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Abstract: Although 3D models are today indispensable in various industries, the adequate pricing of
3D models traded on online platforms, i.e., virtual 3D assets, remains vague. This study identifies
relevant price determinants of virtual 3D assets through the analysis of a dataset containing the
characteristics of 135.384 3D models. Machine learning algorithms were applied to derive a virtual
3D asset price prediction tool based on the analysis results. The evaluation revealed that the random
forest regression model is the most promising model to predict virtual 3D asset prices. Furthermore,
the findings imply that the geometry and number of material files, as well as the quality of textures,
are the most relevant price determinants, whereas animations and file formats play a minor role.
However, the analysis also showed that the pricing behavior is still substantially influenced by the
subjective assessment of virtual 3D asset creators.

Keywords: 3D model; virtual asset; virtual product; virtual good; pricing; machine learning; feature
scoring; e-commerce; metaverse

1. Introduction

Digital 3D models are today indispensable in various industries. Manufacturers rely
on 3D models to develop and simulate their products [1], retailers allow customers to
configure product characteristics based on 3D visualizations [2], and game developers
require 3D models not only to build their virtual worlds, but to gain profits through their
purchase within these environments [3]. Technological trends such as augmented (AR) and
virtual reality (VR) and ambitions from firms such as Meta to create a virtual metaverse [4,5]
foster the importance of 3D models as vital building components, assets, and objects of
trade. Consequently, marketplaces have emerged which focus on the trade of virtual 3D
assets, i.e., 3D models that are not included in a virtual environment, and thus can be
adapted for various fields of application [6]. Examples for virtual 3D asset platforms are the
Unity Asset Store [7], which focuses on the trade of virtual 3D assets for the development
of games and AR/VR environments; Thingiverse [8], which provides access to millions
of 3D models to manufacture products based on 3D printing; and marketplaces such as
CGTrader [9], Turbosquid [10], or Sketchfab [11], which offer virtual 3D assets for a variety
of domains, e.g., e-commerce, architecture, or cultural heritage. However, whereas the
pricing, value, and consumption of 3D models in virtual environments, i.e., virtual goods,
has been extensively researched, studies considering the pricing determinants and value
of virtual 3D assets are sparse, as are pricing recommendations in practice. Although
some marketplaces provide basic pricing guidelines for 3D model creators, the information
compromises general suggestions on 3D model characteristics to be considered rather than
their specific relevance. In turn, creators and sellers of virtual 3D assets must set prices for
their virtual 3D assets based on their subjective assessments.

Hence, the objective of this study was to identify relevant price determinants for
virtual 3D assets and develop an IT artefact that considers these price determinants for
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virtual 3D asset price predictions. Therefore, this study relied on the design science research
(DSR) methodology, a dataset containing the meta-characteristics of 135.384 3D models from
the Sketchfab marketplace (the largest platform for virtual 3D assets [11]), and a machine
learning (ML) approach for the processing and analysis of 3D model characteristics.

To meet the research objectives, the paper is structured as follows. In the theoretical
background section (Section 2), the characteristics of 3D models and their respective types
are described, as well as the applied analysis approach, i.e., data mining and ML. Studies
on virtual 3D assets are sparse; therefore, the related research section (Section 3) contains
a summary of current approaches to identify and analyze price determinants based on
ML in other disciplines, e.g., accommodation, cryptocurrencies, or the stock market, to
derive an appropriate analysis framework for the study. The methodological approach is
illustrated in Section 4, whereas the implementation of the artefact is described in Section 5.
Finally, the results are evaluated and deployed in Section 6 and summarized in Section 7,
concluding with future research avenues.

2. Theoretical Background
2.1. 3D Models and Virtual 3D Assets

The basis of 3D models is their geometry, produced out of meshes or bodies, repre-
senting the shape of an object which is often complemented with textures, materials, and,
depending on the purpose, animations. The geometry represents the shape of a 3D model
(Figure 1a); however, textures and materials are commonly used to create and modify the
appearance of 3D models, to make the model more appealing or real, or to assign a meaning
to an object (e.g., a 3D model in the shape of a sphere can become a volleyball by assigning
the respective texture). Texture files (Figure 1b) are 2D images that “encompass” the 3D
shapes, commonly based on UV mapping [12]. Materials, however, are more complex
and include one or multiple texture files. In comparison with simple textures, materials
allow the creator of a 3D model to adjust settings such as reflection, opacity, or bumps
and wrinkles (Figure 1c) [13]. Hence, whereas textures represent the basic “skin” of a 3D
model and require a material to be attached to the model, materials allow these skins to
become more realistic. Today, the most advanced materials are physically based rendering
(PBR) materials, because they facilitate the simulation of multiple material characteristics
based on a complex mapping synthesis [14]. Apart from static characteristics, 3D models
can be animated. Animations of simple objects can be realized by translating or rotating
the object; however, more complex and 3D character animations, especially, require rig-
ging [15]. Rigging refers to the process of including a “skeleton” in 3D objects that enables
the animation of different parts within one 3D model (Figure 1d) [16]. Whether 3D models
contain this information beyond their shape depends on the respective 3D file format.
The STL format, for example, is the proprietary file format for 3D printing, and thus does
not include texture, material, or animation information because those are not of use in a
3D printing process [17]. In contrast, all of this information can be stored in the FBX file
format [18], a common format for media and game development. Hence, the characteristics
of 3D models correlate with their anticipated usage and type.

The most common concepts that describe specific types of 3D models in industry are
virtual products and virtual goods. Virtual products are 3D objects that represent actual
physical goods in form (and function), and are especially useful in the manufacturing
and retail domains. With the virtual representation of the actual product, different de-
sign variants of the product can be tested, virtual prototypes created, and real products
simulated, at a fraction of the costs of physical processes [1,19,20]. In addition, virtual
products have gained importance in the retail industry because 3D models allow for greater
informativeness, enjoyment, or willingness to purchase if the 3D models are either used
to allow the customers to configure their products based on their specific needs or to
visualize the products in the real environment via AR to prevent, amongst others, incorrect
purchase decisions [21,22]. In contrast, virtual goods represent usable and tradeable 3D
models within virtual worlds and game environments [23,24]. Many game developers
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today rely on the free-to-play business model; therefore, these virtual goods became one
of the main revenue sources in the gaming industry [3], with an estimated turnover of
about USD 190 billion in 2025 [25]. Due to their economic relevance, the value, pricing, and
consumption mechanisms of virtual goods has been extensively researched. The results
show that the value of virtual goods, and thus, their consumption, mainly derives from
their characteristics within a closed virtual environment. Due to the closed environment,
virtual goods can exhibit scarcity (albeit artificially created), the possession of multiple
copies of the same virtual good can increase consumer utility, interactions with virtual
goods can lead to higher purchase intentions, and the characteristics of the goods can
create social distinctions [23,24,26–32]. Thus, the objective of virtual goods is trade and the
generation of revenue through their purchase, while virtual products are a mean to an end
to facilitate the creation and distribution of physical products.
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Virtual 3D assets, however, are both the antecedent of virtual products and goods
and a necessity to create the environments in which virtual products and goods are used.
In comparison with both concepts, virtual 3D assets neither have a predefined purpose
nor are they already included in a virtual environment [6]. Hence, the value and pricing
mechanisms of virtual goods cannot be transferred to virtual 3D assets because the virtual
goods’ value depends on its specific virtual environment. Virtual 3D assets are not traded
in virtual environments, but on (real) online marketplaces, such as Sketchfab [11], to allow a
wide range of customers, e.g., game developers, retailers, or architects, to build their virtual
environments or use the virtual 3D asset as virtual goods, for example, by transferring and
binding the 3D models to a specific environment. In contrast to communities that provide
virtual 3D assets for free, e.g., Thingiverse (3D printing) [8], the offerings of virtual 3D
asset marketplaces vary from simple, untextured low-poly models (for free), to complex
3D environments, such as city and building models for more than USD 5.000. In general,
everyone can become a seller on the virtual 3D asset platforms by creating an account,
considering the three largest marketplaces: CGTrader, Sketchfab, and Turbosquid. The
marketplace providers receive a share of the selling price if virtual 3D assets are purchased.
The pricing of the virtual 3D assets thereby remains with the seller. Although some
marketplaces provide analytic tools to gather market insights (e.g., CGTrader [33]), the
guidelines for sellers to set appropriate prices for their assets remain vague.

