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Abstract 

 
In this paper, we propose a market model which is based on reputation and reinforcement learning 

algorithms for buying and selling agents. Three important factors: quality, price and delivery-time are considered 
in the model. We take into account the fact that buying agents can have different priorities on quality, price and 
delivery-time of their goods and selling agents adjust their bids according to buying agents preferences. Also we 
have assumed that multiple selling agents may offer the same goods with different qualities, prices and 
delivery-times. In our model, selling agents learn to maximize their expected profits by using reinforcement 
learning to adjust product quality, price and delivery-time. Also each selling agent models the reputation of 
buying agents based on their profits for that seller and uses this reputation to consider discount for reputable 
buying agents. Buying agents learn to model the reputation of selling agents based on different features of 
goods: reputation on quality, reputation on price and reputation on delivery-time to avoid interaction with 
disreputable selling agents. The model has been implemented with Aglet and tested in a large-sized 
marketplace. The results show that selling/buying agents that model the reputation of buying/selling agents 
obtain more satisfaction rather than selling/buying agents who only use the reinforcement learning. 
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1 Introduction 
With the advent of mobile and intelligent agent technology, e-commerce has been entered in a new era of its life [28]. 
Also agent architecture provides a flexible environment to model the other fields of research [8], [12], [20]. Agent-
Based e-Marketplace is one of the most important results of using agent technology over e-Commerce. Electronic 
marketplace provides a single location for many buyers and sellers to congregate electronically and complete their 
own transactions. In the recent years, the extensive research is focused on designing agent-based e-Marketplaces 
[2], [6], [14], [15], [19]. Moreover, there are some research on personal intelligent agents for e-commerce 
applications [5], [7], [8], [10], [29]. But the most important problem that can be mentioned in these works is poor 
intelligence of trading agents. 
 
In addition, reinforcement learning [17] has been studied for various multi-agent problems [4], [16], [21], [22]. 
However, these efforts are not directly modeled as economic agents and market environments. There are some 
research on reputation and trust modeling which do not use reinforcement learning [3], [9], [11], [18], [30]. A number 
of agent models for electronic market environments have been proposed. Jango [10] is a shopping agent that assists 
customers in getting product information. Given a specific product by a customer, Jango simultaneously queries 
multiple online merchants (from a list maintained by NetBot, Inc.) for the product availability, price, and important 
product features. Jango then displays the query results to the customer. Although Jango provides customers with 
useful information for merchant comparison, at least three shortcomings may be identified: (i) The task of analyzing 
the resultant information and selecting appropriate merchants is completely left for customers, (ii) The algorithm 
underlying its operation does not consider product quality which is of great importance for the merchant selection 
task, (iii) Jango is not equipped with any learning capability to help customers choose more and more appropriate 
merchants. Another interesting agent model is Kasbah [5], designed by the MIT Media Lab. Kasbah is a multi-agent 
electronic marketplace where selling and buying agents can negotiate with one another to find the “best possible 
deal” for their users. The main advantage of Kasbah is that its agents are autonomous in making decisions, thus 
freeing users from having to find and negotiate with buyers and sellers. However, as admitted in [5], Kasbah’s agents 
are not very smart as they do not make use of any AI learning techniques. 
 
Vidal and Durfee [27] address the problem of how buying and selling agents should behave in an information 
economy such as the University of Michigan Digital Library. They divide agents into classes corresponding to the 
agents’ capabilities of modeling other agents: Zero-level agents are the agents that learn from the observations they 
make about their environment, and from any environmental rewards they receive. One-level agents are those agents 
that model agents as zero-level agents.  Two-level agents are those that model agents as one-level agents. Higher 
level agents are recursively defined in the same manner. It should be intuitive that the agents with more complete 
models of others will always do better. However, because of the computational costs associated with maintaining 
deeper (i.e., more complex) models, there should be a level at which the gains and the costs of having deeper 
models balance out for each agent. The main problem addressed in this model is to answer the question of when an 
agent benefits from having deeper models of others. Also reinforcement learning has been applied in market 
environments for buying and selling agents, but reputation has not been used as a means to protect buyers from 
purchasing low quality goods. Moreover, selling agents do not consider altering the quality of their products while 
learning to maximize their profits.  
 
Tran and Cohen in [23]-[26] exploit reinforcement learning for buying agents to model the reputation of selling agents 
to protect buyers from communicating with non-reputable sellers. Nevertheless, buyers in this model should have 
fixed priorities on quality and price of their desired goods. In this way, they can not change their preferences to buy a 
good in a sequence of purchases. That is, a buying agent can not purchase a good in an auction with priority on 
quality and willing to buy the same good in another auction with priority on price. In addition, selling agents do not 
model the reputation of buyers to consider discount and just only focuses on two factors of quality and price. 
 
In our proposed learning algorithms, each selling agent models the reputation of buyers and dedicates them 
discounts based on their reputation. This model focuses on three important factors in market: quality, price and 
delivery. Because of the existence of buying agents with different preferences and priorities on their desired goods, 
the buying agents model the reputation of selling agents based on quality, price and delivery separately. For 
example, a buyer may need a good with high quality now, but with low price later. The proposed model has been 
implemented with Aglet [1], [13]. 
 
The paper is organized as follows: section 2 introduces our proposed market and learning algorithms. Section 3 
discusses current experimental results and outlines proposed future experimentations with the model. Finally, 
Section 4 provides conclusion and some future research directions. 

