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Abstract: Digital networks and E-commerce platforms have had a profound effect on people’s
personal, educational, and professional life all around the world. They offer space for advertising,
sales, and disseminating news and information, even if they are frequently used for social marketing,
interacting, and sharing thoughts among people. Currently, most E-commerce platforms utilize
digital network space for advertisement and an increasing trend of social commerce is visible in
all parts of the world. During the Post-COVID-19 pandemic, a rapid increase in digital media and
E-commerce usage was observed in all parts of the world for personal and professional aspects. The
increase in misinformation through these platforms is a major challenge that the current governments
face today as rumors and fake news creates severe detrimental implications in society. In this work,
we consider fake reviews and misinformation in online digital networks as a single disease, and
thereby, by considering the recent trends in online social media marketing, we formulate a pandemic
model for digital networks with a psychological state of human choice. The positivity and stability
of the model are mathematically tested and validated. Our analysis and simulation prove that the
system is stable and justifiable in the real-world digital environment. The generated pandemic model
can be applied to assess the social and emotional intelligence of communities and consumers who are
frequently exposed to misinformation and share fake news.

Keywords: digital networks; social media; social media marketing; e-commerce; fake news; misinfor-
mation; network epidemics

1. Introduction

E-commerce platforms and online social networks (OSNs) in-together had gained
popularity in the first decade of the 21st Century. Initially, during the first decade of the 21st
Century, OSNs were used to connect people across different parts of the world. However,
as information technology quickly proliferated, people started employing it in businesses as
well as for the dissemination of news and information. Several E-commerce platforms and
business organizations have expanded their territory to social networks to get more reach
and credibility in their domain [1]. Furthermore, news outlets and well-known people have
begun to create social media profiles to share news and ideas with the broader public. It
is anticipated that the rapid rise in the use of digital media will accelerate the spread of
information throughout the network and society. Recently, E-commerce platforms have
begun to utilize their space in social media platforms for promotional and advertisement
activities. Social media marketing gained popularity in several aspects during the COVID-
19 pandemic through influencers as people began to employ more time in front of digital
platforms and OSNs after the lockdown [2]. Since many users have started to doubt the
veracity and sincerity of the information and product reviews they come across, especially
after the pandemic, the rise in fake news and rumors poses a significant issue for online
social networks and e-commerce platforms.

Even before the advent of technology, people propagated misinformation throughout
society. However, rumors and fake news gained traction faster in the recent past when social
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networking websites began to play a big role in connecting individuals [3]. After the onset
of the COVID-19 pandemic, most educational and professional settings went online, which
increased social media usage among all categories of people. Studies have proved that
social networking sites have provided motivation and flexibility for students’ questioning
and responses, respectively [4]. Furthermore, when it comes to internet marketing, social
media marketing, trust, and brand perception have a big impact on consumers’ buying
intentions [5]. In today’s environment, many people spend hours in front of various social
networking websites on personal, professional, commercial, and educational grounds,
which has increased the traffic in social media. Studies advocate that social media stories
can potentially alter the outcome of an election and people’s attitudes toward a certain
political party [6]. Misinformation has been determined to have impacted elections in
several nations, including the United States, France, the United Kingdom, Germany, and
others. However, in the recent past, both the prevalence of fake news and public awareness
have increased. The spontaneous increase of general awareness related to fake news and
reviews is directly proportional to the quantity and popularity of general fact-checking
websites, which have grown in recent years [7].

