In the following scenario we demonstrate the harmful impact that may occur if a
measure of medical data reliability is not incorporated in the EHR system.

Patient ‘Sara’ from Sydney notices a mole on her back and goes to her General Practitioner ‘Tony’ who diagnoses
the case, informs her that it is not a skin cancer, and performs a small surgery to remove it. Three months later,
Sara gets a new job and moves to Cairns. Sara becomes ill and starts losing weight. She visits her new GP
‘Frank’ who, thanks to the EHR system, looks into her medical history. Seeing nothing relevant in her EHR, he
diagnoses the case as depression and prescribes anti-depressants. Six months later, Sara’s health gets worse
and her GP Frank requests some pathology tests which reveal that Sara has a skin cancer, which has now
advanced to a life-threatening state. Frank looks again into Sara’s EHR, and specifically the diagnosis made by
Tony, and concludes that Tony’s diagnosis was not correct. Frank also finds that Tony has had many medical
misdiagnosis cases lodged against him in the past two years.

If the EHR system was equipped with a mechanism to evaluate the EHR data’s reliability, Frank would have been
alerted to Tony’s potentially unreliable diagnosis each time he accessed Sara’s EHR, allowing him to detect the
cancer earlier.

However, current EHR network models (e.g. the Centralised health information model and the Health record data
bank model) [19] fail to alert medical practitioners to possible reliability problems with medical data. Therefore,
we need a mechanism to alert medical practitioners about possibly unreliable data fields in an Electronic Health
Record. This does not imply that such fields should be deleted from the patient’s EHR, however. Instead,
they should be retained but marked, via appropriate metadata, to indicate their low levels of reliability. Such a
reliability evaluation will allow medical practitioners to treat potentially unreliable data with caution, and either test
it independently, or check for corroborating evidence in other EHR fields.

In this paper, we propose a Medical Data Reliability Assessment (MDRA) model for validating the reliability of
medical data used to construct Electronic Health Records. This is achieved by using metadata to extract infor-
mation about the medical data’s sources (e.g. healthcare providers and medical practitioners). This information
is then used in a statistical process to derive a total reliability measure for each EHR data field. The resulting re-
liability estimate can be expressed in the EHR presented to a medical practitioner to indicate a reliability problem
if one exists.
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2 Related Work

Reputation systems represent an important input for assessing the trust (or reliability) of a certain agent or
service. These systems provide a reputation score for an agent calculated from the agent’s ratings as voted on
by others who have experienced a transaction with the agent. For instance, eBay’s (Site 1) feedback forum is
one of the earliest reputation systems; it collects buyers’ feedback (either +1, 0, or −1) and aggregates them
equally [16] to produce a global reputation score for the seller. The global score is further processed to provide
the percentage of positive feedback that is gained by the seller. However, this additive scheme ignores the
personalised nature of reputation measures [15]. A slightly better approach, the average reputation scheme [18]
provides an improved calculation because it computes the reputation score as the average of all ratings. This
principle is used in the reputation systems of many commercial web sites, such as Revolution Health (Site 2)
and Amazon (Site 3). Although the average reputation scheme is better than the additive scheme, it still has the
same weaknesses.

In the Peer-to-Peer (P2P) research arena, many reputation models have been proposed to assist in assigning
reputation scores to those agents within the P2P network. These scores help an agent (service seeker) to make
its own decision to trust and connect to the most honest and reliable agents (service providers). EigenTrust [14]
is a reputation-based trust management system that aims to minimise malicious behavior in a peer-to-peer
network. It computes the agents’ trust scores through repeated and iterative multiplication and aggregation of
trust scores along transitive chains until the trust scores for all agent members of the P2P community converge to
stable values. PeerTrust [22], [23] is another reputation-based trust management system for P2P eCommerce
communities. It is even more cautious and examines the received ratings for their quality. It uses five factors to do
so, namely feedback in terms of the amount of satisfaction, the number of transactions, the transaction’s context
factor, and the community context factor. These factors are used to discount the agent’s trust value. However,
our work differs from these two models in two aspects. Firstly, in the healthcare context, it’s crucial to have on
hand the identity of the agent who created the medical data (i.e. the healthcare provider or medical practitioner)
in order to ensure accountability. In this way, the healthcare context differs significantly from the P2P context.
Secondly, in our MDRA model we follow a sounder mathematical basis by using beta and dirichlet probability
density functions for combining feedback and for expressing reputation ratings, and subjective logic to represent
the trust value where we consider agent’s uncertainty factor.