2 The Proposed Algorithm 
In this section we propose our marketplace model and learning algorithm for buying and selling agents based on 
reinforcement learning and reputation modeling. 
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2.1 General Architecture for Agent-Based e-Marketplace  

The proposed architecture of e-Marketplace is shown in Figure 1. There are three types of server in the proposed 
architecture for e-Marketplace, they are: (1) Marketplace (2) Buying Agent Server, and (3) Selling Agent Server. 
Each server includes several stationary agents and mobile agents and some important transactions between 
different agents in the marketplace. They are described as follows: 
 

 
 

Figure 1: The architecture of electronic commerce environments 
 

2.1.1 Marketplace 
Marketplace is a platform that supports the transaction facilities for mobile agent of sellers and buyers.  There is a 
static Agent (MAA: Market Assistant Agent) and two kinds of Mobile Agent in the Marketplace: 
 

1. MAA (Market Assistant Agent): The MAA is responsible for registering mobile buying and selling agents in 
the buyer and seller database of marketplace. The buyer database of marketplace contains: owner of 
mobile buying agent, buying agent server, a unique identifier, and proxy address of agent provided by aglet 
context and time of registration. The seller database of marketplace contains: owner of mobile selling agent, 
selling agent server, a unique identifier, address proxy of selling agent provided by aglet context, goods 
which is available for mobile selling agent to sell and time of registration. Agent A can communicate with 
agent B through the proxy address of agent B and vice versa. Also the MAA answers to the mobile buying 
agent request by retrieving proxy address of sellers, from seller database, who have good g to sell and 
send the list to the mobile buying agent. 

 
2. MBA (Mobile Buying Agent): stands for the buyer, moves to the Marketplace and trades with mobile selling 

agents and learns, based on reinforcement learning, that which sellers can satisfy its preferences. Also the 
MBA measures the reputation of each mobile selling agent on different factors: quality, price and delivery 
and focuses its business on reputable sellers and prevent to interact with non reputable ones. 

 
3. MSA (Mobile Selling Agent): stands for the seller, moves to the Marketplace and trades with mobile buying 

agents and learns how to adjust its bids according to the preferences of the buying agents while trying to 
maximize its expected profit. Also models the reputation of mobile buying agents to dedicate discount for 
them based on their reputation. 

2.1.2 Buying Agent Server 
The Buying Agent Sever provides the interface of Buying Agent (BA) that lets users to initialize and control their 
buying agent to carry the e-commerce activation out. Buying Agent Server stores the information of buyer in the 
database and will produce Mobile Buying Agent (MBA) according to the requirements of the user. It stands for the 
user to go to the marketplace to make bargains. 

2.1.3 Selling Agent Server 
Each seller, which wants to join this e-marketplace, should build a Seller Server. There are two main Agents in a 
Seller Server, include:  (1) Selling Agent (SA): which is provided by Selling Agent Server that lets the seller to 
initialize its selling agent and specify the goods which is available to sell, and (2) Mobile Selling Agent (MSA) is 
created by Selling Agent Server and migrates to the Marketplace and try to sell goods with maximum profit for its 
owner. 
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2.1.4 Transactions in Marketplace 
Figure 2 shows the process of trading using thirteen transactions:  
 
 

 
 

MBA: Mobile Buying Agent                                      MSA: Mobile Selling Agent 
MBA's DB: Mobile Buying Agent's Database     MSA's DB: Mobile Selling Agent's Database 

MAA: Market Assistant Agent 
Figure 2: Transactions in Agent-Based e-Marketplace 

 
1. BA submits registration request to MAA. Also SA submits registration request to MAA.  
2. MAA stores BA's and SA's registration information in B's and S's Databases.  
3. BA requests from MAA for list of relevant sellers who sell specified product.  
4. MAA retrieves relevant sellers for requested product.  
5. MAA sends list of relevant sellers to BA. 
6. BA multicasts its requests to relevant sellers for specified product. 
7. Each of those SA's prepares bid for BA based on his reputation and purchases.  
8. Each of those SA's sends bid to BA.  
9. BA receives all bids, evaluates their value and selects the best bid. 
10. BA announces the chosen bid owner and pays it.  
11. Chosen SA delivers the product to BA.  
12. Chosen SA updates the reputation of BA. 
13. BA estimates the real value of good and updates the trust and reputation of this SA. 
 

By considering some assumptions, we make the market more realistic and simpler. Therefore, we assume that: 
 

1. Quality, price and delivery offered by different selling agents can be variable.  
2. Each selling agent considers discounts for buying agents based on their reputation. 
3. There may be some dishonest selling agents in the market who lie on quality and delivery. 
4. Buying agents in the market are not dishonest. 
5. A buyer can purchase a good in different conditions with variant priorities on quality, price and delivery 

instead of fixed priorities. 
6. Each buyer has his own preferences and priorities on quality, price and delivery. 
7. Product delivery is done by transferring message between seller and buying agents. 
8. Maximum quality of a good presented in the market is definite so that all selling and buying agents know 

that. 
9. If a seller wants to deliver his product later, buyer expects more reduction in price from that seller based on 

late time units  
10. Buyer can estimate the quality of the good he purchases only after receiving the good from the selected 

seller. 
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In the following sections 2.2 and 2.3, we present the seller and buyer algorithms, respectively. Also in section 2.4 an 
example is described to show how the buyer and seller algorithms work.  

2.2 Seller Algorithm 

Let S be the set of sellers, G be the set of goods, B be the set of buyers, Q be the set of qualities, P be the set of 
prices and D be the set of deliveries, and S, G, B, Q, P and D are finite sets (It means that Qq ∈min  and Qq ∈max  
represent minimum and maximum quality of goods that can be available in the market and all sellers and buyers 
know this). Assume that seller Ss ∈  has received a request from buyer Bb ∈ on good Gg ∈ . Seller s has to 
decide on the quality, price and delivery of good g to be delivered to buyer b. Assume that R be the set of real 
numbers. Let function RBDPQGe s →××××:  estimate the expected profit for seller s if it sells good g with 

quality q at price p  and delivery d to buyer b. Let ),,( bqgc s be the cost that seller s incurs to produce good g with 
quality q for buyer b. Seller s produce different versions of good g based on buyers requirements. The price that 
seller s chooses to sell good g to buyer b is greater than or even equal to ),,( bqgc s . Function se chooses a bid that 

has the maximum profit for seller s. If seller s produces good g with the cost of ),,( bqgc s , the maximum price for 
seller s is calculated as follows: 
                                                              κ*),,(),,(max bqgcbqgcp ss +=                                                                   (1) 