Rumors and fake news through digital networks have impacted societies in several
ways. A study conducted among US citizens points out that the people who gather news
from social media platforms are less knowledgeable than those who collect information
from reputed television channels and printed newspapers. This suggests that people who
gather information mainly from social networks are more susceptible to fake news [8].
According to studies, the COVID-19 pandemic has greatly boosted digital platform uti-
lization, which was projected to lead to an increase in fake reviews, online abuse, and
rumor spreading in society [9]. The exponential growth in smartphone users with internet
connections has also resulted in several ways to access information. Especially in the
aftermath of a pandemic, we are confronted with a situation in which a massive amount
of data is generated and shared with people worldwide, affecting billions. The challenge
comes when we examine how much of this data is authentic [10], indicating the influence
of lockdown measures on disinformation propagation. Consumers’ shopping decisions via
social media and e-commerce platforms may be impacted by fake reviews. Additionally, it
has been discovered that bad evaluations affect consumers’ purchasing decisions. [11,12].

Several observations were advocated into why and how rumors propagate so swiftly
across various digital platforms. However, only a few or no studies were conducted to find
the association between social intelligence and rumors in the digital world. It was identified
that people with fewer connections are critical for rumors to propagate quickly [13]. In
most cases, rumors and misinformation generally lead to cyberbullying among adolescents.
In university settings, cyberbullying and rumors can adversely affect the reputation of a
student and may even negatively affect the reputation of the institution. This creates a
necessity among educational institutions to intervene and reduce cyberbullying among
students [14]. The reputation and trust of individuals and organizations can drastically be
affected by rumors and fake reviews. It is difficult to regain the reputation and trust once
lost through rumors propagated through OSNs [15]. The user-hostile behavior in social
media was investigated, which showcased that online users’ violent behaviors can lead to
cyberbullying. Anonymous users are more hostile than non-anonymous users, according
to this research [16]. The efficacy of various tactics for dealing with fake news on social
media was assessed by recruiting participants via M-Turk in the United States for the study.
Both “disputed” and “rated false tags” have been found to reduce trust in bogus news and
reviews [17]. However, Facebook had disabled the “disputed tag” feature in the recent
past. Moreover, even though youngsters can believe fake news, they may also take neces-
sary action if they understand that they have been exposed to misinformation on digital
platforms [18]. Another study demonstrates that some consumer groups can connect their
skepticism about media information to other contemporary trends like the advancement
of technology and artificial intelligence, the influence of celebrities as trendsetters, and
the necessity of validating the information received, demonstrating an ability to critically
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analyze their information sources [19]. On the other hand, an increased level of loneliness
has been observed among the victims who became continuous victims of cyberbullying
misinformation in social media [20]. The impact of rumors and fake news in OSMs (online
social media) created significance in developing mathematical models for studying rumor
propagation within the networks. The SI (Susceptible—Infected) model, SIS (Susceptible—
Infected—Susceptible) model, SIR (Susceptible—Infected—Recovered) model, and SEIS
(Susceptible—Exposed—Infected—Susceptible) model are the most common epidemic
models in the study. Unlike traditional disease-spreading epidemic models, in which a
person is likely to become sick after contact with another diseased person, social network
epidemics involve human choice, with individual choice playing a role in information dif-
fusion. However, though fake news has increased and poses challenges to users and digital
marketing in maintaining reputation and trust, the notable increase in awareness related to
rumors and fake news has started to make people think about whether the information
received is genuine. The quantity and popularity of general fact-checking websites have
grown in recent years, which must have been considered because many individuals increas-
ingly rely on these websites and media to verify whether the information, they obtain via
social media is accurate. [21]. The increase in awareness related to rumors and fake news
has started to make people think about whether the information received through digital
networks and E-commerce platforms is genuine or not. The impact of rumors and fake
news in OSNs created significance in developing mathematical models for studying rumor
propagation within the networks. The SI model, SIS model, SIR model, and SEIS model
are the most common epidemic models in the study. Unlike traditional disease-spreading
epidemic models, in which a person is likely to become sick after contact with another
diseased person, social network epidemics involve human choice, with individual choice
playing a role in information diffusion.