A Bayesian approach is used in more sophisticated reputation systems [20], [21] to produce the reputation score.
For example, Wang et al. [15] proposed a reputation model that uses beta probability functions to represent the
distribution of trust values according to an interaction history. This model calculates trust either by considering
direct observations, if any, or by taking the recommendation of neighbouring agents. However, this model does
not distinguish between two trust aspects in its calculation, namely functional trust and referral trust [10], in
which case functional trust values are assigned to neighbors in calculating the transitive trust on a specific agent,
while the referral trust supports accurate calculation. TRAVOS [20] is another system that uses the Bayesian
approach to calculate a reputation score from binomial ratings and it considers referral trust in its transitive trust
calculation. However, in the absence of any evidence, the TRAVOS system will assign an agent a default 0.5
reputation score that results from using the initial settings for the Bayesian parameters α and β . This system
does not consider other factors that will have an impact on the default reputation score for these new agents.
By contrast, our Medical Data Reliability Assessment model employs a dynamic community base rate that is the
average reputation score of the whole community that the agent belongs to. This dynamic community base rate
is used in evaluating the reputation of any known or unknown agent, which improves the reliability estimation
process since the community base rate dynamically reflects the trustworthiness of the whole community at any
one time.

Even more relevant to our research is Hedaquin [2], a system for measuring the quality of health data that is
entered into a patient’s health record. Hedaquin is based on a Beta reputation system and uses the credentials
of the health data supplier, ratings for the health data supplier, and metadata supplied by measuring devices as
measures. Hedaquin’s goal is similar to our Medical Data Reliability Assessment (MDRA) model, but instead of
assessing the quality of the raw health data, our MDRA model assesses the trustworthiness of the medical data
as entered into the patient’s Electronic Health Record (EHR). Hedaquin uses some ad hoc factors to discount the
final quality value and does not provide an accurate trustworthiness estimate of new agents because it follows
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the same approach as TRAVOS. By contrast, the approach for assessing data reliability in our MDRA model
uses two reputation systems, namely Beta and Dirichlet, which accepts binomial and multinomial ratings and
makes the MDRA model capable of expanding and accepting ratings from various trusted agents. In addition,
the MDRA model assesses new agents by considering their surrounding community’s trustworthiness.

3 Trust and Reputation Systems

Reputation systems collect ratings about users or service providers from members of a community. The reputa-
tion system is then able to compute and publish reputation scores about those users and services. Reputation
systems use different rating levels, which might be binomial or multinomial. These reputation scores are used to
assist in measuring or evaluating the trust or reliability of a certain agent.

In this section, we review the reputation systems that are used in our model, namely Beta and Dirichlet reputation
systems, and the Subjective Logic trust model we employ.

3.1 Beta Reputation System

Binomial reputation systems are based on a beta probability function [5], which can be used to represent the
probability distribution of binary events, and are therefore called Beta reputation systems. In a reputation cal-
culation process, the Beta reputation system updates its two parameters α and β (Eq. 1) with the recorded
observations about a certain agent, to adjust its statistical beta Probability Density Function (PDF). These ob-
servations are classified as either positive, r , or negative, s, observations. The α and β parameters can be
computed as functions of r and s according to Eq. 1 below,

α = r +Wa, β = s+W(1−a) , (1)

where a expresses the base rate, and W is the weight of the non-informative prior, and normally W = 2. The a
posteriori reputation score is computed as the expected probability, E(p), as defined by:

E(p) =
α

α + β
. (2)

As an example, let an agent A have 8 positive and 2 negative observations about agent B. Further assume that
the base rate a is set to be 0.5. By using Eqs. 1 and 2, the probability expectation value is equal to 0.8. This can
be interpreted as saying that the relative frequency of a positive observation in the future is somewhat uncertain,
and that the most likely value is 0.8.

3.2 Dirichlet Reputation System

Multinomial Bayesian systems are based on computing reputation scores by statistical updating of Dirichlet
Probability Density Functions (PDF), which therefore are called Dirichlet reputation systems [12] ,[13]. The a
posteriori (i.e. the updated) reputation score is computed by combining the a priori (i.e. previous) reputation
score with new ratings.