 
In which, κ  is the maximum percent of profit for seller s. Moreover, seller s models the reputation of all buyers in the 
market using function )1,0(: →Br s  that is called the reputation function of s. Initially seller s sets the reputation 

rating 0)( =br s  for each buyer Bb∈ . We do not use the negative reputation for buyers, because we assumed all 
buyers are honest and no sellers are interested to lose their customers. The sellers want to satisfy the buyers' 
requirements so that they compete with each other to increase the number of their own customers. 
When seller s sends his bid to buyer b, there are the two following possibilities: 
Seller s succeeds to sell good g with quality q at price p and delivery d  to buyer b. It means that seller s has 
presented a bid better than the other sellers' bids to buyer b. Therefore, seller s may be re-selected by buyer b if 
seller s repeats this bid again for buyer b for specified good g. Seller s delivers product to buyer b and updates the 
reputation of buyer b using reinforcement learning: 
 
                                                                    ))(1()()( brbrbr sss −+= μ                                                                (2) 
 
Where, μ  is a positive factor called cooperative factor and is equal to: 
 

                                                                         
),,(

),,(

max bqgcp
bqgcp

s

s

−
−

=μ                                                              (3) 

 
In which, ),,(max bqgcp s−  is the maximum profit for seller s if it could sell good g to b. 
So the new bid for buyer b based on its new reputation is calculated by seller s as follows: 
 
                                                                 *))()(( s

s
before

s
newsnew pbrbrpp −−=                                                    (4) 

 
Seller s does not succeed to sell good g with quality q at price p and delivery d  to buyer b. It means that, the bid of 
seller s has not satisfied the buyer b. if seller s repeats the previous bid to buyer b, the possibility of success in 
selling good g to buyer b is low. Therefore, it is needed to alter the price, delivery and may be quality of the good to 
be offered to buyer b. In a real market, buyers expect that if a seller want to deliver his good later than his offered 
time, the seller should reduce the price according to a formula based on price and delivery. Let rp  be a variable that 
specifies the reduction percent of price for seller who want to delivers his product late. That is, he should reduce the 
price of his product according to this value. In addition, for preparing a new bid for buyer b, the reputation of the 
buyer is also used to determine the new price. The quality remains as before but new price is updated with 
reinforcement learning as follows: 
 
                                                                    pbrprppp s

new *)(*)*( β−−=                                                      (5) 
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In which, β  )10( << β  is a variable that denotes discount. It means that seller who wants to consider more 
discount for his customer, sets β  with greater value, and vice versa, instead he increments the product delivery 
value: 
                                                                                       incnew dtdtdt +=                                                                      
(6) 
 
Which incdt   is increasing rate for delivery corresponding to price reduction which has been assumed by seller s. 
According to the fact that a seller does not sell his goods with a price lower than the production cost of the good, 
therefore if ),,( bqgcp s

new < , then seller s does not suggest the same good with previous quality. So that, he may 
optionally raise the value of quality by increasing its production cost as follows: 
 

                                                                      ),,()1(),,( bqgcincbqgc ss +=                                                    (7) 
 
Where, inc  is a specific constant called seller s's quality increasing factor. 

2.3 Buyer Algorithm 

Assume that buyer b wants to buy good g. Buyer b broadcasts his request to all sellers which they have good g to 
sell (According to what discussed earlier in Figure 1, list of these sellers has been already retrieved from MAA.). 
Sellers answer the request by sending bids to buyer b. Buyer b receives all bids and selects the suitable bid. Buyer b 
models the reputation of all sellers and selects the suitable bid from a reputable seller. Buyer b models the reputation 
of each seller based on three factors of quality, price and delivery, separately. To model the reputation of each seller, 
buyer b uses functions )1,1(: −→Sr b

q
, )1,1(: −→Srb

p
 and )1,1(: −→Srb

dt
 that are called reputation function of b 

based on factors quality (q), price (p) and delivery (d), respectively. For example )(sr b
q  represents the reputation of 

seller s on quality computed by buyer b. Initially, buyer b sets the reputation ratings 0)( =sr b
q , 0)( =sr b

p  and 

0)( =sr b
d  for every seller Ss∈ . Seller s is reputable for buyer b on quality iff b

q
b

q sr Θ≥)( , where b
qΘ  is buyer 

b's reputable threshold on quality ( 10 <Θ< b
q ). A seller s is considered as disreputable for buyer b on quality iff 

b
q

b
q sr θ≤)( , where b

qθ  is buyer b's disreputable threshold on quality ( 01 <<− b
qθ ). Similarly, we define buyer 

b's reputable and disreputable thresholds based on price and delivery by replacing q with p and d in the above 
inequalities, respectively.  
Let b

qrS _  be the set of sellers with good reputation on quality to buyer b; that is; b
qrS _  contains the sellers that have 

served b with expected quality of b in the past and are therefore reputable on quality by b. Hence, SS b
qr ⊆_ and is 

initially empty, i.e., 
                                                                  { } SsrSsS b

q
b

qr
b

qr ⊆Θ≥∈= )(__                                                    (8) 

Also Let b
prS _  and b

drS _  be the set of sellers with good reputation on price and delivery, respectively. 

SSandS b
dr

b
pr ⊆)( __ , b

prS _  and b
drS _  are initially empty too, i.e., 

                                                                  { } SsrSsS b
p

b
pr

b
pr ⊆Θ≥∈= )(__                                                   (9) 

                                                                  { } SsrSsS b
d

b
dr

b
dr ⊆Θ≥∈= )(__                                                 (10) 

Assume that b
qnrS _  be the set of sellers with bad reputation on quality to buyer b; that is; b

qnrS _  contains the sellers 

that have served b with not expected quality of b and are known as non reputable sellers on quality by b. 

SS b
qnr ⊆_ and is initially empty, i.e., 

                                                                  { } SsrSsS b
q

b
qnr

b
qnr ⊆≤∈= θ)(__                                                (11) 

Also Let b
pnrS _  and b

dnrS _  be the set of sellers with bad reputation on price and delivery to buyer b, respectively. 