Considering the existing models, the primary objective of the work is to create a
pandemic model for digital networks, which includes social networks, e-commerce, com-
munication networks, and their applications by incorporating the human aspect of choice.
We consider fake news and reviews as a single disease, and the term pandemic is used since
the implications of fake news and reviews have spread worldwide, affecting millions of
users at a time. In the upcoming section, we discuss the related works and the existing mod-
els for social networks which can be used for evaluating fake news spread. We then explain
the proposed compartmental model and its mathematical definition in the materials and
methods section, followed by the basic properties of the model and the comparison with the
existing models, along with the simulation of the model under different transmission rates.

2. Related Works

The DK model, introduced by Daley and Kendall (1964), was the first compartmental
model of information dissemination. The entire population is divided into several compart-
ments in compartmental modeling based on how people react to seeing information with
their neighbor nodes [22]. A logistic regression model is a regression model in statistical
analysis in which the dependent variable is unambiguous [23]. Binary dependent variables
take only two values, “0” and “1”, and the results can be two values, such as pass/fail,
win/lose, etc. Multinomial logistic regression should be used when the dependent variable
contains more than two outcomes. These models have aided in the comprehension and
prediction of information diffusion across networks [24]. In most of the work related to
compartmental modeling, there are three major categories of users, which are referred to
as susceptible, infected, and recovered populations. The susceptible are the ones who are
likely to see a rumor post at any time. Infected are the ones who spread the rumor and
the Recovered population refers to the ones who have stopped spreading the rumor. The
classic epidemic model is based on three models—SI (Susceptible—Infected) model, the SIS
(Susceptible—Infected—Susceptible) model, and SIR (Susceptible—Infected—Recovered)
model [25].
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The SI model as seen in Figure 1, states that every susceptible node within the network
is likely to get infected. Recovery from the infection is not possible in any case. Mathemati-
cally, for time t, if S(t) is represented as the susceptible population and I(t) as the infected
population, the model can be defined as follows:

dX
dt

=
βSX

n
(1)

dS
dt

= − βSX
n

(2)
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Here; s
n is the probability of meeting a susceptible node at a random unit of time

and SX
n is the average number of susceptible nodes that the infected ones meet per unit of

time. Then, β SX
n is defined as the average population of susceptible nodes getting infected

from all the infected populations per unit of time. The SIR model as seen in Figure 2, is
a modification of the SI model with an addition of a Recovered state. The nodes which
are infected cannot be infected again or neither transmit the infection to other susceptible
nodes. Considering β as the infection rate, γ as the recovery state, s = S/n, and x = X/n;
the model can be defined as follows:

ds
dt

= −βsx (3)

dx
dt

= βsx− γx (4)

dr
dt

= γx (5)
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The SIS model as seen on Figure 3, similar to the SIR model, is an extension of the
SI model. Here, the infected node, instead of going to the recovered state, returns to the
susceptible node. Considering β as the infection rate and γ as the recovery rate, the model
can be defined as follows:

ds
dt

= γx− βsx (6)

dx
dt

= βsx− γx (7)
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An extension of both the SIS and SIR models is the SIRS model with an addition of the
Recovered state after the Infected state. By dividing the Infected state into Positive Infected
and Negative Infected states (P and N), the SPNR Model was subsequently suggested [26].
This is done by considering the sentiment of the rumors where a node spreading a rumor
with positive sentiment is termed as Positively Infected and a node spreading a rumor
with negative sentiment is termed as a Negatively Infected node. The SEIR (Susceptible—
Exposed—Infected—Recovered) model was proposed by adding an Exposed state after the
Susceptible state [27]. The RnSIR model as seen in Figure 4, was proposed by extending the
SIR model with an addition of the Restrained state in front of the Susceptible state. The
Restrained population refers to individuals who are dispassionate towards the rumors.
However, with time, the Restrained population tends to diminish [28].
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Later the SDIR (Ignorant—Doubter—Spreader—Stifler) model with a new Doubter
state was proposed where a doubter is unsure if a rumor is true but is not yet a spreader [29].
However, the model had not advocated the possibility of a stifler node returning to the
susceptible state. Following this, the SVIR (Susceptible—Verified—Infected—Recovered)
model for OSN was developed, adding the Verified/Authenticated user state, which
typically does not spread rumors [30]. It was believed that people in the system who
favored spreading incorrect information had been driven out. The recovered node here, in
contrast to past models, refers to individuals who do not believe the rumor. A novel IDSRI
rumor transmission model was later implemented in which the total population in the
network is divided into four categories: ignorant, discussants, spreaders, and removers [31].
A discussant is presumed to be aware of a rumor yet does nothing to disseminate it. They
are, however, inclined to participate in a discussion about the same subject. People who are
removers are those who know about rumors but do not disseminate them.