In Dirichlet reputation systems agents are allowed to rate other agents or services with any value from a set of
predefined rating levels, and the reputation scores are not static but will gradually change with time as a function
of the received ratings. Initially, each agent’s reputation is defined by the base rate reputation. After ratings about
a particular agent have been received, that agent’s reputation will change accordingly.

Let there be k different discrete rating levels L. This translates into having a state space of cardinality k for the
Dirichlet distribution. Let the rating level be indexed by i. The aggregate ratings for a particular agent are stored
as a cumulative vector, expressed as:

~R= (~R(Li) | i = 1 . . .k) . (3)
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This vector can be computed recursively and can take factors such as longevity and the community base rate
into account [12]. The most direct way of representing a reputation score for an agent y is to simply aggregate
the rating vector ~Ry which represents all relevant previous ratings. The aggregate rating of a particular level i for

agent y is denoted by ~Ry(Li).

For visualisation of reputation scores, the most natural approach is to define the reputation score as a function
of the probability expectation values of each rating level. Before any ratings about a particular agent y have been
received, its reputation is defined by the common base rate vector ~a. As ratings about a particular agent are
collected, the aggregate ratings can be computed recursively [12], [13] and the derived reputation scores will
change accordingly. Let ~R represent a target agent’s aggregate ratings. Then the vector ~S, defined by

~Sy :

(

~Sy(Li) =
~Ry(Li)+W~a(Li)

W+ ∑k
j=1

~Ry(L j )
; | i = 1 . . .k

)

, (4)

is the corresponding multinomial probability reputation score. Parameter W represents the non-informative prior
weight, where W = 2 is usually the value of choice, but larger values for constant W can be chosen if a reduced
influence of new evidence over the base rate is required.

The reputation score ~S can be interpreted like a multinomial probability measure as an indication of how a
particular agent is expected to behave in future transactions. It can easily be verified that

k

∑
i=1

~S(Li) = 1 . (5)

While informative, the multinomial probability representation can require considerable space on a computer
screen because multiple values must be visualised. A more compact form can be used to express the repu-
tation score as a single value in some predefined interval. This can be done by assigning a point value ν to each
rating level Li , and computing the normalised weighted point estimate score ε .

Assume, for example, that there are k different rating levels with point values ν(Li) evenly distributed in the range
[0,1] according to ν(Li) = i−1

k−1 . The point estimate reputation score of a reputation ~R is then:

ε =
k

∑
i=1

ν(Li)~S(Li) . (6)

Such a point estimate in the interval [0,1] can be scaled to any range, such as 1–5 stars, a percentage or a
probability.

Bootstrapping a reputation system to a stable and conservative state is important. In the framework described
above, the base rate distribution ~a will define the initial default reputation for all agents. The base rate can, for
example, be evenly distributed over all rating levels, or biased towards either negative or positive rating levels.
This must be defined when setting up the reputation system in a specific community.

As an example, consider a rating scale with five levels:

L1: Bad
L2: Mediocre
L3: Average
L4: Good
L5: Excellent

We assume a default base rate distribution a = 0.2. Before any ratings have been received, the multinomial
probability reputation score will be represented as in Figure 1(a).

Now assume that 10 ratings are received, where 5 are bad, and 5 are excellent. This translates into the multino-
mial probability reputation score of Figure 1(b). The point estimate reputation score is calculated by using Eq. 6,
and equals 0.5.
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(a) Base rate probability expectation values

(b) Updated probability expectation values

Figure 1: Example multinomial probability expectation

3.3 Subjective Logic

Subjective logic [6], [7], [9] is a type of probabilistic logic that explicitly takes uncertainty and belief ownership into
account. Arguments in subjective logic are subjective opinions about states in a state space. A binomial opinion
applies to a single proposition, and can be represented as a Beta distribution. A multinomial opinion applies to a
collection of propositions, and can be represented as a Dirichlet distribution.