SSandS b
dnr

b
pnr ⊆)( __ , b

pnrS _  and b
dnrS _  are initially empty, i.e., 

                                                                  { } SsrSsS b
p

b
pnr

b
pnr ⊆≤∈= θ)(__                                               (12) 
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                                                                  { } SsrSsS b
d

b
dnr

b
dnr ⊆≤∈= θ)(__                                               (13) 

Let qw , pw  and dw  be the weight of values quality, price and delivery for buyer b so that 1=++ dpq www . 

We define the buyer b's general reputable threshold as follows: 
 
                                                                        b

dd
b
pp

b
qq

b www Θ+Θ+Θ=Θ **                                                    (14) 

while buyer b's general disreputable threshold is: 
                                                                       b

dd
b
pp

b
qq

b www θθθθ ++= **                                                          (15) 

 
In the same way, we calculate the general reputation of seller s as follows: 
 
                                                         )(*)(*)(*)( srwsrwsrwsr b

dd
b
pp

b
qq

b ++=                                       

(16) 
 
Let b

rS and b
drS be the sets of reputable and disreputable sellers to buyer b respectively, i.e., 

                                                                    { } SsrSsS bbb
r ⊆Θ≥∈= )(                                                    (17) 

And  
                                                                    { } SsrSsS bbb

nr ⊆≤∈= θ)( .                                                    (18) 

Which bΘ and bθ are general reputable threshold and general disreputable threshold respectively. Buyer b will 
focus his business on the reputable sellers and stays away from disreputable ones. 
Assume that each seller send its bid in triple  ),,( sss dpqbid  to buyer b. Then buyer b guesses the value of bids 
offered by each seller by using this function: 
 

                                                 
maxmaxmax

***),,,(
d
dw

p
pw

q
qwsdpqG s

d
s

p
s

qsss
b −−=                                  (19) 

Where maxq  is the maximum quality of good g in the market, maxp  is the maximum price for good with quality maxq   

and maxd  is the maximum time for seller s to deliver good g late. Then buyer b selects the seller ŝ  who belongs to 
the set of reputable sellers for buyer b whose bid value for buyer b is more than the other sellers', i.e., 
 

                                                                         
b
r

sss
b

Ss
sdpqGs

∈

= ),,,(maxargˆ
                                              (20) 

Where, arg is an operator such that )(arg sG b  returns s. In addition, if no sellers in b
rS  submit bids for delivering g 

(i.e., φ=b
rS  ), then buyer b has to choose a seller ŝ  among sellers who are not reputable nor disreputable: 

                                                                          
)(

),,,(maxargˆ
b
dr

b
r

sss
b

SSs
sdpqGs

∪∉

=
                                             (21) 

After paying seller ŝ  and receiving good g, buyer b examine the quality Qq∈  of good g. Assume that buyer b find 

the quality q̂  that has been delivered at d̂ . Let the expected quality, price and delivery for the buyer be bq , bp  and 

bd , respectively. Updating reputation on quality, price and delivery of seller ŝ  is illustrated in next parts respectively. 
In addition, with a probability ρ  buyer b chooses to explore (rather than exploit) the marketplace by randomly 

selecting a seller ŝ  from the set of all sellers. Initially, the value of ρ  should be set to 1, and then decreased over 
time to some fixed minimum value determined by the buyer. 
 
Updating Reputation on Quality: 
If bqq ≥ˆ  then the reputation of seller ŝ  on quality is updated using reinforcement learning as follows: 

                                                        
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<++
≥−+

=
0)())(1()(
0)())(1()(

)(
srifsrsr
srifsrsr

sr b
q

b
qq

b
q

b
q

b
qq

b
qb

q μ
μ

                                       (22) 

Where, qμ  is a positive factor called the cooperation factor. qμ is calculated as follows:                          
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>
−−

=
otherwise

q
qq

if
q

qq
q

b

q

b

q
min_

max

min_

max

ˆˆ
μ

μ
μ                                           (23) 

That is, seller ŝ  offers good g with a quality greater than or equal to the value that buyer b demanded for quality of 
good g and therefore the reputation of seller ŝ  on quality is increased by equation (22) accordingly. qmin_μ  is a 

positive factor called minimum cooperation factor for quality.  
If bqq <ˆ  then the reputation of seller ŝ  on quality is updated as follows: 

                                                           
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<++
≥−+

=
0)())(1()(
0)())(1()(

)(
srifsrsr
srifsrsr

sr b
q

b
qq

b
q

b
q

b
qq

b
qb

q ν
ν

                                    (24) 

 
Where, qν  is a negative factor called the non-cooperation factor. qν is calculated as follows: 

                                                                                         
max

ˆ
q

qq b
qq

−
= λν                                                                (25) 

 
In which, qλ )1( >qλ  is called the penalty factor so that qq μν >  to implement the traditional assumption that 

reputation should be difficult to build up, but easy to tear down.  
Updating Reputation on Price: 
1) If sb pp ≥  then the reputation of seller ŝ  on price is updated using reinforcement learning as follows: 
                             

                                                           
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<++
≥−+

=
0)())(1()(
0)())(1()(

)(
srifsrsr
srifsrsr

sr b
p

b
pp

b
p

b
p

b
pp

b
pb

p μ
μ

                                  (26) 

 
Where, pμ  is a positive factor called the cooperation factor. pμ is calculated as follows:                          

                                                               
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>
−−

=
otherwise

p
ppif

p
pp

p
sb

p

sb

p
min_

max

min_

max

μ

μ
μ                                     (27) 

 
That is, seller ŝ  offers good g with a price lower than or equal to the value that buyer b demanded for price of good 
g and therefore the reputation of seller ŝ  on price is increased by equation (26) accordingly. It implements this fact 
that buyer b expects to buy goods with low price, therefore sellers who offer goods with lower price than the other, 
set more reputation on price for themselves to buyer b and those sellers have positive reputation on price that their 
price is lower than expected price of buyer b. pmin_μ  is a positive factor called minimum cooperation factor for price.  

2) If sb pp <  then the reputation of seller ŝ  on price is updated as follows: 
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                                    (28) 

 
Where, pν  is a negative factor called the non-cooperation factor. pν  is calculated as follows: 

                                                                                      
maxp

pp sb
pp

−
= λν                                                               (29) 

In which, λ )1( >qλ  is called the penalty factor so that pp μν > . 