The guidelines (Table 1) suggest that the sellers should neither price their 3D models
too high nor too low compared with similar 3D models so as to not undermine the store
economy or imply a low quality of the virtual 3D asset. If higher prices are set, the
description should allow the buyer to understand why the price is higher than for similar
models. Furthermore, the number of file formats should play a role in the pricing process,
as well as the quality of textures, or the optimization for games or AR/VR. According to the
platform provider guidelines, textures should be in png format; the inclusion of editable
file formats is advantageous, as are high-quality materials in form of PBR materials. In
terms of animation, the seller should include as much animations as possible since models
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with more animations sell better while the success heavily depend on the rigging of the
model. However, the platform providers do not state which of the criteria are most relevant
for potential customers and whether sellers actually consider these guidelines for their
pricing decisions. Hence, an ML-based data mining approach was applied in this study to
identify price determinants and allow the prediction virtual 3D asset prices.

Table 1. Pricing guidelines of the three dominant virtual 3D asset marketplaces.

Marketplace Criteria Pricing Guidelines

CGTrader
[34]

Value for Buyers “Consider the value your work brings to the buyer”.

Price
Range

“Make sure you don’t underprice your model. Buyers might see it as a sign
of poor quality”.

Compatibility
and Quality

“[ . . . ] make sure you provide a detailed description and preview
images that showcase what distinguishes your model from the rest. That
could be a large selection of file formats, high quality textures, optimization for

games or VR/AR, etc.”.

Sketchfab
[35]

Value for Buyers “Consider the value your work offers a potential customer”.

Price
Range

“You can browse the store for similar models to guide your pricing decision”.
“Be careful not to radically undercut the price of similar models on the store.

This ultimately hurts all sellers by undermining the store economy”.
“Low pricing can be interpreted by buyers as a sign of poor quality”.

“Similarly, be aware that asking for significantly more than similar models
from other contributors can lead to reduced sales”.

Compatibility
and Quality

“If you set a higher price than similar models from other sellers, use the
model description to explain what distinguishes your model and adds to its
value. For example, the inclusion of higher resolution textures or multiple

file formats would be an added benefit”.

Compatibility
“The more file formats you include, the more successful you will be”.

“The ideal texture format for textures is PNG. Buyers will also appreciate
the inclusion of Photoshop, Gimp, or similar editable layered files”.

Quality “A complete set of PBR textures (Albedo, Metallic, Roughness) and
normal maps are desirable to buyers for contemporary game engines”.

Animation

“Models with more animation states sell better”.
“The success of animated models is often very rig dependent. Be sure to use

our additional files feature to include rigged versions in popular
software formats”.

Turbosquid
[36]

Price
Range

“Setting your prices extremely low will not necessarily lead to better sales”.
“Make sure you are pricing your models to achieve maximum sales and
royalties. Look at comparable 3D models on the site to check their prices”.

Compatibility, Quality
and Animation

“Realism”
“File formats offered”

“Texture/material/rigging settings”

Complexity “Complexity”
“Poly count”

2.2. Data Mining and Machine Learning

Data mining describes the process of identifying correlations and patterns in data
to create insights that add to existing knowledge [37]. It is a well-established method in
e-commerce research to derive analysis results regarding, for example, product pricing, by
acquiring and examining datasets from online marketplaces and platforms; therefore, this
is an eligible approach for the explorative objectives of this study. To allow the extraction
of knowledge from a given set of raw data, data mining comprises (1) data preparation,
(2), data pre-processing, (3) data analysis, and (4) data interpretation [37,38].
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The (1) data preparation phase focus on the identification of the most appropriate data
sample for the data analysis process [39]. In this process, the nature of data is analyzed,
and the appropriate data sample is thereafter extracted from the context of examination,
e.g., online websites [40].

(2) Data pre-processing refers to all processes related to the cleaning, transformation,
and selection of eligible data for the data mining task [38,41]. First, data cleaning is a
vital step in data pre-processing because real world data can be unstructured and of a
heterogeneous and noisy nature. Incomplete or inaccurate data due to missing values
or outliers, for example, significantly impact the results of any subsequent steps in the
data analysis [42]. Hence, inaccurate data must be treated by filling missing data with
global constants or erasing outliers and gross errors [38,39]. Second, data transformation
is required because variables in the dataset can contain different data types and ranges
that affect the analysis process. In the data transformation step, data can be normalized
to adjust the data to a common data range or smoothed by discarding data based on
min/max ranges [38]. Third, a dataset can include redundant variables or variables which
are irrelevant for the prediction of the target variable. These variables can impact the
analysis process negatively because they do not provide additional useful information,
adding bias to the data, increase the dimensionality, or significantly decrease the prediction
performance of the analysis models for “unseen” data, i.e., overfitting [43–45]. Therefore,
irrelevant variables must be detected and excluded from the data sample.

Finally, the dataset is (3) analyzed and (4) interpreted. ML has emerged as a promising
alternative to common data analysis methods, especially when working with large data
samples. ML-based data mining can be divided into (a) the data preparation phase, i.e.,
data transformation, exploration, and feature engineering, (b) the modelling phase, i.e.,
training and test cycles, (c) the evaluation phase, i.e., performance measuring and model
selection for deployment, and (d) the deployment phase, i.e., the usage of the trained ML
model [46]. The (a) data preparation phase corresponds with the previously described
generic data pre-processing phases in data mining. The (b) modelling phase comprises
both the selection of appropriate ML algorithms as well as their training and performance
optimization [39]. The applied ML models range from supervised to unsupervised and
reinforcement learning [47]. It is difficult to predict the best performing ML algorithm
for a given dataset beforehand; therefore, it is common practice to apply and evaluate
different ML algorithms with varying parameters to identify an eligible model for the ML
process [46]. To (c) evaluate the model performance, several methods have been developed
and applied to ML models. Amongst others, a common approach for the evaluation process
is k-fold cross-validation, in combination with error metrics such as mean absolute error
(MAE), the mean squared error (MSE), root-mean squared error (RMSE), coefficient of
determination (R2), or adjusted coefficient of determination (aR2). K-fold cross-validation
is used to validate the performance of ML models in terms of their ability to predict new,
unseen data by splitting the training dataset into k subsets and applying the model k times
while selecting a new validation set in every iteration [48]. After every iteration, error
metrics or performance measures are calculated, which are used to evaluate the prediction
performance of a model. Finally, the ML process is completed by its (d) deployment through
the selection and exploitation of the best performing ML model [46], and conclusions for
the specific field of application can be drawn by interpreting the resulting data.

3. Related Studies

The literature on pricing and the identification of price determinants for virtual 3D
assets is sparse. However, previous work emphasizes approaches to examine price deter-
minants based on ML for other fields of application, ranging from accommodation [49–51]
and the stock market [52,53], to e-commerce [54,55], cryptocurrencies [56–58], and energy
prices [59]. Apart from dynamic pricing approaches based on reinforcement learning [60,61],
most publications have focused on the application of supervised learning algorithms to
identify price determinants. The procedures for the data analysis vary between the super-
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vised learning approaches, depending on the given dataset and the applied ML models
(Appendix A, Table A1).

First, the datasets are described and pre-processed by removing irrelevant features and
missing values and transforming the data into an appropriate format for the ML process,
such as by converting the data into a consistent file format or normalizing screwed data
based on log-transformation [49,52]. Second, preliminary analyses are applied to the dataset
to enable clustering of the data and the first insights into correlations between the predictors
and the target variable. Third, ML models are trained and tuned with the resulting dataset.
Therefore, authors rely on a variety of machine learning models, ranging from tree-based
approaches to support vector regression (SVR) and neuronal networks, whereas linear
regressions are often used as baselines for subsequent evaluations (Appendix A, Table A1).
Additionally, the models are evaluated by performance measures and feature importance
scores that enable ranking of the identified price determinants. For the evaluation, most
publications rely on k-fold cross-validation in combination with common error metrics,
e.g., (R)MSE, MAE, and R2. To gain insights into the most relevant price determinants,
feature importance, i.e., variable importance, methods can be applied to rank the variables
according to their relevance in the ML modelling process [50,52,53,62]. The findings in the
studies provide evidence that the approaches lead to promising results for both identifying
price determinants and predicting prices in the respective field of application. Hence, the
approaches in previous publications were adapted in this study for the identification of
relevant price determinants and the implementation of the virtual 3D asset price prediction
tool based on a DSR approach.

4. Methodology

This study followed the guidelines of the design science research (DSR) methodology
based on Hevner et al. [63] and Peffers et al. [64,65], relying on an explorative data analysis
based on the data mining approach. The DSR methodology is a problem-solving process
which allows researchers to acquire knowledge and understanding of a problem domain
and its solution through the creation and application of IT artefacts [63]. Peffers et al. [64,65]
developed a conceptual process for DSR in information systems based on theoretical
frameworks in design research studies. The design science research process (DSRP) consists
of six distinct activities, which are performed in sequential order, while detailing the
expected output of each step (Table 2). The DSRP is closely related to the seven DSR
guidelines of Hevner et al. [63], because it also stresses the importance of an adequate and
suitable problem statement, the construction of a viable solution, and the evaluation of
results regarding their usefulness as well as their communication.