Subjective logic defines a trust metric called opinion denoted by ωA
X = (~b,u,~a), which expresses the relying party

A’s belief over a state space X. Here~b represents a belief mass vector over the states of X, and u represents an
uncertainty mass where~b,u∈ [0,1] and ∑~b+u = 1. Vector ~a∈ [0,1] represents the base rates over X, and is
used for computing the probability expectation value of a state x as

E(x) =~b(x)+~a(x)u , (7)

meaning that ~a determines how uncertainty contributes to E(x). Binomial opinions are expressed as ωA
x =

(b,d,u,a) where d denotes disbelief in statement x. For instance, given the statement x : “David is honest and
reliable”, then the opinion can be interpreted as evaluation trust in David. More specifically, the trust target is
David, and the trust scope is σ : “To be honest and reliable”, so that x≡ D(σ). The opinion can be denoted with
explicit attributes as ωA

D(σ), but the trust scope can be omitted when it is obvious.
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As an example, assume that Alice needs treatment for her knee and asks her GP Bob to recommend a good
physiotherapist. When Bob recommends David, Alice would like to get a second opinion, so she asks Claire for
her opinion about David. The trust scope in this case can be expressed as σ : “To be a competent physiothera-
pist”. This situation is illustrated in Figure 2 where the indexes on arrows indicate the order in which the opinions
are formed.
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Figure 2: Deriving trust from parallel transitive chains

When trust and referrals are expressed as subjective opinions, each transitive trust path Alice→Bob→David,
and Alice→Claire→David can be computed with the transitivity operator, also called the discounting operator,
where the idea is that the referrals from Bob and Claire are discounted as a function of Alice’s trust in Bob and
Claire respectively. Finally the two paths can be combined using the cumulative or averaging fusion operator.
These operators form part of Subjective Logic [7], [9], and semantic constraints must be satisfied in order for the
transitive trust derivation to be meaningful [8]. Opinions can be uniquely mapped to beta PDFs, and in this sense
the fusion operator is equivalent to Bayesian updating. This model is thus both belief-based and Bayesian.

Algebraically, a trust relationship between A and B is denoted [A,B], transitivity of two arcs is indicated using
a binary “:” operator, and the fusion of two parallel paths is indicated with a “⋄” operator. The trust network of
Figure 2 can then be expressed as:

[A,D] = ([A,B] : [B,D])⋄ ([A,C] : [C,D]) . (8)

The corresponding transitivity operator for opinions is denoted as “⊗” and the corresponding fusion operator as
“⊕”. The mathematical expression for combining the opinions about the trust relationships of Figure 2 is then:

ωA
D = (ωA

B ⊗ωB
D)⊕ (ωA

C ⊗ωC
D) . (9)

4 Medical Data Reliability Network Structure

Figure 3 shows our proposed network structure for deriving a healthcare provider’s level of trust in Electronic
Health Record medical data fields, via our Medical Data Reliability Assessment model. In this section, we
explain the functionality of each component. The protocol by which these components interact is described in
Section 5.

4.1 Healthcare Authority (HA)

A Healthcare Authority is a legal body that records information (metadata) gathered from public sources including,
but not limited to, reports received from healthcare providers and medical practitioners about incorrect medical
data or procedures, and medical misconduct, non-safety, or malpractice cases. The subject of this information is
either a healthcare provider, a medical practitioner, or both. The HA uses this information to produce a ratings
vector, in which it ranks each reported case according to its severity. This process can be done by applying
previously-defined classification rules to each case.
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Figure 3: Medical Data Reliability Network Structure

In addition the HA assigns a base rate for each severity rating level and for the prior behavior of the healthcare
agent (either a healthcare provider or medical practitioner). The HA’s ratings vector will have k levels representing
the severity (danger) levels for reported cases. Here we assume that level 1 denotes the highest level of severity
and level k− 1 the lowest. Level k denotes the special case of assumed ‘perfect’ behaviour, in the sense that
there have been no adverse reports.

From this, the HA provides authorised or registered healthcare providers with its opinion (arrow 2 in Figure 3)
about the medical conduct and practice of a certain healthcare provider or medical practitioner. Here, the HA
acts as a Dirichlet reputation system and expresses its trust using the Subjective Logic trust metric opinion.
For example, ωHA

A = (~bHA
A ,uHA

A ,~aHA
C ) is Healthcare Authority HA’s trust opinion about healthcare agent A. ~aHA

C
represents HA’s base rate for A’s community (C).