Updating Reputation on Delivery: 
If ddb

ˆ≥  then the reputation of seller ŝ  on delivery is updated using reinforcement learning as follows: 
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Where, dμ  is a positive factor called the cooperation factor. dμ is calculated as follows:      
                     

                                                                 
⎪
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⎪
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otherwise
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ˆˆ
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μ
μ                                        (31) 

That is, seller ŝ  offers good g with a delivery lower than or equal to the value that buyer b demanded for delivery of 
good g and therefore the reputation of seller ŝ  on delivery is increased by equation (30) accordingly. It means that 
sellers who deliver their product more quickly, set more reputation on delivery for themselves and those sellers have 
positive reputation on delivery that their delivery is lower than expected delivery of buyer b. dmin_μ  is a positive factor 

called minimum cooperation factor for delivery.  
If ddb

ˆ<  then the reputation of seller ŝ  on delivery is updated as follows: 

                                                         
⎭
⎬
⎫

⎩
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)(
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                                      (32) 

 
Where, dν  is a negative factor called the non-cooperation factor. dν  is calculated as follows: 
 

                                                                                       
max

ˆ

d
ddb

dd
−

= λν                                                                 (33) 

 
In which, dλ )1( >dλ  is called the penalty factor so that dd μν >  . 

2.4 An Example 

This subsection provides a numerical example illustrating the proposed algorithm for buyers and sellers, respectively. 

2.4.1 Buyer Situation 
Consider a simple buyer situation where a buyer b announces its need of some good g to all sellers which they have 
good g to sell (According to what discussed earlier in Figure 1, list of these sellers has been already retrieved from 
MAA.). Suppose that there are 5 sellers in the marketplace, i.e., 
 

{ }5..1== isS i
 

Furthermore, suppose that: 
1. A seller can produce goods at the maximum quality of 50. 
2. Maximum and delivery of goods are 60 and 20 respectively. 
3. In addition, some parameters are applied for buyers as follows: 
4. For all buyers, reputable thresholds for quality, price and delivery are equal to 0.5, 0.4, 0.4, while their 

corresponding disreputable thresholds are -0.8,   -0.5 and -0.5, respectively. 
Expected values for buyer b on quality, price and delivery are 40, 45 and 5, respectively while weights qw , pw  and 

dw  are 0.65, 0.25 and 0.1, respectively. 

If qq ≥ˆ , we define qmin_μ  in equation (23) equals to 0.05. Also we suppose 05.0min_min_ == dp μμ . 

If qq <ˆ , we get 5.1=qλ  in equation (25). We also define 
pλ  and dλ  equal to 1.5.  

Assume that after some interactions between buyer b and sellers, the reputation rating on quality )( i
b

q sr  for each 

seller by buyer are as follows (Table 1): 
 

is
 1s  2s  3s

 4s  5s
 

)( i
b

q sr
 

0.7 0.75 0.25 0.62 0.3 

 
Table 1: Reputation ratings on quality of different sellers to buyer b 
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Also the reputation ratings on price and delivery-time of different sellers to buyer b are shown in Table 2 and Table 3 
respectively. 
 

is
 1s  2s  3s

 4s  5s
 

)( i
b
p sr

 
0.3 0.35 0.4 0.1 0.32 

 
Table 2: Reputation ratings on price of different sellers to buyer b 

 
 

is
 1s  2s  3s

 4s  5s
 

)( i
b

d sr  0.3 0.5 0.3 0.65 0.7 

 
Table 3: Reputation ratings on delivery of different sellers to buyer b 

 
General reputation threshold and general reputation of sellers are computed based on (14) and (16) respectively. 
General reputation of each seller is shown in Table 4, 
 

465.04.0*1.04.0*25.05.0*65.0 =++=Θb
 

 

is
 1s  2s  3s

 4s  5s
 

)( i
b sr

 
0.56 0.625 0.2925 0.493 0.345 

 
Table 4: Reputation ratings on delivery of different sellers to buyer b 

 
So, sellers with general reputation equal or greater than 465.0=Θb , ( 465.0)( ≥i

b sr ) are reputable to buyer b, 

Hence sellers 1s , 2s  and 4s have the chance to be chosen by buyer b in current auction. Also set of reputable 
sellers updated by buyer b based on (17) as follows: 
 

{ } SsssS b
r ⊆= 421 ,,  

 
After b’s announcement of its request for good g to all sellers which they have good g to sell, the sellers bid with the 
following specification to deliver g to buyer b have been shown in Table 5. Let triplet bid(quality, price, delivery) be 
the structure of a bid's specification. 
 

 

is
 1s  2s  3s

 4s  5s
 

),,( dpqbid  (47,48.44,7) (46.2,54,5) (45.5,52,1) (48,50,3) (49,52,2) 

 
Table 5: Bid's offered by different sellers for good g to buyer b 

 
Now buyer b guesses the value of each bid offered by sellers based on equation (19). Results are shown in Table 6. 

 

is
 1s  2s  3s

 4s  5s
 

),,,( sdpqG
iii sss

b

 
0.37417 0.3506 0.36983 0.4007 0.4104 

 
Table 6: Bid's offered by different sellers for good g to buyer b 

 
Then buyer b selects the seller ŝ  who belongs to the set of reputable sellers for buyer b ({ }421 ,, sss ) whose bid 

value for buyer b is more than the other sellers' by equation (20). So b buys good g from 4s with guessed value 

4007.0),,,( 4444
=sdpqG sss

b  for its good by b. guessed value for good offered by 5s is 0.4104, but because 
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this seller has not served b well  in the past auctions and has been known as non reputable seller by b, therefore 
buyer b does not interact with seller 5s and selects 4s as winner of this auction and buys good g from 4s . 