It can be observed that rumors and fake news on social media play a vital role in
today’s life. Fake news, false reviews, and rumors on digital platforms can impact the
professional and personal life of merchants as well as users. Nearly all defined fake news
with misleading and fabricated content tends to deceive and harm people [32]. Studies show
that a good number of students get exposed to fake news on social and is being deceived
by fabricated content [33]. This is highly likely to impact digital marketing as well as the
professional standards of societies. A notable increase in social media marketing occurred
during the post-COVID-19 pandemic. This is also expected to increase rumor dissemination
in digital networks and E-commerce platforms. Moreover, the current network epidemic
models for social media fail to consider the psychological aspect of human choice. In the
recent past, there has been a rise in public awareness of the need to comprehend, evaluate,
and combat fake news that is disseminated through OSNs [34]. However, the vast majority
of people are thought to disseminate false information, and many become victims. When
compared to the conventional network epidemic models, this needs to be taken seriously
because more people are deliberating before spreading a particular rumor that piques their
interest. Hence, it is highly relevant to create a mathematical pandemic for digital media by
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considering the recent trends in social media marketing and by providing importance to
the category of people who are “doubtful” whether a piece of information is genuine.

3. Materials and Methods

Considering all the rumors and fake news propagating through digital networks
as a single pathogen and by understanding the recent trends in social media marketing,
we propose the SEDIS (Susceptible—Exposed—Doubter—Infected—Susceptible) model,
which comprises four states. S(t) denotes the Susceptible population likely to be infected.
E(t) denotes the Exposed population, referring to the individuals who encountered the
rumor but had not started spreading the rumors yet. D(t) denotes doubters who are
doubtful about whether the information received is valid or not. They can either go back to
the susceptible state if they happen to understand that the information being received is
fake or can become infected if they receive the same piece of information from multiple
sources. While the Doubters will not propagate stories among themselves, they are quite
likely to get infected if they come across comparable rumors. They are also likely to move
back to the Susceptible state if they happen to understand that the information received is
untrustworthy. A major difference as opposed to the conventional epidemic models; we
developed the Doubter condition in response to society’s shifting psychological trends.
Given that newspapers, numerous television channels, and fact-checking websites have
recently waged an aggressive campaign to combat fake news and false reviews, there
is a high likelihood that a sizable portion of the general public will doubt whether the
information they receive is accurate. This creates a human choice to either accept the rumor
and share the information or reject the same. I(t) refer to the Infected population spreading
rumors and fake reviews within the network.