Table 2. Design science research process (DSRP) based on Peffers et al. [64,65] and a description of
associated work in this study.

# Process Step Description

1 Problem identification and motivation

Three-dimensional models are widely used and gaining more
significance through current technology trends; however, pricing

determinants for virtual 3D assets are unknown and price predictions
are therefore not feasible.

2 Objective of a solution Identification of relevant price determinants and development of a
price prediction model for virtual 3D assets.

3 Design and development Dataset containing 135.384 3D model characteristics, univariate and
bivariate analysis, feature engineering, and ML modelling.

4 Demonstration Demonstration on the case of Sketchfab.

5 Evaluation Evaluation of price determinants based on bivariate analysis,
evaluation of ML models based on MAE, MSE, RMSE, R2, and aR2.

6 Communication Front-end application for virtual 3D asset price prediction.
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DSR requires a fundamental understanding of the research problem and the capability
to find potential solutions towards solving the problem to provide a valuable contribution.
The (1) problem identification and motivation as well as the (2) objectives of the solution,
i.e., the creation of an artefact for the identification of price determinants and the prediction
of virtual 3D asset pricing, are described in Sections 1–3. The (3) research design and devel-
opment is based on the considerations of related literature (Section 3) and constitutes the
technical framework for the implementation of the artefact. The implementation process
was divided into four subsequent steps premised on the guidelines for ML-based data min-
ing: (a) data preparation, (b) data pre-processing, (c) ML modelling, testing, and evaluation,
and (d) prediction tool development. In the (a) preparation phase, a dataset including
the characteristics of 135.384 3D models was crawled from the website Sketchfab based
on the open-source web-crawling framework Scrapy [66]. As discussed in the theoretical
background section, there are multiple online platforms trading virtual 3D assets. However,
very few marketplaces focus on virtual 3D assets in general without an anticipated field of
application and offer relevant metadata in the form of 3D model characteristics. Thereby,
the virtual 3D asset marketplace Sketchfab offers the most comprehensive set of metadata,
which can be utilized to predict 3D model prices. In addition, Sketchfab is the largest
platform for virtual 3D assets with more than three million 3D models published and
around three million registered users [11]. Subsequently, the (b) data are pre-processed
by data cleaning and transformation in the form of feature engineering to identify poten-
tial price determinants using the libraries Pandas [67], Numpy [68], Matplotlib [69], and
Seaborn [70]. The pre-processed data, including 118.358 3D models, provide the basis
for the (c) ML modelling and tuning process. For this process, we relied on the libraries
SciKit-Learn [71] and XGBOOST [72], as well as ML algorithms that are commonly used for
price determination and prediction (Appendix A, Table A1): regularized linear regression
(Lasso and Ridge regression), decision tree, random forest, extreme gradient boosting trees,
and support vector regression (Appendix B, Table A2).

To (4 and 5) demonstrate and evaluate the artefact, the ML models for the price
prediction task were trained, tuned, and evaluated based on the Sketchfab dataset. For
the evaluation, the common error and performance metrics MAE, MSE, RMSE, R2, and
aR2 were applied (Appendix B, Table A2). In addition, we relied on feature importance
scoring by embedded methods [43–45] and the mean decrease impurity (MDI) metric to
identify relevant price determinants. Lastly, the results were (6) communicated in form of a
(d) front-end application, based on the selection and application of the ML model with the
best performance.

5. Results

Aggregation and analysis of the data were conducted in three phases: the (Section 5.1) data
preparation phase, i.e., data extraction and selection, the (Section 5.2) data pre-processing,
i.e., data cleaning, exploratory data analysis, and feature selection and engineering, and
(Section 5.3) ML model training and performance optimization.

5.1. Data Preparation

Today, more than three million virtual 3D assets are available on Sketchfab, and
although most models are view only, over 500.000 models are downloadable for free, with
only a fraction available for purchase in the Sketchfab store [11]. This study focused on
price determinants and prediction, only the data of virtual 3D assets that refer to the latter
category were obtained. In addition, only data were considered that were relevant for the
research objective, i.e., characteristics regarding the geometry, appearance, animation, or
the compatibility of the 3D models. Hence, data such as customer reviews, categories, or
tags were neglected.

To obtain the data, the developer tools of the Firefox10 web browser were used to
analyze the 3D model listing and cursor referencing. Sketchfab lists up to 24 models on
each page (per default), whereas every page is loaded by an HTTP GET request to the host-
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server API, which includes the URL of the store along with the “sort-by” parameter and
the current (non-numeric) cursor value. The host server responds with a JSON response,
including up to 24 listings of the 3D models referenced under the current cursor value.
Furthermore, the JSON response contains a reference to the previous and next cursor
values, as well as the URLs of the previous and next pages. If the current page is the first
or the last page in the pagination, the reference to the next and previous cursor values, as
well as pages, is set to the null value. Hence, this URL can be used for parsing through
the pagination logic, until the last page is reached, and crawling all “uid” (unique ID)
values of the 3D models listed on the Sketchfab store. The JSON response contains all
relevant metadata of a particular 3D model and resulted in 135.384 entries representing the
characteristics of the 3D models. Although there is no information on the website about
the actual amount of purchasable virtual 3D assets, the described crawling process should
enable the extraction of all available 3D models on sale. In addition, the number of crawled
items deems adequate for the derivation of price determinants and prediction. The initial
dataset consists of 21 columns representing the features of the virtual 3D assets (Table 3).

Table 3. Virtual 3D asset characteristics data (Sketchfab store).

Feature Data Type Category Description

model_price float64 Currency Price of the 3D model in the Sketchfab store

3d_model_size float64 Geometry File size of the 3D model in Sketchfab format
face_count float64 Geometry Number of faces in 3D model

lines float64 Geometry Number of lines in 3D model
morph_geometries float64 Geometry Number of morph geometries in 3D model

polygons_count float64 Geometry Number of polygons in 3D model
points float64 Geometry Number of points in 3D model

quads_count float64 Geometry Number of quads in 3D model
total_triangles_count float64 Geometry Number of total triangles in 3D model

triangles_count float64 Geometry Number of triangles in 3D model
vertices_count float64 Geometry Number of vertices in 3D model

materials_count int64 Appearance Number of materials attached to the 3D model
pbr_type String Appearance Physical based rendering characteristics (material)

textures_count int64 Appearance Number of textures attached to the 3D model
total_texture_sizes int64 Appearance File size of textures attached to 3D model

uv_layers Boolean Appearance UV layers for texturing in 3D model
vertex_color Boolean Appearance Vertex colors in 3D Model

animations_count int64 Animation Number of animations attached to the 3D model
rigged_geometry Boolean Animation Rig or “skeleton” of the 3D Model for animation

scale_transformation Boolean Configuration Allows scale configuration of 3D model

file_format String (Array) Compatibility 3D model file format

5.2. Data Pre-Processing

The data pre-processing was conducted in three steps. First, the data were pre-
processed for the feature selection. Thereby, the features of the dataset were analyzed
individually based on a univariate data analysis to examine anomalies and outliers. In
a subsequent step, bivariate data analysis was conducted to identify interdependencies
between the target variable, i.e., the model price, and potential numeric predictor variables,
as well as the relationship between the predictor variables. Second, relevant features were
selected based on the analysis results. Third, the features were engineered based on feature
encoding, feature transformation, and scaling methods.

Before the analysis, the features were examined with regard to their missing values.
All features showed missing values. The feature pbr_type had the highest frequency of
missing values (88.192) due to the non-existent classification requirement of Sketchfab.
Three-dimensional models can have one of two PBR types (metalness and specular), or no
PBR type. Hence, all missing values in the category pbr_type were replaced with the string
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value “None”. The missing values in the remaining 20 features varied from 16 to 21 and
54, apart from the feature file_format (4.485). The remaining number of missing values was
low compared with the total size of the dataset; therefore, we assumed that their impact on
the data sample was insignificant [73]. Thus, the rows containing the missing values were
removed. After treating the null values, 130.862 samples remained in the dataset.

5.2.1. Univariate and Bivariate Data Analysis

In a first step, the features in the dataset were individually analyzed to gain an
understanding of the value distributions based on a univariate data analysis. Examining
the distribution of variables’ values is mandatory to adequately explore the data and
gained insights about possible anomalies and outliers that can negatively impact the
learning process [74].