Suppose that after paying, seller 4s deliver good g to b and b examines the quality of good g and finds 48ˆ =q that 

has been delivered at 4ˆ =d (seller 4s offered delivery time equal to d=3 and deliver its product one unit of delivery 

late ). Buyer b now updates the reputation of seller 4s on quality by equation (22) and (23) as follows: 

7192.062.0*
50

404862.0)( =
−

+=sr b
q  

Reputation on price and delivery is updated similarly as follows: 

0884.01.0*
60

50431.0)( =
−

+=sr b
p  

715.065.0*
20

3565.0)( =
−

+=sr b
d  

we see that reputation on price of seller 4s  updated with smaller value than before. It is because of this fact that 
maximum price expected of b is smaller than price of the good it has purchased. But high quality and good delivery 
of good g delivered by 4s  ratio to what b expected, increases the value of good g offered by 4s .  

Thus by providing good g with high value, seller 4s has improved its general reputation to buyer b and increases its 

chance to be selected again by buyer b in the next auctions and remain in set b
rS of reputable sellers to b. 

2.4.2 Seller Situation 
Consider how a seller in the above-said marketplace, behaves according to the proposed seller algorithms. In this 
example we investigate behavior of seller 4s  and 1s  in the marketplace. Assume these assumptions: 
We define the maximum percent of profit 2.0=κ . Therefore, according to equation (1) if a good costs 47, then the 
maximum price that seller s can dedicate is equal to 56.4. 
We assume reduction percent of price (rp) and discount variable (β) in equation (5) are equal to 0.015 and 0.05, 
respectively. 
Sellers increase cost and quality of goods in equation (7) with the inc  rate of 0.04. 
Increasing rate of delivery is 1=incd . 

Reputation of buyer b near seller 1s  and 4s  are 0.3 and 0.32 respectively. 

After that buyer b selected 4s as winner of auction, it sends its announcement to all sellers which they had sent bid 

to buyer b. Behaviors of sellers 1s  and 4s  after receiving this announcement are as follows: 

Seller 4s  calculates the achieved profit from this auction and updates the reputation of buyer b. The cost of 
production of good g is 48 and we have: 
Profit=50-48=2 
Then μ  is updated based on equation (3) as follows: 

2084.0
486.57

2
=

−
=μ  

 
And reputation of buyer b is updated by equation (2): 
 

461712.0)32.01(*2084.032.0)( =−+=br s  
 

So in the next auction, seller 4s  consider discount for buyer b based on new reputation of b as follows:  
 

49.66171250*0.32)-(0.461712*0.05-50 ==newp  
 

Therefore, new bid by seller 4s  to buyer b for good g is bid (48, 49.661712, and 3). 

Seller 1s  should alter its bid to increase the chance to be selected by buyer b in the next auction. Seller 

1s decreases the price of good g by equation (5): 
 

9868.4644.48*3.0*05.0)44.48*015.0(44.48 =−−=newp  
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As we said in seller algorithm, the price should be offered by a seller can not be smaller than cost of production of 
the good. Now )48),,(9868.46( 1 =<= bqgcp s

new , therefore seller 1s  does not propose the new price and try to 

alter the quality of good g. Seller 1s  produce good g with higher quality than before by equation (7) as follows: 
 

92.4948*)04.01(),,(1 =+=bqgcs  
 
It means that quality of new good g is 50.4; therefore maximum price for good g with quality 50.4 is calculated by 
equation (1) as follows: 

904.592.0*92.4992.49max =+=p  
 

Seller 1s  calculates the discount for buyer b by considering the reputation of b, i.e., 
 

89856.0904.59*3.0*05.0 ==discount  

So, price sp  that should be offered by seller 1s  is: 

00544.5989856.0904.59 =−=sp
 

Therefore, new bid by seller 1s  to buyer b for good g is bid (49.92, 59.00544, and 1). Seller 1s  start bid with 
maximum expected profit and delivery 1, and then if does not succeed to sell good g reduce price and increase 
delivery based on equation (5) and (6) respectively. 

3 Experimental Results 
We have implemented the proposed model with Aglets that are java based stationary and mobile agents built in the 
aglet environment. Our results show that when seller agent models the reputation of buyer agents and dedicates 
discount to those that are reputable, obtains greater satisfaction compare to the situation when he only alters the 
quality, price and delivery of his goods. Also buyer agents that follow proposed algorithms are more flexible in 
different conditions for selecting goods. We have tested our proposed model, both for buyer and seller agents, in 
extensive experimentation. In parts 3.1 and 3.2 the seller agents satisfaction and buyer agents satisfaction are 
presented. 

3.1 Seller Satisfaction 

In the test for evaluating seller algorithm, there are 25 seller and 20 buyer agents in our simulated marketplace. 
Assume that buyers arrange totally 2000 auctions. Let triplet g(quality, price, delivery) be the structure of a good's 
specification. All buyer agents use the proposed algorithm in this paper for buyer and seller agents which are divided 
into five groups:  

4. Group A consists of five sellers ,...,, 10 ss and 4s . These are dishonest sellers on quality who try to attract 
buyers with high quality goods and then cheat them with really low quality ones.  They offer g(48,50,and 2) 
and then deliver its good as g(38,50,and 2). 

5. Group B consists of five sellers ,...,, 65 ss and 9s . These are dishonest sellers on delivery who try to attract 
buyers by offering the best delivery along with suitable quality but then cheat them by delivering goods so 
late. They offer g(48,50,and 2) but deliver their good as g(48,50,and 13). 

6. Group C consists of five sellers ,...,, 1110 ss and 14s  that do not cheat buyers and use fixed bid for any buyer. 
They offer and deliver goods as g (40, 44, and 7). 

7. Group D consists of five sellers ,...,, 1615 ss and 19s  which alter quality, price and delivery of their goods but 
do not model the reputation of buyers. Moreover, they do not consider discount for buyers. They start their 
bids as g (38, 45.6, and 1) and then alter their offers based on buyers' requirements. 

8. Group E consists of five sellers ,...,, 2120 ss and 24s  that in addition to altering the quality, price and delivery 
of their goods, model the reputation of buyers and also consider discount for them based on their reputation. 
They start their bids as g(38,45.6,and 1) and then use the proposed algorithms to alter their bids. 