3.1. Discrete Compartment Model

Discrete Compartmental Models are commonly used to model the epidemic spread
of rumor propagation in OSNs. The mathematical equation defined in the next sections
describes the SEDIS model. Let α be the probability of transition from the Susceptible state
to the Exposed state; β1 and β2 be the transition from the Exposed state to the Doubter
state and the Infected state, respectively; and γ be the transition from the Doubter state
to the Infected state; and µ1, µ2, and µ3 be the transition to the Susceptible state from the
Exposed, Doubter, and Infected states, respectively; then the model can diagrammatically
be represented as seen in Figure 5.
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The Susceptible state at time t refers to the individuals who are not yet spreading any
misinformation nor have encountered any conflicting information at the specific time. They
are likely to enter the Exposed state at a probability α after coming in contact with a rumor
or fake news and reviews. “Exposed” refers to people who have witnessed the rumors
spread by other users or pages. A person who has been exposed has a chance of either
becoming an Infected or a Doubter, depending on their psychology. In the same way, an
Exposed person can ignore or reject a rumor and revert to the Susceptible state. A person
can enter the Doubter state if they are skeptical about the authenticity of the information;
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this is a state in which human choice is important. People in the Doubter state may partially
believe the news and may even discuss the veracity of the information with their contacts;
however, this does not put them in the Infected state because they are not deliberately
spreading the information to the public. The doubters refer to the people who are doubtful
about the truthfulness of the information. They may become infected at probability γ if
they start to spread the fake news or can even return to the Susceptible state at probability
µ2. Though there is no recovery stage, an Infected individual can return to the Susceptible
state at probability µ3.

3.2. Mathematical Definition

Let α be the likelihood of a susceptible node becoming exposed, and β1 and β2 be
the likelihood of an exposed node entering the Doubter and Infected states, respectively.
Assume that the chance of a Doubter node becoming infected is. Let µ1 represent the
likelihood of an exposed node returning to a susceptible state, µ2 represent the probability
of a Doubter node returning to the Susceptible state, and µ3 represent the probability of
an Infected node returning to the Susceptible state. Table 1 describes each parameters
of the proposed model. For the rate of the Susceptible population, the model can be
mathematically described as follows.

ds
dt

= µ3
IS
n

+ µ2
DS
n

+ µ1
ES
n
− α

SE
N

(8)

Here, S
n denotes the probability of meeting a susceptible node. µ3

IS
n , µ2

DS
n and µ1

IS
n

denotes the average number of infected people, doubter people, and exposed people,
respectively returning to the Susceptible state per unit time. If we consider s = S

n , = E
n ,

d = D
n and i = I

n the model for the susceptible population can further be simplified
as follows:

ds
dt

= µ3i + µ2d + µ1e− αs (9)

Similarly, the definitions for Exposed, Doubter, and Infected states are as follows:

de
dt

= αs− µ1e− β1e− β2e (10)

dd
dt

= β1e− γd− µ2d (11)

di
dt

= γd + β2e− µ3i (12)

Table 1. SEDIS Model Description.

Parameter Physical Interpretation

S Susceptible state—Individuals who are not affected by any rumor.
E
D
I
α

β1
β2
Υ
µ1
µ2
µ3

Exposed state—Individuals who are exposed to the rumor.
Doubter state—Individuals who are doubtful about the rumor’s authenticity.

Infected state—Spreaders who spread the rumor.
Transition probability from the Susceptible state to the Exposed state.

Transition probability from the Exposed state to the Doubter state.
Transition probability from the Exposed state to the Infected state.
Transition probability from the Doubter state to the Infected state.

Transition probability from the Exposed state to the Susceptible state.
Transition probability from the Doubter state to the Susceptible state.
Transition probability from the Infected state to the Susceptible state.
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4. Basic Properties of the Model
4.1. Positivity of the Solution

Since the model tracks the population for several classes, it must demonstrate that all
state variables are always nonnegative.

Theorem 1. Let Ω = {(s,e,d,i) ∈ R4: s(0) > 0, e(0) > 0, d(0) > 0, i(0) > 0}; then we can say that the
solution {(s(t), e(t), d(t), i(t)} of the system is positive for all t ≥ 0.