In order to represent the Healthcare Authority’s opinion as a single value, it uses a point estimate representation.
Due to the fact that the rating levels are not evenly distributed, the HA should manually define point value vector ~m
to express its weight for each rating level. Therefore, the reputation score is computed as:

εHA
X =

k

∑
i=1

~m(Li) ~S(Li) . (10)

4.2 Reputation Centre (RC)

A Reputation Centre receives ratings from community members (e.g. patients) about healthcare providers and
medical practitioners. These ratings are used by the reputation centre to derive a reputation score for those rated
agents; this reputation score represents the RC’s subjective opinion (arrow 4 in Figure 3). These opinions can be
communicated to healthcare providers. The RC acts as a Dirichlet reputation centre and expresses its opinions in
the same way that the Healthcare Authority HA does. For example, ωRC

A = (~bRC
A ,uRC

A ,~aRC
C ) is Reputation Centre

RC’s opinion about healthcare agent A.
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4.3 Medical Data Reliability Assessment (MDRA) Service

The Medical Data Reliability Assessment service is employed by the Electronic Health Record (EHR) system
used by a Healthcare Provider (HP) to measure the reliability of medical data sourced from other healthcare
agents (e.g. healthcare providers or medical practitioners). The HP has a database that records the HP’s inter-
action experiences with other healthcare agents. These experiences are created from the internal reports that
are received from the HP’s medical practitioners about those received external medical data. The HP uses this
information to either record good or bad experiences with the agents who created these data. The HP’s experi-
ences are then used by the MDRA that acts as a Beta reputation system to compute the HP’s opinion about a
certain healthcare agent. Healthcare provider HP’s opinion about a healthcare agent A (arrow 1 in Figure 3) is
denoted as ωHP⋆

A = (bHP⋆

A ,dHP⋆

A ,uHP⋆

A ,aHP⋆

C ).

In addition, the MDRA can communicate with the HA and the RC to get their opinion about a certain agent, to
use in the MDRA’s reliability calculation process. Also, the MDRA maintains dynamic opinions about the HA and
the RC (arrows 3 and 5 in Figure 3) that are calculated based on opinion comparison [11].

5 MDRA Protocol

Section 4 introduced the components needed to implement our reliability model. In this section we define the
protocol whereby these components interact with one another.

The Medical Data Reliability Assessment (MDRA) service is a supporting service for an Electronic Health Record
(EHR) system. It is responsible for assessing the reliability of given medical data and then communicating this
information to the EHR system to update the medical metadata displayed. This process starts by receiving
medical data from the EHR system, then the MDRA starts its investigation by consulting the EHR reputation
system and seeks, if necessary, opinions from known parties. In this setup, we assume that each entity, including
healthcare providers, medical practitioners, the Healthcare Authority, and the Reputation Centre has a well-
defined identity that can be verified in a secure context.

To better understand the functionality of the MDRA service, we use the following steps to depict the messages
received and sent by the MDRA service in order to accomplish its task (Figure 4).

1. Healthcare provider HP’s EHR system receives medical data for patient p from healthcare provider HP2.

2. The EHR system sends this medical data to the MDRA service to evaluate its reliability.

3. The MDRA extracts medical metadata to identify the source healthcare provider src, who is HP2 in this
case, and the identity of the medical practitioner mpwho created this record.

4. The MDRA accesses the EHR reputation database to find historical interaction experiences between HP
and src, and HP and mp.

5. If the recorded experiences do not satisfy HP’s confidence criteria (see Section 6) then:

(a) The MDRA requests opinions about src and mp from Healthcare Authority HA.

(b) The MDRA requests opinions about src and mp from Reputation Centre RC.

6. The MDRA service uses the received information to calculate the medical data reliability score.

7. The MDRA service sends the result back to the EHR system.

8. The EHR system updates the medical data displayed to reflect the computed reliability score, e.g. by
highlighting potentially unreliable data.
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Figure 4: Medical data reliability evaluation message sequencing

6 Measuring the Reliability of Medical Data

Assume a healthcare provider HP has received medical data about a specific patient. This medical data consists
of medical data fields, and each field MF has attached metadata. This metadata provides information about the
identity of the healthcare provider srcwho produced the data, and of the medical practitioner mpwho diagnosed
the patient and authorised entry of this data into the patient’s medical record. In order to evaluate the reliability
ϕHP

MF of a given medical data field, HP’s MDRA service conducts a trust assessment for those agents responsible
for producing each data field MF . This process starts by evaluating healthcare provider HP’s opinion ωHP

src of
the source healthcare provider src, and HP’s opinion ωHP

mp of medical practitioner mp. Afterwards, the MDRA
uses this information to compute the reliability of the medical data by using the fusion operator as in the following
equation.