 
In addition, there are other parameters are considered for sellers: 
 

1. Quality is chosen equal to cost to support the common assumption that it costs more to produce high quality 
goods. That is, a good in quality of 38 costs just 38. 

2. We define the maximum percent of profit 2.0=κ . Therefore, according to equation (1) if a good costs 38, 
then the maximum price that seller s can dedicate is equal to 45.6. 
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3. We assume reduction percent of price (rp) and discount variable (β) in equation (4) are equal to 0.015 and 
0.05, respectively. 

4. Sellers increase cost and quality of goods in equation (5) with the inc  rate of 0.02. 
5. A seller can produce goods at the maximum quality of 50. 
 

All buyers use the buyer agents algorithm proposed in this paper and the parameters that are applied are as the 
following: 
 

1. For all buyers, reputable thresholds for quality, price and delivery are equal to 0.4, while their corresponding 
disreputable thresholds are -0.8,   -0.5 and -0.5, respectively. 

2. Expected values for buyer b on quality, price and delivery are 40, 43 and 8, respectively while weights qw , 

pw  and dw  are 0.65, 0.25 and 0.1, respectively. 

3. If qq ≥ˆ , we define qmin_μ  in equation (23) equals to 0.05. Also we suppose 05.0min_min_ == dp μμ . 

4. If qq <ˆ , we get 5.1=qλ  in equation (25). We also define pλ  and dλ  equal to 1.5. 

 
The results of this experiment confirm that sellers who exploit the proposed algorithms (i.e., group E), achieve better 
satisfaction than the other sellers. In addition, buyers learn to focus their business on sellers who have reached 
enough reputation and prevent to interact with disreputable ones.  Average and total number of sales made by each 
of these five groups of sellers is shown in Table 7.  
 

Group A B C D E 
Total # of sales 100 100 262 427 1111 

Average # of  sales 20 20 52.4 85.4 222.2

                
Table 7: Total and average number of sales made by five groups of seller agent 

 
Sellers of groups A and B are dishonest sellers that lie on quality and delivery, respectively. In real markets, it is 
expected that when buyers purchase from a seller who tries to cheat them, they will not deal with him for their future 
purchases. Table 7 confirms this matter so that each buyer purchases from dishonest sellers no more than once. 
There are 20 buyers in the market and each of them was cheated by a dishonest seller once. Therefore each 
dishonest seller can cheat each buyer one time and totally wins in 20 auctions. Buyers model the reputation of 
dishonest seller and consider the reputation for the seller lower than disreputable threshold, bθ , as described in 
equation 15. Actually buyers learn to stay away from disreputable sellers. 
 
Sellers of group C, offer goods in fixed quality, price and delivery. Although they may sell some of their goods in their 
first deals, but because of the existence of sellers of the other groups who alter their bids to offer goods in high 
quality, buyers will no longer purchase from sellers of this group, since they can not visit the buyers' requirements. 
Sellers of group D alter their bids based on buyer requirements and they achieve further sales in comparison to 
sellers of groups A, B and C.  
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Figure 3: Comparison of sales made by sellers s0, s5, s10, s15 and s20 with strategies 0 (Group A), 1 (Group B), 2 
(Group C), 3(Group D), and 4 (Group E), respectively. 

 
 
In real markets, sellers pay tribute to buyers in order to attract and keep them as their own customers for long time. 
Discount is one of the important factors that sellers can promote for their own reputable buyers. Sellers of group E, 
apply this marketing strategy to increase the number of their customers. The results shown in Table 7 confirm this 
hypothesis. Buyers gradually learn to purchase their required goods from sellers who offer goods in high quality and 
best delivery while dedicate discounts. In order to investigate the hypothesis mentioned above, in Figure 3 we show 
the number of sales made by sellers 0s  (from group A), 5s  (from group B), 10s  (from group C), 15s  (from group D) 

and 20s  (from group E) during 2000 auctions in market. Curves numbered 0 through 4 belong to groups A, B, C, D, 
and E, respectively.  
The results obtained from these five groups show the superiority of our presented model, so that sellers who exploit 
this model (group E), made sales in an average number equals to 222.2 while the other groups (A, B, C and D) did 
20, 20, 52.4 and 85.4, and the average profit of sellers who exploit the proposed model (group E) is equal to 588.2 
while the other groups (A, B, C and D) achieved the average profit 200, 180, 209.6 256.7, respectively. Figure 3 
shows that dishonest sellers 0s  and 5s , initially do have good sales in the market. However, number of sales of 

honest sellers 10s  and 15s  are smoothly increased over the time. In the long time, seller 20s  ultimately outdistances 
from the other sellers in the market. Because buyers have learned to buy from sellers who honestly offers goods in 
high quality in addition to discount dedication based on their reputation.  

3.2 Buyer Satisfaction 

In the test for validation buyer algorithm, there are 25 seller and 20 buyer agents in our simulated marketplace 
assuming that buyers arrange totally 2000 auctions. Seller agents are divided into five groups as described in part 
3.1. In this test we have simulated buyer agents into four groups: 

1. Group I consist of five buyers 410 ,...,, bbb : These buyers do not model the reputation of sellers, at all. 

2. Group II consists of five buyers 965 ,...,, bbb : These buyers just model the reputation of sellers on quality 
and avoid interacting with sellers which are not reputable on quality, but they may interact with sellers that 
lie on delivery-time or sellers who sell their goods so expensive. They do not model the reputation of sellers 
on delivery-time and price. 

3. Group III consists of five buyers 141110 ,...,, bbb : These buyers just model the reputation of sellers on 
delivery-time and avoid interacting with non-reputable sellers on delivery-time, but they may interact with 
sellers that lie on quality or sellers who sell their goods very expensive because they do not model the 
reputation of sellers on quality and price. 
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4. Group V consists of five buyers 191615 ,...,, bbb : These buyers model the reputation of buyers on quality 
and delivery-time and avoid interacting with non-reputable sellers on both delivery-time and quality. 