Proof of Theorem 1. We have:

ds
dt

= µ3i + µ2d + µ1e− αs

de
dt

= αs− µ1e− β1e− β2e

dd
dt

= β1e− γd− µ2d

di
dt

= γd + β2e− µ3i

Taking the first part:

ds
dt

= µ3i + µ2d + µ1e− αs⇒ ds
dt
≥ −αs⇒ ds

s
≥ (−α)dt

⇒
∫ ds

s
≥

∫
−(α)dt

⇒ s(t) ≥ s(0)e−at ≥ 0 (13)

Taking the second part:

de
dt

= αs− µ1e− β1e− β2e⇒ de
dt
≥ −(µ1 + β1 + β2)e⇒

de
e
≥ −(µ1 + β1 + β2)dt

⇒
∫ de

e
≥

∫
−(µ1 + β1 + β2)dt

⇒ e(t) ≥ e(0)e−(µ1+β1+β2)t ≥ 0 (14)

In the third part:

dd
dt

= β1e− (γ + µ2)d⇒
dd
dt
≥ −(γ + µ2)d⇒

dd
d
≥ −(γ + µ2)dt

⇒
∫ dd

d
≥

∫
−(γ + µ2)dt

⇒ d(t) ≥ d(0)e−(γ+µ2)t ≥ 0 (15)

Finally, from the fourth part:

di
dt

= γd + β2e− µ3i⇒ di
dt
≥ −µ3i⇒ di

i
≥ −(µ3)dt

⇒
∫ di

i
≥

∫
−(µ3)dt



J. Theor. Appl. Electron. Commer. Res. 2023, 18 1077

⇒ i(t) ≥ i(0)e−µ3t ≥ 0 (16)

Since all system parts give positive non-zero results, we can say that the system is always
non-negative for all state variables. �

4.2. Finding the Basic Preproductive Number (R0) for the Model

The basic reproduction number R0 is a key metric for describing rumor propagation in
online social networks. R0 can be estimated using the Next Generation Matrix [35]. In our
consideration, the infected states fall under E, D, and I. Let F be the rate of a new infection
and V be the rate of rumor transmission within the network. V shall transfer individuals
out of minus into the next compartment, i.e., V defines the transmission of rumors in the
social network.

F =

αS 0 0
0 0 0
0 0 0

 (17)

and

V =

(β1 + β2 + µ1) 0 0
−β1 (γ + µ2) 0
−β2 −γ µ3

 (18)

The basic reproduction number R0 is obtained from the dominant eigenvalue of FV−1 as

α

β1 + β2 + µ1
(19)

4.3. Stability of the Rumor-Free Equilibrium State

Theorem 2. When R0 ≤ 1; the rumor-free equilibrium P0 is globally asymptomatically stable.

Proof of Theorem 2. Using Lyapunov function L the global stability of rumor-free equilib-
rium can be defined as:

L = ωI

The derivative of the Lyapunov function concerning time t is:

.
L = ωI = ω(γd + β1e− µ3i)

≤ ω(µ3R0 − µ3)

≤ ω(µ3)(R0 − 1)i

If R0 ≤ 1 then
.
L ≤ 0 holds. Moreover,

.
L ≤ 0 if and only if I = 0. Therefore, the most

extensive invariant set in { (s, e, d, i) ∈ Γ) :
.
L ≤ 0} is the singleton set {P0}. Hence, global

stability {P0} follows from La Salle’s invariance principle [36] when R0 ≤ 1.
Thus, we can say that P0 is globally asymptomatically stable when R0 ≤ 1 for the

system. �

5. Comparison with Other Epidemic Models

The statistical analysis and comparison with other epidemic models were performed
using R language running in AMD Ryzen 5 processor with 8GB RAM. We hypothesized the
transmission rate for each state in all models as 0.25 without any intervention mechanism.
The population for the simulation was 450,000 nodes in total for 45 days. We first consider
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a stable system free of rumors by adding one infected source node. For the comparative
study, the basic SI model and the epidemic models with a return mechanism, i.e., the SIS
model and SEIS model, were considered.