In the numeric features (Table 4), it is apparent that the distribution of the target
variable model_price has a significant positive skewness, while most models have a price
beneath USD 1.000. A minimum price of USD 3,99 is determined by Sketchfab [35]. In
addition, the distribution has a leptokurtic kurtosis. This is not unexpected, because 75% of
the 3D model prices in the dataset are beneath USD 20, although the values range up to
a maximum of USD 5.500. In terms of the variables that describe the geometry of the 3D
models, the analysis showed that the minimum value for total_triangle_count is 0, which
implies that the 3D model does not contain a constructed 3D geometry. An examination
of the entries with total_triangle_count = 0 (127) revealed that the corresponding models
consisted of point clouds from 3D scans with points > 0. Apart from these 127 entries, only
6 models remained with points > 0. As for the distribution of model_price, the values of
total_triangles_count were significantly skewed right and leptokurtic. Similar significantly
leptokurtic and positively skewed distributions of values can be observed for all numeric
variables. As an example, the distribution of model_price is illustrated in Figure 2. In
the appearance-related variables, 2.160 3D models have a total_texture_size > 0, whereas
their textures_count is 0, which can be considered an anomaly because textures can only
have a size if texture files exist. Furthermore, in terms of explanatory value, the variable
total_texture_size is less conclusive because it expresses the aggregated size of the texture
files rather than providing information about the data size of single texture files, and
thereby, their quality. Therefore, we include the variable textures_mean_size, which depicts
the mean texture sizes in every 3D model (total_texture_size/textures_count).

Table 4. Numeric features and values.

# Numeric Feature Mean Std Min Max 25% 50% 75%

F1 model_price 20,06 39,03 3,99 5.500,00 5,00 10,00 20,00

F2 3d_model_size 2.168,80 5.632,85 0,06 201.928,43 60,07 268,84 1.510,93
F3 face_count 261.523,60 637.181,00 0,00 24.346.160,00 7.000,00 35.062,00 200.541,00
F4 lines 78,68 4.024,83 0,00 565.115,00 0,00 0,00 0,00
F5 morph_geometries 0,03 1,09 0,00 228,00 0,00 0,00 0,00
F6 polygons_count 165,59 2.016,96 0,00 164.428,00 0,00 0,00 0,00
F7 points 2.258,89 102.193,90 0,00 18.680.440,00 0,00 0,00 0,00
F8 quads_count 59.432,71 225.627,90 0,00 9.387.565,00 0,00 873,00 16.585,00
F9 total_triangles_count 261.523,20 637.183,70 0,00 24.346.160,00 7.000,00 35.056,00 200.541,00
F10 triangles_count 141.452,10 464.422,70 0,00 24.346.160,00 116,00 3.384,00 50.000,00
F11 vertices_count 142.457,40 357.146,80 0,00 12.529.260,00 3.805,00 18.804,00 108.254,00

F12 materials_count 5,07 9,02 1,00 100,00 1,00 2,00 5,00
F13 textures_count 6,48 11,97 0,00 443,00 1,00 4,00 6,00
F14 textures_mean_size 3.898,17 7.611,02 0,00 203.399,44 168,90 1.292,63 4.262,19
F15 total_texture_sizes 21.058,44 48.438,11 0,00 1.809.410,00 498,26 6.111,65 21.887,88

F16 animations_count 0,34 3,80 0,00 312,00 0,00 0,00 0,00

In the categorical features (Table 5), the analysis of the distribution revealed that over
one-third of the 3D models had a PBR type (32,48% “metalness”, 3,25% “specular”), 92,86%
had UV layers, 13,65% had vertex colors, 6,19% had a rigged geometry, and only 4,48% had
an option for scale transformation. To gather insights into the compatibility of 3D models,
the variable file_format was transformed before analysis of the variable file_format_score that
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represents the number of file formats that a single entry contains rather than the denotation
of every file format in the entry. Of the 3D models, 75,47% are only available in a single
file format, 15,02% have two file formats, 4,38% have five file formats, 2,64% have four
file formats, and 1,13% have three file formats. The remining entries (1,36%) provide their
models in 6 to 15 file formats.
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Figure 2. Histograms of model_price value distributions: (a) model_price value distribution;
(b) model_price value distribution after 0,99 quantile criterion; (c) model_price value distribution
after logarithmic transformation and normalization.

Table 5. Categorical features and values.

# Categorical Feature Values

C1 pbr_type none (84.099), metalness (42.506), specular (4.257)
C2 uv_layers true (121.518), false (9.344)
C3 vertex_color true (17.867), false (113.009)

C4 rigged_geometry true (8.096), false (122.766)

C5 scale_transformation true (5.862), false (125.000)

C6 file_format_score

1 file format (98.766), 2 file formats (19.649), 3 file
formats (1.484), 4 file formats (3.452), 5 file formats

(5.731), 6 file formats (1.307), 7 file formats (378),
8 file formats (26), 9 file formats (30), 10 file formats

(22), 11 file formats (7), 12 file formats (3), 13 file
formats (4), 14 file formats (2), and 15 file formats (1)

Based on the insights, anomalies and outliers could be removed from the dataset.
First, the 127 samples with total_triangles_count = 0 were dropped from the dataset, as was
the variable points and the remaining 6 entries with points > 0. Furthermore, the entries
that had a textures_count = 0 but a total_texture_size > 0 were excluded from the dataset
as anomalies (after the removal of the 133 point-related entries: 2.155). Second, the target
variable model_price was significantly skewed and with a leptokurtic kurtosis, as were the
distributions of all numeric features. Hence, to enable consistent prediction performance,
only values equal to or smaller than the 0.99 quantiles of these features were considered
for the subsequent analysis (for example, model_price: Figure 2). The 0.99 quantiles of
morph_geometries and lines are 0; therefore, these variables were excluded from the feature
set. The resulting dataset consisted of 118.358 entries.

In a second step, the relationships between the target variable, i.e., the model price, and
the remaining numeric and categorical predictor variables, as well as the relationships be-
tween the numeric variables and the categorical variables, were examined based on a bivari-
ate data analysis. Most numeric variables in the dataset were neither normally distributed
nor linear; therefore, a non-parametric correlation coefficient, the Kendall’s rank correlation
coefficient (enhancement of the Spearman’s rank correlation coefficient), was chosen for the
analysis of the numeric values. The coefficient measures the statistical dependence between
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the ranked values of variables instead of the raw data. Therefore, correlations between
non-linear variables could be described, as long as their relationship was monotonic in
nature (or followed a monotonic function) [75,76]. In addition, Kendall’s rank correlation
coefficient measured the strength of the ordinal association between two variables by cal-
culating a normalized score for the number of matching (concordant) rankings [75]. The
correlation matrix is illustrated in Table 6. The highest correlation values between the target
and numeric variables could be observed in the geometry-related features 3D_model_size
(0.27), face_counts (0.25), vertices_count (0.25), and total_triangles_count (0.25). In addition,
the results showed that total_triangles_count had a perfect correlation with face_count (1.00)
and significant positive correlations with vertices_count (0.97), 3D_model_size (0.86), trian-
gles_count (0.43), and quads_count (0.26). In the appearance-related features, material_count
was positively correlated with textures_count (0.17) and showed negative correlations with
textures_mean_size (−0.22) and total_texture_size (−0.08). The total_texture_size, however,
was highly correlated with the textures_count (0.49) and textures_mean_size (0.74), whereas
the textures_mean_size was positively correlated with textures_count (0.23).

Table 6. Kendall correlation matrix (numeric features).

# F1 F2 F3 F6 F8 F9 F10 F11 F12 F13 F14 F15 F16
F1 1.00
F2 0.27 1.00
F3 0.25 0.86 1.00
F6 0.09 0.07 0.05 1.00
F8 0.12 0.21 0.26 0.40 1.00
F9 0.25 0.86 1.00 0.05 0.26 1.00

F10 0.13 0.42 0.43 −0.10 −0.37 0.43 1.00
F11 0.25 0.87 0.97 0.06 0.26 0.97 0.42 1.00
F12 0.17 0.21 0.21 0.28 0.28 0.21 0.04 0.22 1.00
F13 0.01 −0.10 −0.11 0.02 0.08 −0.11 −0.12 −0.10 0.17 1.00
F14 −0.01 −0.04 −0.06 −0.09 −0.05 −0.06 −0.05 −0.06 −0.22 0.23 1.00
F15 0.01 −0.05 −0.07 −0.05 0.01 −0.07 −0.07 −0.07 −0.08 0.49 0.74 1.00
F16 0.07 −0.04 −0.08 0.04 0.04 −0.08 −0.04 −0.08 0.05 0.04 0.02 0.03 1.00

The relationship between the target variable model_price and the categorical variables
was examined based on the comparison of the target variable average with the values
of the categorical features (Figure 3). The mean was chosen as an adequate measure to
calculate the average of the model price, due to its robustness against imbalanced data.
The results implied that 3D models with vertex colors (vertex_color), rigged geometries
(rigged_geometries), and the option to scale the 3D model (scale_transformation) have a higher
mean model price than 3D model that do not provide these features. Regarding uv_layers,
the mean model price seemed to be approximately equal for both values. The variable
pbr_type had three values. Although the mean model prices of 3D models with the values
“None” and “metalness” were comparable, models with the PBR-type specular had a
noticeably higher mean value for model_price. Lastly, it was apparent that the mean model
price varied for the different values of file_format_score. While 3D models in up to eight
different file formats had a comparable mean model price, models in more than eight file
formats had a significantly higher mean model price. The results from the data analysis
served as the basis for the selection and engineering of relevant features for the ML models.