 
The other parameters for buyers and sellers are similar to the parameters considered in prior section.  
The results of this experiment show that buyers who apply the proposed algorithm (i.e., group V) achieve more 
satisfaction than the other buyers. Table 8 shows that each group of buyers has focused on which group of sellers 
for doing their trade.  
 

 
 

Group of Buyer/Seller A B C D E 

0b
(Group I) 51 40 2 2 5 

5b
(Group II) 5 78 5 4 8 

10b
(group III) 81 5 5 3 6 

15b
(Group V) 5 5 8 28 54 

 
Table 8: Number of purchases made from each groups of seller by buyers: 

0b (Group I), 5b (Group II), 10b (Group III) and 15b (Group V) 
 

Table 8 shows that the buyer following the proposed algorithm, 15b , makes more purchases  from sellers in group E 

but fewer purchases from the dishonest sellers, in comparison with the buyer not using a reputation mechanism 0b , 
and buyers who just model the reputation of sellers on quality and does not model the reputation of sellers on 
delivery-time 5b , and buyers that just model the reputation of sellers on delivery-time and does not model their 

reputation on quality 10b . We know that sellers of group E make best offers for buyers and are more honest in 
comparison with the other groups of sellers. So we expect that buyers focus their trades on sellers of group E and 
then D, in order to obtain more satisfaction. Table 8 shows that buyer 0b  makes 51% of its purchases from sellers of 
group A, which are dishonest on quality and 40% from sellers of group B that are dishonest on delivery-time. Also 

0b  makes just 2%, 2% and 5% of its purchases from groups C, D and E respectively. Purchases from group C, D, 
and E are done in random. Remember that buyer b with a probability ρ  chooses to explore (rather than exploit) the 

marketplace by randomly selecting a seller ŝ  from the set of all sellers as described in buyer algorithm. Other sellers 
of groups D and E alter their bids but in comparison with group A’s bid obtain less value because sellers of group A 
bid to buyer with very high quality and cheat buyers. So if buyer does not model the reputation of seller, it considers 
very high value for sellers’ bid and selects them as winner in auctions much more than once. Buyer 5b just models 
the reputation of sellers on quality and avoids interacting with disreputable sellers on quality. Table 8 shows that 
buyer 5b  makes 5% of its purchases from sellers of group A who are dishonest on quality, it means that 5b  by 
modeling the reputation of sellers on quality; learn to avoid interacting with sellers who lie about the quality of their 
goods. But 5b has made 78% of its purchases from group B. Sellers of group B attract buyers with high quality and 
very soon delivery-time but they deliver their goods so late. It is expectable that buyers do not interact with 
disreputable sellers but because 5b do not model the reputation of sellers on delivery-time, so he was cheated much 

more than once by sellers of group B. Behavior of 10b  is like the behavior of 5b , but 10b  just models the reputation 

of sellers on delivery-time. Table 8 shows that 10b  do 81% of its purchases from sellers of group A, because it does 
not model the reputation of sellers on quality and was cheated by sellers of group A who lie on quality of their goods.  
As we said before it is reasonable that buyers focus their trades on sellers of group E and then D, to achieve more 
satisfaction. 15b  models the reputation of sellers on quality and delivery-time and avoids interacting with disreputable 

sellers. 15b  has done 5% of its purchases with sellers of group A and 5% with group B. It means that 15b  evaluates 

the reputation of sellers and avoids interacting with disreputable ones at all. 15b  that applies the proposed algorithm 

for buyers presented in this paper has obtained more satisfaction in comparison with buyers 0b , 5b  and 10b . 15b  
learns to focus its trades on sellers who alter their bids and increase the quality of their goods(group D and E) and in 
long time learns to focus on sellers which in addition to altering bids and increasing the quality of  goods consider 



  

 

16 
 

Journal of Theoretical and Applied Electronic Commerce Research 
ISSN 0718–1876 Electronic Version 
VOL 2 / ISSUE 1 / APRIL 2007 / 1 - 17 
© 2007 Universidad de Talca - Chile 

This paper is Available online at 
www.jtaer.com 

An Electronic Marketplace Based on  
Reputation and Learning 

Omid Roozmand  
Mohammad Ali Nematbakhsh 
Ahmad Baraani 

discount for buyers(Group E). Sellers of Group E, as described before, model the reputation of buyers and then 
dedicate discount for them based on their reputation. So it is expectable that buyers make more trades with sellers of 
group E. 15b  which use the proposed buyer algorithm do 28% and 54% of its purchases with sellers of groups D and 

E, respectively and make totally 10% of its purchases with disreputable sellers. It is clear that 15b  obtains more 
satisfaction than the other groups of buyers in the market.  

4 Conclusion and Future Work 
In this paper we proposed a marketplace based on reputation and reinforcement learning algorithms for buying and 
selling agents. Selling agents learn to maximize their expected profits by adjusting product prices, delivery-time and 
altering the quality of their products and more important considering discount for reputable buyers based on their 
reputation. We showed that sellers who exploit the proposed algorithms obtain better satisfaction compared to the 
others. Buyers also learn to purchase from sellers who tribute them by dedicating discounts. We have investigated 
this fact that marketing and consumer relationship management are two important factors in business, so that sellers 
who obey this fact construct better reputation for themselves among buyers and get greater profit in comparison to 
the others. This model is very flexible to develop marketing purposes and modeling a real market completely. 
However, proposed model and algorithms can be improved so that both sellers and buyers who exploit the improved 
model can obtain best results as fast as possible. For example, if buyers share their knowledge in cooperation with 
each other, they will quickly know honest sellers who present best promotion and accordingly will stay away 
altogether from dishonest sellers. Therefore the profits of those buyers and sellers will quickly increase. On the other 
hand, seller can learn to offer suitable bid to the new buyers based on the similarity of their preferences compared to 
the preferences and trading behaviors of previous buyers who have already purchased goods or services from the 
seller. Our future research aims to provide a set of feasible learning algorithms together with a clear characterization 
of different situations under which a particular algorithm is preferable. Also for making the effective economic agents 
and desirable market environments it is attractive to model the reputation of buyers and sellers based fuzzy logic. 
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