Figure 6 displays the simulation outcome for the SI Model with a population size of
450,000 samples for 45 days. We can deduce from the figure that, within the network, the
Susceptible or uninfected population eventually decreases to zero. For OSNs with a high
population, this is less possible under several conditions which will be explained in the
next section.
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The graphical representation for the SIS and SEIS models for a population size of
450,000 people for 30 days with a transmission rate from one state to another of 0.25 is
shown in Figure 7a,b. The Susceptible and Infected states are seen to keep a constant value
after a certain amount of time for the SIS and SEIS models, with the SIS model having a
higher infected population than the SEIS model.
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Figures 8 and 9 show the plot of each state for the SEDIS model simulated under the
same conditions as the former models and a similar result compared to that of the SIS and
SEIS models can be observed. However, compared to the former models the infection rate
was comparatively less compared to the number of susceptible ones.
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For OSNs where the population can be several millions of users, it is practically
less possible to infect the majority of the population. This is mainly because people
tend to connect based on several factors which include demographic, economic, socio-
political, and cultural factors. Moreover, not all users will be active within the network
simultaneously. This creates communities and social groups with the network shaped
by the topic being discussed, the social structures of the members, and the information
driving the conversation [37]. Since the taste of the participants and communities varies it
is quite less probable to make the majority of the participants within the network infected
simultaneously. Table 2 shows the infected and susceptible populations at starting and
ending stages of analysis for each model under a population of 300,000 samples under
observation of 30 days. It can be observed that the susceptible population margins near
zero for the SI model with almost the entire population getting infected by the end of the
analysis. In digital media, this is essentially impossible if we treat all rumors and false
information as a single epidemic.

Table 2. The population at starting and ending stages of analysis for each network model.

Model Time t (Days) Susceptible Population Infected Population

SI Model
0 299,999 1

30 166 299,834

SIS Model
0 299,999 1

30 150,000 150,000

SEIS Model
0 299,999 1

30 100,003 99,998

SEDIS Model
0 299,999 1

30 150,000 75,000

We can observe that the susceptible population for the SI model falls to 166 from
299,999 at the end of the 30th day of observation. The number of Susceptible members
decreases as the number of infected individuals increases since there is no return-back in
the SI model. In the SI model, it is assumed that once a node becomes infected, it will
remain infected indefinitely. As the infection spreads within the network, the susceptible
population steadily declines until there are no longer any vulnerable individuals. However,
since the infected nodes revert to the Susceptible state after a given period, the Susceptible
population never reaches zero in the remaining models.

Our analysis and findings are justified by the real-world data as most people are
inactive in discussions through digital networks including in E-commerce platforms and
only a small percentage of OSN users participate in group discussions [38]. Studies also
reveal that most users on digital networks—including social networks like Facebook—
are inactive most of the time [39]. This means that even when a rumor or fake news is
disseminated through a network it is not mandatory that the majority of users would get
exposed to the same. The significant number of inactive users in social media also justifies
that the majority of users in digital networks would remain susceptible at the same time.

6. Discussion

We simulated the model under different equal transmission rates for a population
of 300,000 samples which provided similar results. The illustration was mentioned in
Figure 10. It was noted that the infection growth is quite faster for higher transmission
rates and slower for lower transmission rates. However, towards the end, we will have
an equal number of susceptible and infected populations with equal transmission rates.
This demonstrates that infection growth will be slower at lower transmission rates, and
the epidemic can be stopped (while considering a single rumor/review in social networks
and E-commerce platforms) from spreading by implementing the requisite intervention
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mechanisms. Similar to Figures 10 and 11 shows the model under varying transmission
rates which signifies the need for an intervention mechanism.
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Fake news in digital networks can tend to act as real news if false information is mixed
with genuine information (partially true and partially false information) [40]. In general,
several contents are reported under “fake news,” which include misreporting, polarized
content, false news, satire, etc. [41]. According to studies, individuals are more inclined
to follow fake news if it is spread alongside true news (see [40]). The return transmission
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cases would be lower than the forward transmission rates when the aforementioned mixed
news tends to increase in OSN. Similarly, if fake news and reviews are easily identified by
quickly reading the post or review, the forward transmission rate will likely be lower. Such
rumors are short-lived and are less likely to create an impact within the network. In such
cases, the exposed population would tend to be higher than that of infected numbers, as
only a few people are likely to spread the rumors compared to the ones who encounter the
rumors. Furthermore, studies show that fake news spreads more easily in stiffer regions
than less stiff areas [42,43]. This is visible in areas with a greater internet penetration index,
which increases the forward transmission rate.