ϕHP
MF = E(ωHP

src ⊕ωHP
mp) (11)

The Electronic Health Record (EHR) system uses the resulting reliability score ϕHP
MF to update medical data field

MF ’s metadata to reflect this score in order to alert the medical practitioner relying on the data if its reliability is
low.

In order to compute the reliability of medical data field MF , the MDRA needs to evaluate the trustworthiness
of its sources src and mp. However, the MDRA’s approach for calculating these values is similar; therefore we
will denote the trust target as agent X which represents either src or mp. The MDRA follows two approaches
in calculating the trust of a given agent X and this approach is determined by evaluating certain criteria which
we call the confidence criteria. In our system, we define the confidence criteria as the number of interaction
experiences n had with agent X in a period of time t. Based on these criteria, the MDRA will use its internal
assessment service (Section 6.1) if HP’s interaction experiences with agent X within time period t are greater
than or equal to n, otherwise it will use an external assessment service (Section 6.2) from which it will seek the
healthcare authority and reputation centre’s opinions about X.
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6.1 Internal Assessment

The Medical Data Reliability Assessment service uses healthcare provider HP’s reputation database to derive
HP’s opinion ωHP⋆

X about agent X. Provider HP’s opinion parameters are calculated as follows:

bHP
X =

rHP
X

(rHP
X +sHP

X + 2)

dHP
X =

sHP
X

(rHP
X +sHP

X + 2)

uHP
X =

2

(rHP
X +sHP

X + 2)

aHP
C = HP’s base rate for agent X’s community C

(12)

The base rate in Eq. 12 helps the healthcare authority to set a priori trust about a certain agent in the absence
of any interaction experiences. On start-up of the reputation system this value is usually set by the authority who
provides the reputation system.

Most previous work treats the base rate as a static value that does not change over time. However, this is
inadequate for our purposes because the base rate should reflect the evaluator’s belief at a certain time towards
its targeted community. Therefore, we use healthcare provider HP’s base rate for agent X’s community (the
relevant healthcare provider’s or medical practitioner’s community base rate) to represent the base rate in HP’s
opinion. In order to calculate the community base rate, the MDRA aggregates the community’s reputation values
at time t.

rHP
C,t = ∑M∈C rHP

M

sHP
C,t = ∑M∈C sHP

M

(13)

Afterwards, we define the community base rate at time t + 1 as the community’s reputation score at time t.

aHP
X,(t+1) =

rHP
C,t + r0

rHP
C,t +sHP

C,t + r0 +s0
where



















X ∈C

r0 =WaHP
C,t

s0 =W
(

1−aHP
C,t

)

(14)

Here r0 and s0 represent the a priori reputation of community C. They are expressed as a non-informative
constant weight W that is distributed over all possible outcomes as a function of the base rate.

Once the MDRA has computed HP’s opinion about X and HP’s experiences with X satisfy the confidence
criteria, the MDRA publishes HP’s opinion about X as follows.

ωHP
X = ωHP⋆

X (15)

Once the MDRA finishes computing HA’s opinions about src and mp, it substitutes these values into Eq. 11 to
derive HP’s subjective reliability measure ϕHP

MF on the medical data.

6.2 External Assessment

In this approach, healthcare provider HP seeks opinions from external parties to be combined with HP’s self-
computed opinion ωHP⋆

X in order to derive HP’s overall opinion ωHP
X about agent X. There are two sources of

information: relevant Healthcare Authority HA and Reputation Centre RC. Each source sends its opinion about
X to HP through a secure communications channel. However, these opinions are discounted by HP’s opinion
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about each source. The following equation uses the Subjective Logic fusion operator to compute HP’s opinion
about X using HP’s self-computed opinion, HA’s opinion, and RC’s opinion about X.

ωHP
X = ωHP⋆

X ⊕ωHP:RC
X ⊕ωHP:HA

X (16)

The computation process for discounted opinions ωHP:RC
X and ωHP:HA

X is the same. Therefore, in the following,
we show how to compute ωHP:RC

X , and the same process can be applied to produce ωHP:HA
X .