5.2.2. Feature Selection

The efficiency and performance of ML models depend on the quality and quantity of
the training features [77]. A dataset can include redundant features or features which are
irrelevant for the prediction of a response variable and can negatively impact the learning
process. Hence, eligible feature must be selected. The three common methods for feature
selection are filter, wrapper, and embedded methods [43,45]. Wrapper and embedded
methods are intra-learning approaches for feature selection, whereas filter methods can be
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used before the training and evaluation of an ML model. The two types of filter methods
include univariate and multivariate filter methods, as demonstrated in Section 5.2.1.

JTAER 2022, 17, FOR PEER REVIEW 12 
 

 

F13 0.01 −0.10 −0.11 0.02 0.08 −0.11 −0.12 −0.10 0.17 1.00    
F14 −0.01 −0.04 −0.06 −0.09 −0.05 −0.06 −0.05 −0.06 −0.22 0.23 1.00   
F15 0.01 −0.05 −0.07 −0.05 0.01 −0.07 −0.07 −0.07 −0.08 0.49 0.74 1.00  
F16 0.07 −0.04 −0.08 0.04 0.04 −0.08 −0.04 −0.08 0.05 0.04 0.02 0.03 1.00 

The relationship between the target variable model_price and the categorical variables 
was examined based on the comparison of the target variable average with the values of 
the categorical features (Figure 3). The mean was chosen as an adequate measure to cal-
culate the average of the model price, due to its robustness against imbalanced data. The 
results implied that 3D models with vertex colors (vertex_color), rigged geometries 
(rigged_geometries), and the option to scale the 3D model (scale_transformation) have a 
higher mean model price than 3D model that do not provide these features. Regarding 
uv_layers, the mean model price seemed to be approximately equal for both values. The 
variable pbr_type had three values. Although the mean model prices of 3D models with 
the values “None” and “metalness” were comparable, models with the PBR-type specular 
had a noticeably higher mean value for model_price. Lastly, it was apparent that the mean 
model price varied for the different values of file_format_score. While 3D models in up to 
eight different file formats had a comparable mean model price, models in more than eight 
file formats had a significantly higher mean model price. The results from the data analy-
sis served as the basis for the selection and engineering of relevant features for the ML 
models. 

 
Figure 3. Relationships between the target and categorical variables. 

5.2.2. Feature Selection 
The efficiency and performance of ML models depend on the quality and quantity of 

the training features [77]. A dataset can include redundant features or features which are 
irrelevant for the prediction of a response variable and can negatively impact the learning 
process. Hence, eligible feature must be selected. The three common methods for feature 
selection are filter, wrapper, and embedded methods [43,45]. Wrapper and embedded 

Figure 3. Relationships between the target and categorical variables.

Based on the analysis results, we did not define a correlation threshold for the cor-
relation between the numeric and the target variable model_price because most numeric
variables were significantly screwed and leptokurtic, as was the target variable. Hence,
linear correlations were less conclusive. However, the correlations between the numeric
variables allowed the exclusion of features. In terms of the geometric features, the variables
3D_model_size, triangles_count, face_count, polygons_count, and quads_count were redundant
because total_triangles_count essentially included all information represented in these fea-
tures and showed a strong correlation with the variables. Therefore, these features were
excluded from the feature set. In the appearance-related variables, textures_count and
total_texture_size showed a high correlation. This is not surprising because the aggregated
texture file size increased with the number of textures. Hence, total_texture_size was ex-
cluded as a feature. In the case of categorical features, only the feature uv_layer seemed to
not influence the price of virtual 3D assets; the average prices of 3D models did not show
differences between the inclusion and exclusion of UV layers. Hence, only the uv_layer
feature was excluded from the categorical features, whereas the others remained in the
feature set. The 10 selected features are illustrated in Table 7.

5.2.3. Feature Engineering

The performance of ML models depends on the quality of the input data; therefore,
feature engineering is mandatory for accurate results [45]. Feature engineering includes
discarding, feature encoding, and feature transformation and scaling methods. To build
a robust model and prevent overfitting, features with a high number of low-frequency
values must be avoided. This is a common problem with categorical features [45]. In
the dataset, none of the features required discarding. However, the categorical features
were not numeric. Therefore, it was difficult to compare the variables with numeric
features and calculate their relationship with a numeric target variable for regression
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algorithms [45]. Hence, the categorical features were encoded by assigning integer numbers
to the categorical values (Table 7).

Table 7. Selected numeric and categorical features for the ML process.

# Feature Category Encoding and Cut-Off Values

F1 model_price Currency Cut-off Value: 129

F9 total_triangles_count Geometry Cut-off Value: 2.717.542

F12 materials_count Appearance Cut-off Value: 46
C1 pbr_type Appearance Encoding: none = 0, metalness = 1, specular = 3
F13 textures_count Appearance Cut-off Value: 57
F14 textures_mean_sizes Appearance Cut-off Value: 36.782,56
C3 vertex_color Appearance Encoding: true = 1, false = 0

F15 animations_count Animation Cut-off Value: 7
C4 rigged_geometry Animation Encoding: true = 1, false = 0

C5 scale_transformation Configuration Encoding: true = 1, false = 0

C6 file_format_score Compatibility Encoding: 1 format = 1, 2 formats = 2, . . . , 15 formats = 15

Furthermore, because most of the numeric features in the dataset were significantly
skewed, a feature transformation was required to ensure normal distribution of the values
for the linear regression. To avoid negative values, a logarithmic + 1-transformation was
applied to the numeric features. Finally, the value range of the numeric features differed
significantly. Hence, normalization of the values was performed to ensure an efficient
learning process. Normalization does not affect the distribution of values; therefore, it
was applied after the application of the logarithmic transformation [45,74]. Through the
normalization process based on the MinMax-scaler [45], the values of all numeric features
were scaled in a fixed range of 0 to 1 (for example, model_price: Figure 2).

5.3. Model Training and Tuning

For model training, the dataset was split into a test (25% of the entries) and a training
dataset (75% of the entries). Models based on multiple linear regression (OLS), ridge
regression, and SVR require input data with transformed and scaled values; therefore, two
datasets were created, where one was only scaled, and one was logarithmically transformed
and scaled. Thus, the comparability of the models could not be ensured regarding all
performance metrics, because multiple linear regression, ridge regression, and SVR were
applied to a logarithmically transformed set of training data. Therefore, the input values for
calculating the metrices were re-transformed after the learning process with an exponential
function to ensure comparability of the evaluation results. Before the training of the ML
models, a 10-fold cross validation was applied to the training set for validation purpose
to facilitate the comparison of the ML model performances. Most of the ML models in
this study depended on hyperparameters that influence the quality of the learning process
and must be set before the initial learning process [78]. Therefore, a stepwise grid-search
approach was conducted to select the hyperparameters, whereby the optimal value for
only one hyperparameter at a time was searched. All other parameters were either set to a
default or a previously determined optimal value. The models were trained and tested with
the different parameters based on cross-validation. Thereby, only those hyperparameter
values which exhibited the lowest MAE in the cross-validation process were selected. The
results of the hyperparameter search are shown in Figure 4. The evaluation results are
illustrated in Table 8.

First, linear and regularized regression models were used to predict prices for vir-
tual 3D assets. The multiple linear regression model was validated using 10-fold cross-
validation. Furthermore, the regularized regression models, ridge regression and lasso
regression, were trained and evaluated. For the ridge regression, the alpha hyperparameter
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was tuned based on a grid-search with 10-fold cross-validation. The alpha parameter was
selected from a range of 1 to 200. It was apparent that the MAE gradually increased with
an increasing alpha value. Therefore, the lower boundary value of the predefined range
for alpha = 1 was selected and the model was evaluated with 10-fold cross-validation. As
for the ridge regression model, the alpha hyperparameter for the lasso regression was
tuned based on a grid-search with 10-fold cross-validation and the scoring measure MAE.
The alpha hyperparameter was selected from a range of 0,1 to 1. The MAE significantly
decreased after 0,5, with the lowest value at 1. In turn, alpha = 1 was selected. Subsequently,
the model was evaluated with 10-fold cross-validation.