Studies have indicated an increase in spam reviews after the COVID-19 pandemic. The
rise of people staying indoors is one factor for the increase in reviews on digital marketing
platforms [44]. Moreover, several fake news continues to be widely shared and consumed
across all digital networks. However, such fake news and reviews will reach their goal
only if it gets a wider audience and creates an impact within the society or community [45].
On the other hand, social media plays a vital role in connecting with online customers,
especially regarding online shopping and trade [46,47]. Since digital networks are equipped
with users who engage in corrective action, they are less likely to share fake news due to the
lack of time [48]. Further, as was already indicated, it was projected that a sizable portion
of users who have accounts in OSNs occasionally log off. Thus, we can conclude that
the entire population of the digital network cannot contract an infection simultaneously.
Moreover, the model does not consider fake and automated bot accounts, which often
spread malicious content on digital networks. This was done since, in the recent past
several social networking websites, including Facebook, have considered banning fake
accounts due to their increasingly malicious behavior [49]. It is anticipated that several
other well-known OSNs may soon adopt the same strategy.

7. Conclusions and Future Scope

In general science, epidemic, and pandemic models help us to understand the spread
of diseases and to plan control measures to prevent the spread. Social networks act as a
perfect platform where billions share news, feelings, and information. Apart from personal
usage, people tend to use different social networking platforms for both professional and
educational aspects. This makes social media a boundless space irrespective of demo-
graphic barriers, considering people of all ages. The epidemic model plays a vital role in
studying the diffusion of fake news and rumors within the network. While considering
fake news and rumors as a single disease in digital networks, it may be impossible for an
entire system to follow one single state at all times. In these situations, we might have to
think of a single rumor as an outbreak. In addition, the transmission rate is very likely to
vary depending on the kind of rumors circulated in OSNs and the E-commerce platforms,
the affected population, the psychology of those affected, demographic circumstances, time,
and area of interest. Hence, a stable transmission rate is practically impossible based on
these parameters. However, frequent, sustainable, and quick intervention mechanisms
by governments and concerned platforms which handle the OSNs and the E-commerce
websites can reduce the forward transmission rate, thereby limiting the impact of rumors
within the networks.

Our fundamental goal is to include human choice in a pandemic model for digital
networks. Fake news, including fake reviews on E-commerce platforms, might be regarded
as a pandemic in digital networks, affecting millions of people every day worldwide. The
SEDIS model explicitly addresses the human character of selection, and the mathematical
analysis validates the model in the real world.

Over time, a single rumor will likely lose its value, and its propagation within the
network gradually subsides. People may begin to gather new topics based on their interests
which may or may not be factual. This is where the SEDIS model is different from other
network epidemic models as we consider misinformation and rumors as a single disease
compared to other network epidemic models. Limitations of the study include the need
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for more testing of the model with real-world data, which is impractical as OSNs are filled
with over 2.5 billion people, and millions of posts are being uploaded daily. To compact
this limitation, we consider testing with real-world data in our future works by considering
a single rumor and deriving a new epidemic model based on a single source. Future goals
include developing a mathematical model for local groups based on the SEDIS model
and testing it with real-world data in constrained scenarios. This assists in analyzing
the spread of infections in many worldwide groups, enabling appropriate intervention in
every community by identifying the spread of fake news and reviews. Understanding the
propagation of false news and fraudulent reviews within a local cluster or community may
assist in identifying influencers, analyzing their properties, and implementing the required
intervention measures at the appropriate moment.
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