Firstly, the MDRA needs to compute HP’s opinion about RC, so the MDRA uses an opinion comparison approach
via the operator “↓” [11], which here is HP’s distrust of RC, proportional to the greatest difference in point
estimates between HP and RCopinions about certain agent. The MDRA selects an agent Z from HP’s database,
calculates HP’s opinion ωHP⋆

Z about Z, and compares it to RC’s opinion ωRC
Z about Z. The following equation

shows how HP’s opinion about RC is computed.

ωHP
RC = ωHP

Z ↓ ωRC
Z where



















dHP
RC =

∣

∣

∣

(

rHP
Z +1

rHP
Z +sHP

Z +2

)

− ε(~RRC
Z )
∣

∣

∣

uHP
RC = max

[

uHP
Z ,uRC

Z

]

bHP
RC = 1−bHP

RC−uHP
RC

(17)

Secondly, the Reputation Centre RC needs to convert its multinomial aggregate ratings ~RRC
X into a binomial

opinion. Reputation Centre RCuses the following equation to derive the binomial rating parameters r and s.

r = εRC
X ∑k

i=1
~RRC

X (xi)

s= ∑k
i=1

~RRC
X (xi)− r

(18)

Afterwards, RCuses Eq. 12 to derive its binomial parameters b, d, and u. The base rate a parameter is computed
as in Eq. 19.

aRC
X =

εRC
X −bRC

X

uRC
X

(19)

Finally, the MDRA uses ωHP
RC and ωRC

X with the transitivity operator to compute the discounted opinion ωHP:RC
X

as shown in the following equation.

ωHP:RC
X = ωHP

RC ⊗ωRC
X where























bHP:RC
X =

(

bHP
RC +aHP

RCuHP
RC

)

bRC
X

dHP:RC
X =

(

bHP
RC +aHP

RCuHP
RC

)

dRC
X

uHP:RC
X = 1−bHP:RC

X −dHP:RC
X

aHP:RC
X = aRC

X

(20)

Once the MDRA has computed discounted opinions ωHP:HA
X and ωHP:RC

X , it uses these values in Eq. 16 to derive
HP’s opinion about X, which is either healthcare provider src or medical practitioner mp. Finally, the MDRA
substitutes HP’s computed opinion ωHP

src of src and ωHP
mp of mp into Eq. 11 to derive HP’s subjective reliability

measure ϕHP
MF of medical data field MF .

7 Motivational Scenario Revisited

In this section we revisit the motivational scenario from Section 1 to see how our Medical Data Reliability Assess-
ment (MDRA) service would alert medical practitioner Frank to Tony’s unreliable medical data. Assume that each
system, including healthcare provider Frank’s medical system HP, the nationwide healthcare authority HA, and
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(a) HA’s Reputation System

Agent ~R ~a
Tony (T) (3,5,4,2,0) (0.002,0.006,0.008,0.01,0.974)

Medical Centre (MC) (1,2,2,5,0) (0.002,0.004,0.008,0.01,0.976)
Karen (K) (0,0,0,1,0) (0.002,0.006,0.008,0.01,0.974)

(b) HP’s Reputation System

Agent r s
Tony (T) 0 1

Medical Centre (MC) 2 3
Karen (K) 6 1

(c) RC’s Reputation System

Agent ~R ~a
Tony (T) (7,4,2,3,1) (0.1,0.2,0.3,0.2,0.2)

Medical Centre (MC) (3,2,2,6,2) (0.1,0.2,0.2,0.3,0.2)
Karen (K) (0,0,3,4,3) (0.1,0.2,0.3,0.2,0.2)

Table 1: Reputation scores for the motivational scenario

the government-run reputation centre RC, has reputation scores about Tony and his healthcare centre as shown
in Table 1. Authority HA’s reputation system maintains rating vector ~R (Table 1(a)) that has five elements, four
represent severity rating levels (extreme, high, medium, low) and the fifth element represents the well behaviour,
the base rate vector ~a represents the priori base rate for those elements in ~R. Healthcare Provider HP’s reputa-
tion system (Table 1(b)) has two values, positive observations r and negative observations s. Reputation centre
RCmaintains ratings vector ~R (Table 1(c)) which has five rating levels (bad, mediocre, average, good, excellent),
the base rate ~a represents the a priori base rate for elements in ~R.