Second, the regression tree models were trained and evaluated. The decision tree
was constructed based on its default parameters. Hence, the nodes of the decision tree
were expanded until all leaves contain fewer than two samples. The results from the
fivefold cross-validation for the decision tree regression are shown in Table 8. After the
decision tree regression, ensemble learning models, i.e., random forest regression and
extreme gradient boosting trees (XGBoost), were used for the regression task. Random
forest regression is based on the decision tree method and combines multiple decision
trees via bagging. Therefore, it was vital for the performance of the model to tune the
hyperparameter n_estimators, which determined the number of trees comprising the
forest. For this parameter tuning, grid-search and fivefold cross-validation were deployed,
and the n_estimators parameter was selected from a range of 50 to 350. With a growing
value of n_estimators, the MAE gradually decreased. Although there was a significant
improvement between 50 and 150, the improvement flattened beyond this value. However,
to ensure robust results, n_estimators = 350 was selected. The model was evaluated with
fivefold cross-validation. Unlike the random forest approach, the XGBoost method utilizes
boosting to create a model based on multiple decision trees and depends on a multitude of
hyperparameters, which are essential for the performance of the model. Amongst others,
these include the number of decision trees (n_estimators), the learning rate (learning_rate),
the regularization parameter (alpha), maximum depth of a tree (maximum_depth), and the
columns sampled by tree (colsample_bytree). The lowest MAE values could be identified
at n_estimators = 225 (range: 25–275), learning_rate = 0,2 (range: 0,1–1), alpha = 15 (range:
10–40), and maximum_depth = 15 (range: 5–30). In the case of colsample_bytree, the MAE
significantly decreased until 0.2; then, the improvement flattened beyond these values.
Hence, the value was set to colsample_bytree = 1 (range: 0,1–1). After the selection of the
hyperparameters, the model was trained and evaluated through threefold cross-validation.

Third, the SVR model was trained and evaluated. SVR is a non-linear supervised
learning approach for regression analysis that utilizes support vector machines (SVMs) for
deriving predictions. SVMs essentially map input data into a high-dimensional feature
space; thus, SVR is a computationally expensive approach [79]. Through principal com-
ponent analysis (PCA), the n-dimensional data were expressed by a smaller number of
linear combinations of the features. The aim of PCA is to reduce the dimensionality of the
data, while preserving variations. Therefore, PCA was applied to the training set [80]. PCA
requires the data to be normalized and standardized [45]; therefore, the logarithmically
transformed training set, which had been additionally scaled through MinMax-scaling, was
used. SVR could subsequently be applied to the training set with reduced dimensionality.
However, before the model could be trained, the hyperparameters needed to be selected.
For non-linear tasks, it is advisable to select the radial basis function (RBF) as the kernel
function. Furthermore, there were three relevant hyperparameters which optimized the
generalization of the model, and thus, the quality of the predictions: C (=0,7, range: 0,1–1),
gamma (=70, range: 10–70), and epsilon (=0,01, range: 0,01–0,1). These parameters were
tuned using grid-search and threefold cross-validation. Subsequently, the SVR model was
trained with the selected hyperparameters via threefold cross-validation (Table 8).
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Ridge Regression
Mean 10,640 443,999 21,068 0,146 0,144
Min 10,350 416,388 20,406 0,139 0,137
Max 10,946 471,101 21,705 0,150 0,148

Lasso Regression
Mean 11,892 375,045 19,363 0,278 0,276
Min 11,571 351,201 18,740 0,256 0,254
Max 12,206 398,541 19,963 0,293 0,291

Decision Tree Regression
Mean 10,010 347,412 18,637 0,331 0,331
Min 9,838 334,153 18,280 0,305 0,304
Max 10,256 364,986 19,105 0,362 0,362

Mean 8,085 190,706 13,808 0,633 0,633
Min 8,012 182,984 13,527 0,627 0,627Random Forest Regression
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Extreme Gradient Boosting Trees
Mean 8,150 195,784 13,991 0,623 0,623
Min 8,128 190,339 13,796 0,615 0,615
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Support Vector Regression
Mean 7,467 202,967 14,247 0,610 0,603
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6. Evaluation and Demonstration

The results from the training and tuning of the ML models were evaluated in detail
to select a final ML model and discuss relevant price determinants. The results were
demonstrated and deployed in form of a virtual 3D asset price prediction tool.

6.1. Model Performance

First, the linear regression models were trained and evaluated. The models performed
poorly, considering aR2 scores of 14,4% (multiple linear and ridge regression) and 27,6%
(lasso regression). The weak performance in multiple linear regression was expected
because the univariate and bivariate data analysis revealed that all numeric features were
significantly screwed and none of the features had a significant linear relationship with
the target variable model_price. Therefore, the multiple linear regression results were
considered as a baseline. Ridge regression is especially useful if a dataset has features
with undetected outliers, which significantly dilute the performance of the model, whereas
lasso can exclude unnecessary features. Therefore, the results of these regression models
provided information about the rigor of the outlier handling and feature selection. Both
showed weak scores; therefore, the results of the linear regression models are not influenced
by features with undetected outliers or irrelevant features. The tree-based models exhibited
the best performances. Decision tree regression scored comparably low with an aR2 of
33,1%, whereas random forest regression showed a significantly higher performance than
the single decision tree approach and any of the linear regression models (aR2: 63,3%). The
XGBoost model provided slightly weaker results than the random forest regression. The
mean score during cross-validation for aR2 was 62.3%, although the scores ranged between
61,5% and 63,0%. Lastly, the SVR showed significantly better results than the linear models
with a mean aR2 score of 60,3%. However, the performance resulted in slightly lower
scores compared with the random forest regression and XGBoost models. To conclude,
random forest regression model provided the best results for predicting the target variable
model_price.

6.2. Feature Scoring and Discussion

To gain insights to the relevance of the specific features, and, in turn, the price deter-
minants, the feature importance score (FIS) in the best performing model, random forest
regression, was evaluated based on embedded methods [43–45] and the mean decrease
impurity (MDI) metric (Figure 5).
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The scores suggested that the feature total_triangels_count had the highest impact on
the regression task, with an FIS of 41,76%. In turn, the geometric complexity of a virtual
3D asset was the most important price determinant identified in this study. Hence, virtual
3D asset creators consider the complexity of their geometry as the superior single price
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setting criterion. The geometry represented the essence of a 3D model; thus, this result
was expected.

However, the importance of the 3D models’ appearance was deemed to marginally
outreach the geometry-related features considering the feature categories (aggregated FIS
“Appearance” = 53,32%). The feature material_count (FIS = 29,39%) had the second high-
est score in the feature importance analysis, followed by the features textures_mean_size
(FIS = 15,32%) and textures_count (FIS = 6,39%). Thus, the number of materials was con-
sidered as more important than both the number of textures and their quality combined
(FIS = 21,71%). The features pbr_type (FIS = 1,08%) and vertex_colors (FIS = 1,14%), however,
scored comparatively low. Hence, the quantity of the materials, i.e., the number of materials
attached to a 3D model, is considered as more important than high-quality materials in the
form of PBR materials and vertex colors by the creators. In contrast, the quality of textures
in the form of textures_mean_size was deemed to be more important to the creators than the
quantity of textures (textures_count). The results were only partly in accordance with the
pricing recommendations of platform providers. The guidelines mention a high quality
of textures and the inclusion of PBR materials as important pricing indicators for buyers.
Whereas the former was in line with the results from the feature scoring, the latter was
not confirmed in the analysis, because creators seemed to only marginally consider PBR
materials in their pricing decisions. In addition, creators perceived the number of materials
and textures they created as relevant for their pricing decision. Both are not mentioned in
the pricing guidelines. However, it must be considered that high numbers of materials and
textures have a positive effect on the overall 3D model quality.

Apart from the geometry and appearance of 3D models, the animation-related vari-
ables (animations_count: FIS = 1,04%, rigged_geometries: 0,55%) scored relatively low in the
importance ranking (combined FIS “Animation” = 1,59%), although the pricing guidelines
suggest that more animations and appropriate rigged models have a positive impact on the
purchase decisions. Hence, the creators should reconsider the relevance of animations and
rigged geometries in their pricing decisions. The low scoring of animation-related features
is surprising because in addition to the recommendations in the pricing guidelines, the
rigging and animation of 3D models is a considerably labor-intensive process.

The last two variables concerned the compatibility and configurability of 3D models.
The former was represented as the variable file_format_score in the dataset, i.e., the number
of file formats in which the 3D model was offered. This feature was expected to have
a high influence on the pricing decisions because including multiple file formats was
described by the platform provider as a vital criterion for purchasers. However, the feature
file_format_score scores were also comparably low (FIS = 3,00%). Hence, although the
number of different file formats was deemed important for the buyers, creators evaluated
the relevance of the number of file formats to be significantly lower than the geometry,
the appearance, and just slightly higher than including animations and rigged geometries.
The reason might be that contemporary computer-aided design (CAD) software allows the
export of 3D models in a variety of formats. Hence, the inclusion of multiple file formats
is, in most cases, not associated with a high amount of additional work. Although this
might explain the low importance score, it is interesting that over 75% of the 3D models
only existed in one file format. Thus, although buyers seem to appreciate multiple file
formats, and the work intensity to export the model in different formats is comparability
low, creators neither consider the number of file formats as vital in their pricing decisions,
nor do they include multiple file formats to attract buyers. Finally, the option to configure
the 3D model, in this case, to scale the object in form of the variable scale_transformation,
seems to be irrelevant in the pricing decisions, considering an FIS of 0,33%.

6.3. Price Prediction Tool

Lastly, the results were utilized to implement a tool for virtual 3D asset price pre-
dictions. The feature analysis revealed that the feature scale_transformation seemed to be
irrelevant for the model and training process; therefore, the performance of the random
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forest regression model was evaluated again without this feature and compared with the
performance of the model containing the full feature set. The mean values of the perfor-
mance measures from cross-validation for both approaches provide evidence that the full
feature set only marginally outperformed the reduced feature set (Table 9).

Table 9. Performance of the random forest regression model with default/reduced feature subset.

Feature Set MAE MSE RMSE R2 aR2

Full Feature Set 8,085 190,706 13,808 0,633 0,633
Reduced Feature Set 8,097 191,305 13,830 0,632 0,632

The dimensionality of the data, and therefore, the complexity of the model, was
decreased using the reduced feature set; thus, the reduced feature set was preferred for
the training of the final model. Hence, based on the evaluation of the model performance
and feature scoring, the random forest regression model with the reduced feature set was
chosen for predicting virtual 3D asset prices and implemented in a web-based application
(Appendix C, Figure A1). The implementation was based on the web framework Flask [81]
and included (1) the selection and deployment of a prediction model previously stored
via pickle, (2) the selection of an appropriate HTML template for the user interface (UI),
which allows the user to fill in the attributes required for the prediction, and (3) backend
implementation which utilizes the provided input data and the ML model to appropriately
predict the price of the respective 3D model. When the user has specified and entered all
required information about the 3D model, the application predicts its price and states the
results to the user as pricing recommendation in the UI.

7. Conclusions and Implications

The objective of this study was to identify relevant price determinants for virtual 3D
assets and establish a model that utilizes these determinants for virtual 3D asset price
predictions based on a dataset containing the characteristics of 135.384 3D models from the
marketplace Sketchfab. To achieve these objectives, data mining and ML-based approaches
were deployed, and an exploratory data analysis conducted.

The univariate data analysis provided insights to the values of features and the tar-
get variable as well as missing values, data anomalies, and outliers that were excluded.
Subsequently, the relationships between the features, as well as those between the features
and the target variable, were examined through bivariate data analysis to select appro-
priate features for the ML process. Thereafter, the features in the selected sub-set were
engineered by encoding and transformation to prepare the features for training and tuning
of the ML models. Finally, the features were used to train, tune, and evaluate five ML
models. For validation purposes, k-fold cross-validation with common error metrices as
performance measures was employed. Four out of the five models depended on hyperpa-
rameters; therefore, a grid-search was applied to tune the hyperparameters for optimal
model performance.

The evaluation revealed that random forest regression is the best performing model
for predicting virtual 3D asset prices. To identify the most relevant price determinants
in the dataset, feature importance analysis based on the MDI metric was conducted. The
feature scoring revealed that the number of triangles, and thus, the geometric complexity
of 3D models, is the most important single criterion for model creators (FIS = 41,76%). This
result was expected because the geometry is the essence of every 3D model. However,
the characteristics regarding the appearance of the 3D model slightly outperformed the
geometric-related feature. The number of materials and textures, as well as the texture
quality and the inclusion of PBR materials and vertices colors, showed an FIS of 53,32%.
Interestingly, the inclusion of high-quality PBR materials seemed to not significantly influ-
ence the pricing decision (FIS = 1,08%), although the pricing guidelines of the marketplace
providers suggest that PBR materials are highly relevant for the buyers’ purchase decisions.
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Instead, the creators considered the number of included materials and textures as more im-
portant for their pricing decisions (combined FIS = 35,78%). Hence, 3D model creators may
reconsider their pricing decisions if they include PBR materials. The same applies for the
inclusion of rigged geometries and animations. Although the rigging and animation pro-
cess is considerably labor-intensive, the creation of rigged geometries and the embedding
of multiple animations received little attention in the creators’ pricing decision (combined
FIS = 1,59%). The buyers appreciate rigged geometries and animations according to the
pricing guidelines; thus, creators might reconsider their pricing for rigged and animated 3D
models. Lastly, the compatibility of 3D models, represented by the number of file formats
in which the 3D model is offered, is less important in the creator pricing decision than
expected with an FIS of 3,00%. This finding is remarkable in two aspects. On the one hand,
modern CAD software can easily export 3D models in a variety of file formats with little
effort. However, more than 75% of the 3D models were only offered in one single file format.
On the other hand, the pricing guidelines suggest that compatibility in form of different file
formats is of great importance to the buyers. Hence, the creators may consider offering their
3D models in more file formats, and adjust their prices accordingly. Finally, the results from
the implementation and evaluation were transferred to a virtual 3D asset price prediction
tool based on the random forest regression model which is accessible online (Appendix C,
Figure A1).

8. Limitations and Future Research

Although the random forest regression model was tuned to its best possible perfor-
mance and outperformed all other models, the mean accuracy—represented by the aR2

score—did not exceed 63%. This result is in line with other studies that have used ML to
identify price determinants, and may lie in the fact that the prices for virtual 3D assets are
set by the creators who, to some degree, assess their 3D models subjectively. In addition,
current pricing guidelines do not provide 3D model creators with information about which
3D model characteristics have the highest impact on the buyers’ purchase decisions. Hence,
3D model creators might consider the guidelines but weight the specific characteristics
based on their own opinion. Furthermore, this study was limited to the 3D models and
characteristics available in the Sketchfab store. For example, Sketchfab do not provide data
about the size of material files. Hence, the quality of materials could not be included as
a feature. However, the importance of the material quality could be indirectly assessed
by including the feature PBR type. In addition, research on virtual 3D asset markets, their
pricing, and value is sparse. Hence, the results in this study are based on an explorative
approach and the related literature in the domain of ML-based price determinant iden-
tification. Lastly, although the results of this study might provide sellers, buyers, and
platform providers with insights to the pricing behavior of 3D model creators and the
weighted importance of technical 3D model characteristics from the creators’ perspective,
no information can be derived about the relevant characteristics for buyers, despite the
information in the pricing guidelines on the marketplace providers. Hence, future research
should investigate the value of 3D models by examining the sales of 3D models regarding
their characteristics from the customer perspective. In addition, this study focused on the
technical attributes of 3D models. Hence, we know little about other criteria that might
influence the pricing and value of virtual 3D assets, such as the actual object represented by
the 3D model, its category, or user reviews and ratings. Thus, analyzing the non-technical
attributes of 3D models might constitute an interesting future research avenue.

Author Contributions: Conceptualization, J.J.K., U.H.S. and R.Z.; methodology, J.J.K. and U.H.S.;
software, J.J.K. and U.H.S.; validation, J.J.K. and U.H.S.; formal analysis, J.J.K. and U.H.S.; investiga-
tion, J.J.K. and U.H.S.; resources, J.J.K. and R.Z.; data curation, J.J.K. and U.H.S.; writing—original
draft preparation, J.J.K. and U.H.S.; writing—review and editing, J.J.K.; visualization, J.J.K.; supervi-
sion, R.Z.; project administration, J.J.K. and R.Z. All authors have read and agreed to the published
version of the manuscript.



J. Theor. Appl. Electron. Commer. Res. 2022, 17 943

Funding: We acknowledge support by the German Research Foundation and the Open Access
Publication Fund of TU Berlin.

Data Availability Statement: The data presented in this study are openly available in Zenodo at
https://doi.org/10.5281/zenodo.6514727.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Applied machine learning (ML) models and performance metrics in contemporary publi-
cations focusing on ML for price prediction/determinant identification.