When Frank requests Sara’s EHR, his medical system will evaluate the reliability of each data field. Here we
show how the MDRA will evaluate the reliability of Tony’s medical data. The MDRA starts by checking its
reputation system, where there are insufficient experience entries recorded either with Tony or his medical
centre. Therefore, the MDRA requests HA’s and RC’s opinion about Tony and his medical centre. Health-
care authority HA uses its point values ~m = (0,0.2,0.43,0.67,1) with ~S , which is computed using Eq. 4, in
Eq. 10 to produce its reputation scores εHA

T and εHA
MC. Then HA uses Eqs. 18, 12 and 19 to compute its

binomial opinions ωHA
T = (0.33,0.55,0.13,0.38) and ωHA

MC = (0.49,0.33,0.18,0.6). Afterwards, the MDRA
uses Eq. 17 to compute its opinion about HA, with Karen as the subject of this process. The resulting opin-
ion ωHP

HA = (0.23,0.1,0.67,0.8), where the base rate trust has been set to aHP
HA = 0.8, is used with each

of ωHA
T and ωHA

MC in Eq. 20 to compute the MDRA’s discounted opinion that HA holds about Tony, which is
ωHP:HA

T = (0.25,0.42,0.33,0.33), and about Tony’s healthcare centre which is ωHP:HA
MC = (0.37,0.25,0.38,0.6).

The MDRA follows the previous approach to compute its discounted opinion held by RC about Tony and his
medical centre. However, the only difference in this process is the way that RC computes its reputation score.
Since RC’s rating levels are evenly distributed, it uses Eq. 6 to compute its reputation score ε . As a result, the
MDRA’s discounted opinion for RC about Tony is ωHP:RC

T = (0.28,0.55,0.17,0.33) and about Tony’s medical
centre is ωHP:RC

MC = (0.52,0.4,0.09,0.65).

In the next step, the MDRA substitutes its internal opinions: ωHP⋆
T = (0,0.33,0.67,0.29,0.5) and ωHP⋆

MC =
(0.29,0.43,0.29,0.5), and its calculated discounted opinions into Eq. 16 to compute HP’s opinion about Tony
and his medical centre which is ωHP

T = (0.24,0.55,0.12,0.17) and ωHP
MC = (0.48,0.39,0.06,0.62).

Finally, the MDRA computes HP’s reliability measure ϕ about Tony’s medical entry by substituting ωHP
T and ωHP

MC
into Eq. 11 which results in ϕ = 0.018 which implies that the medical data is unreliable.

The MDRA communicates this result to the EHR system, which then updates the medical metadata for the fields
derived from Tony’s diagnosis to indicate their low reliability. Now GP Frank will notice the highlighted medical
data, which implies that this information is unreliable, and will reinvestigate the case again which will result in
discovering the skin cancer in an earlier stage.
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8 Conclusion and Future Work

An Electronic Health Record (EHR) system overcomes the problems and limitations that are associated with
paper based systems and isolated Electronic Medical Record (EMR) systems; however, it is hindered by several
‘soft’ security problems such as concerns over privacy and reliability (trust). Medical data reliability is a crucial
requirement that can affect a medical practitioner’s decisions when using historical medical data. In the current
situation, all historical medical data are trusted equally; however, this should not be the case.

In this paper, we presented a Medical Data Reliability Assessment (MDRA) model that can augment an EHR with
metadata containing a reliability measure of medical data. In this process, several reputation systems have been
used together with a subjective logic trust analysis to produce a reliability measure. The MDRA can communicate
this reliability score to the EHR displayed on the medical practitioner’s computer to alert the medical practitioner
to any reliability concerns.

In future work we will demonstrate this model by implementing it in a workflow system, based on the YAWL (Site
4) workflow system, so that the displayed data responds to each reliability assessment request that comes from
any healthcare business process. Also, we will use the extended attributes implemented in YAWL to reflect the
calculated reliability score of given medical data.

In this paper, we assumed that the healthcare authority (HA) maintains a ratings vector about healthcare agents,
but we did not discuss how the HA treats previously investigated and dismissed cases of medical misconduct in
its ratings calculation. Therefore, in future work we will develop an appropriate healthcare-oriented time-variant
processing mechanism which will allow the HA to produce ratings scores which exonerated medical practitioners
to recover their reputation.
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