Publication Application Applied Machine Learning Models Metrics

[82] Accommodation Logistic Regression, Decision Trees/Classification and
Regression Tree, K -Nearest Neighbors, Random Forest AUC-ROC

[49] Accommodation Linear Regression, Random Forest, XGBoost MSE, MAE, R2

[50] Accommodation
Linear Regression, Gradient Boosting Machines, Support

Vector Machines, Neural Networks, Classification and
Regression Trees, Random Forest

MAE, R2

[51] Accommodation Linear Regression, Support Vector Regression,
Random Forest (R)MSE, MAE, (a)R2

[56] Cryptocurrency
Logistic Regression, Random Forest, XGBoost, Quadratic

Discriminant Analysis, Support Vector Machine, Long
Short-Term Memory

Accuracy, Precision, Recall,
F1-score

[57] Cryptocurrency Linear Regression, Random Forest, Support
Vector Machines, Model Assembling MAE, RMSE, Theil’s U2

[59] Energy Gaussian Process Regression, Support Vector Machine,
Tree Regression MAE, RMSE, R2

[52] Stock Market

Linear Regression, Elastic Net (Lasso Regression, Ridge
Regression), Principal Component Regression, Partial Least

Squares, Random Forest, Gradient Boosted Regression
Tree, Neural Network, Support Vector Machines

DM test (MSFE), R2

[53] Stock Market

Linear Regression, Principal Components Regression,
Partial Least Squares, Elastic Net (Lasso Regression, Ridge

Regression), Generalize Linear Model, Random Forest,
Gradient Boosted Regression Tree, Neural Networks

DM test, R2

[62] Warehouse Rental Linear Regression, Regression Tree, Random Forest,
Gradient Boosting Regression Trees

correlation coefficient,
RMSE

AUC-ROC: Area under the ROC (receiver operating characteristic) curve; DM test: Diebold and Mariano test;
MAE: mean absolute error; (R)MSE: (Root) mean squared error; (a)R2: (adjusted) coefficient of determination.

Appendix B

Table A2. Description of regression and machine learning (ML) models applied in this study.

Model Description

Multiple
Linear

Regression

Statistical approach for modelling the linear relationship between a dependent variable and one or
more independent predictor variables for predicting the former.

Ordinary Least Square (OLS): Estimates the parameters or coefficients of the predictor function from
the input data, whereas the sign of each coefficient represents the direction of the linear relationship
between target and predictor variables. In the case of multiple independent variables: multiple linear

regression [83].

https://doi.org/10.5281/zenodo.6514727
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Table A2. Cont.

Model Description

Regularized
Linear

Regression

Regularization aims to simplify linear regression models through shrinking the coefficient estimates
for certain predictor variables by adding a penalty. This adds a bias to the coefficients and results in a

lower variance when predicting new data.
Ridge Regression: Modified version of the OLS method, aiming to put bias into the estimation of the

coefficients to minimize the variance of outcomes.
Lasso Regression: Eliminates irrelevant features by imposing a constraint on the model parameters that

cause regression coefficients for some variables to shrink towards zero. Given the technical issues
regarding concerns on prediction accuracy and interpretation of the OLS, the lasso technique had

been proposed to determine a small subset of predictors with the strongest influence from the group
of all predictors used [84].

Decision
Tree

Regression

Predictive ML models for continuous target variables and rule-based techniques that internalize the
problem domain including the features of a dataset and their values in a tree-based structure.

The features of a dataset are represented as nodes, whereas the observations are modelled as branches
of the decision tree. At each node, a rule-based decision on certain feature values is made before the

branch is split from the tree, most likely resulting in the best estimate for the target variable. The
metric used to find the best partitioning for regression tasks is variance reduction. This decision

process is repeated until a leaf node is reached that represents the value of the target variable [83,85].
Decision Tree Regression: Decision trees are easy to implement and—contrary to linear regression—do
not pose any special assumption to the dataset; therefore, they do not generalize well, and thus, are

prone to overfitting and noise in the dataset.

Random
Forest

Regression
and

Extreme
Gradient
Boosting

Trees
Regressor

Ensemble Learning: Ensemble learning is utilized to address issues in the decision tree regression.
Essentially, multiple decision tree models are combined through bootstrap aggregation or bagging to

create one robust ML model. Bagging: Multiple decision trees are trained, each using a random
subset of the training dataset. Hence, the target value is not derived from a single decision tree, but
rather an average of the predictions from the collection of trees. As a result, it decreases the variance

in the overall model, making the ensembled model significantly more robust than the individual
models [86]. Additionally, the handling of data becomes easier because the pre-processing of data is
less relevant, including the management of missing values [87]. These decision trees are trained on
random subsets of data and constitute a forest of decision trees; thus, these models are called random

forest [88].
Random Forest Regression: One of the most popular ML models currently used: a supervised ML

model which is basically derived from the decision tree model, the random forest model can perform
classification and regression tasks [89].

Gradient boosting is a tree- and rule-based, supervised ensemble learning approach. It utilizes
gradient descent to minimize a loss function and boosting to enhance the performance of weak

instances of the model by retraining them [72,90]. Boosting is an iterative process, which ascribes
higher weights to those instances of a model that have exhibited weak predictions, and thus, high

error rates. It retrains so-called weak learners sequentially, and thus, learns from previous mistakes,
instead of being trained on randomly selected subsets of the data. The error rates of these model

instances are used to calculate the gradient, the partial derivatives of the loss function [90].
Extreme Gradient Boosting Trees Regressor (XGBoost): Scalable algorithm which supports parallel and
distributed computing and enhances the performance of the model by identifying more accurate tree
models. It computes and utilizes the second-order gradients (or second partial derivatives of the loss
function), instead of using the standard loss function as an approximation for minimizing the error of

the prediction model. Furthermore, the model applies regularization, which improves its overall
generalization, and thus, efficiently prevents overfitting [72]. The chosen learning objective in this

study was regression with squared loss.

Support
Vector

Regression

Kernel-based method based on the work of Cortes and Vapnik [91]: Input data vector is mapped into
a high-dimensional feature space. The algorithm learns within this feature space, which is defined by
a kernel function. In addition to the standard linear function, there are several kernel functions, such

as the radial basis function (RBF) or polynomial function, which can be used for prediction tasks
based on non-linear data.

Utilizes Support Vector Machines (SVMs) for the regression task, and thus outputs a continuous value.
SVMs are extended by the introduction of a tolerance parameter band, which prevents the model

from overfitting, and a penalty parameter, which penalizes outliers that are outside of the confidence
interval of the kernel function [92].
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Table A3. Error and performance metrics for the machine learning model evaluation.

Model Description

MAE
Mean

Absolute
Error

Average magnitude of variation between the predicted and the observed values. Using only absolute
differences in the calculation, residuals with different signs do not cancel each other out. As this is a linear

metric, all residuals are weighted equally while calculating the average; hence, the MAE is robust
to outliers [93,94].

MSE
Mean

Squared
Error

The MAE calculates the average of the absolute differences between actual and predicted target values,
whereas the MSE averages the squared residuals. Despite its popularity, the MSE overestimates the error of a
model by squaring the differences between predicted and actually observed values. Therefore, any outliers

are penalized significantly [94,95].

RMSE
Root-Mean

Squared
Error

The square-root of the MSE measures the average difference between the predicted and observed values of
the target variable. The MSE lacks comparability with the predicted and actual target variable due to it

representing the average of the squared residuals. The RMSE mitigates this issue by applying the
square-root to the average of the squared residuals. It preserves the units of the target variable; thus, the

RMSE allows for improved interpretability. Unlike the MAE and similar to the MSE, the RMSE is sensitive to
outliers. Lower RMSE values indicate the better performance of a model [94].

R2

Coefficient
of Determination

The coefficient of determination is a performance metric for regression models which represent the squared
correlation between the predicted and observed target variable. In its essence, it describes the magnitude of
variation in the target variable values, which is explained by the predicted values of the latter. In multiple
regression models, R2 corresponds to the squared correlation between the observed outcome values and the
predicted values of the target variable [96,97]. The R2 is a scale-free metric with values ranging to 1, whereas

the performance of the underlying model is positively correlated to the value of R2. RMSE compares
predicted and actual values; however, it does not necessarily provide insights regarding the independent

performance of a model. Therefore, it is a more appropriate measure for comparing the errors between two
models. Unlike RMSE, the R2 metric can be used to infer the predictive accuracy of a model in percent [98].
However, a weakness of the R2 is that the scores improve with a growing number of predictor variables, thus
encouraging overfitting, whereas the model is not improving. A remedy for this issue is in its improvement,

the adjusted R2 (aR2) [99].

aR2

Adjusted
Coefficient of

Determination

The aR2 adjusts the R2 by increasing number of predictors on which the model is trained. Therefore, the
score only increases if the additionally added predictor variable is useful. Otherwise, it decreases. The aR2

therefore includes the number of observations (n) and the number of predictor (p) variables used
in a model [99].
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