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Abstract: The rapid rise of electronic commerce has entailed an increase in logistic complexity, with
last-mile logistics being the most critical element in deliveries. Since users prefer goods to be delivered
at home, one of the biggest challenges faced by e-commerce is to reduce the number of incidents that
occur in the delivery of goods to the homes of customers. In many cases, these deliveries cannot take
place because recipients are not at the agreed delivery point, leading to a decrease in the quality of
service and an increase in distribution costs. Furthermore, sometimes the delivery policies are not in
tune with the customers’ expectations. This work presents a new perspective of the last-mile logistics
in the context of multichannel retail, asking customers to provide several delivery locations (at home,
at work, at a familiar home, in a shop, in a locker, etc.) associated with different time windows. In
addition, the customer could state their preferences about these locations. This work formulates
the problem and develops different approaches to solve it. A benchmark is proposed to analyze the
performance and limitations. The results reveal that a distribution policy with several locations can
improve the efficiency of electronic commerce by reducing delivery costs. The findings of this study
have several implications for distribution companies.

Keywords: e-commerce; last-mile delivery; quality service; vehicle routing; optimization; priorities

1. Introduction

Electronic commerce has undergone a significant rise in recent years; the ease of inter-
net access, new businesses focused specifically on this sort of commerce, social network
development and, in essence, interconnectivity, are elements that have favored the develop-
ment of this business model [1]. Ease of shopping from anywhere and any device, and very
flexible delivery times that allow the reception of the product at home, are advantages that
have enabled the progress of this type of commerce [2].

The importance of electronic commerce has increased over time. According to Eurostat
data, the percentage of people who have shopped online among the total population has
risen from 6% in 2008 to 22% in 2019 (last available data). This trend continues to increase
as a consequence of the COVID-19 pandemic, with 47.2% of online customers not having
purchased in the previous year.

Several studies have analyzed the factors that influence customer satisfaction. The au-
thors of [3] analyzed each stage of the online customer experience (pre-purchase, purchase
and post-purchase), and identified several factors that are important for customer sat-
isfaction. They found that the delivery order fulfillment has a higher impact than the
pre-purchase stage. To deliver the products in time, quantity and quality are critical to
the development of e-commerce, because they are closely linked to customer satisfaction.
Therefore, the delivery of a product requires speed in the context of e-commerce. This
logistical aspect is crucial to the correct development of this business model. The authors
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of [4] analyzed the principal user motivations that represent a barrier to the development
of e-commerce, highlighting the efficiency related to the distribution.

These findings are supported by surveys developed by public agencies. Eurostat
reports that delivery time (62.9%) and the possibility of tracking the shipment (60.9%) are
the two most important among the factors influencing customer satisfaction, although free
shipping continues to be a determining factor in the purchase decision.

These surveys also show the most common problems that customers confront in their
online shopping experience. According to INE data [5], in Spain, in 2019, the problems
detected in the previous 12 months were delays in deliveries (5.2%), defects in products or
services delivered (3.4%), difficult complaints or the lack of a satisfactory response (2.3%),
and problems related to fraud (2.1%). At the European level, the problems are delays in
deliveries (19%), technical web failures (12%), defects in products or services delivered
(11%), and complaint management (6%). A study by the ONTSI [6] highlighted the same
problems, with the majority of instances belonging to the delivery process. In this study,
39.9% of the customers did not receive any product, and 36.9% suffered some delay.

Approximately 50.5% of customers consider an appropriate delivery time to be 3 days
from the purchase, and 8.2% reduce this time to 1 day. Dealers who offer products that are
similar in quality and price are looking for differentiation in the delivery process, be it more
flexible, more efficient, or cheaper. In fact, less than two-day delivery is almost standard
today, and companies are moving towards one-day or even same-day delivery [7].

Obviously, if these delivery criteria are not achieved, this will generate a negative
reaction from the customer [8]. In e-commerce, products could be returned even before
they are received. All of this leads to shipping and delivery logistics being considered
critical [3].

Since the time between the purchase and the delivery must be short, the delivery
performance is one of the key factors affecting e-commerce customer satisfaction [9–11].
Punctuality in deliveries is always mentioned as one of the main aspects of logistical perfor-
mance influencing e-commerce customer satisfaction [12,13], with delays often resulting in
redeliveries [14], decreases in perceived quality, and increased costs [15]. Any inefficiency in
the delivery service can be costly—both economically, and in terms of customer perception
of the service.

Last-mile delivery has emerged as the most critical transport activity [16]. Some
authors emphasize that the cost associated with last-mile delivery can represent up to 50%
of total logistical costs, making it very sensitive to any changes in delivery factors [17].
Several studies and surveys by private companies stress the high cost of a missed delivery.
The firm PCA Predict, by means of a survey of 300 retailers, indicated that 65% identify
missed or late delivery as a significant cost (54% of these retailers pay additional costs
for redelivery, and 38% offer the customer a discount as compensation).The company
Zetes, which specializes in the logistics sector, indicated in its 2020 report that up to 20% of
deliveries were failed in a study conducted in Japan, identifying the main cause (42%) as
being that customers did not know where the package was to be delivered.

All of these studies and the data shown therein emphasize the importance of successful
delivery for both the customer, who requires a product on a specific date and in the right
condition, and the retailer, who must optimize deliveries in terms of cost. We must also note
that in e-commerce the buyer can alter their decision throughout the delivery process, even
cancelling the purchase before it is delivered (if their expectations are not met). Therefore,
companies must respond appropriately to customers’ needs in order to improve the supply
chain [18,19].

The main strategies used today are home delivery and customer pick-up. Shared
delivery locations (lockers and shops), which favor omnichannel strategies, have recently
started to gain attention [20]. From a logistics operator’s point of view, the efficiency of
freight vehicle trips can be notably increased by delivering at pick-up points [21,22], but
home deliveries remain the most common logistical strategy following online shopping [13],
and this is the users’ preference [23,24]. The 2019 e-shopper barometer of the DPD group
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showed that 89% of customers prefer their delivery at home. A study carried out in
Brussels [24] reflected that 72.2% of the users using pick-up points had previously had a
failed delivery at home. Moreover, among users who chose the collection point as their first
choice, only 24.4% actually preferred it over other options. The main advantage that these
users point out is the flexibility of collection. The impact of B2C deliveries derived from
e-commerce purchases is not clear in terms of efficiency and sustainability, as they result in
significant increases in truck fleets and mileage but, in turn, contribute to eliminating many
shopping trips from the network [25–27].

The operation of home deliveries incorporates a high degree of complexity into the
management of last-mile fleets, and another factor mentioned in the preferences of the
customers is related to the flexibility and availability of delivery options [28,29]. Therefore,
delivery companies have begun to contemplate the possibility of giving the customer the
option to choose a preferred delivery slot, as a way to increase satisfaction [30]. The authors
of [31] noted the willingness to pay of certain socioeconomic population segments for this
time-based delivery service, stressing the fact that a company that offers this service lowers
the amount of consumer effort and, thus, achieves a competitive advantage. From the
point of view of fleet optimization, time-based deliveries can be managed with a VRPTW
(vehicle routing problem with time windows) approach, where customers are allocated
to time windows depending on their preferred slots. However, offering customers this
possibility increases the pressure on the carrier’s side, possibly resulting in higher peak
loads and subsequent costs, as most of the orders would probably have to be delivered in
the evening.

In contrast with this approach, and seeking to maintain service standards while
keeping costs under control, our proposal is to offer customers the option to suggest
different time slots to the carrier associated with different locations, with the compromise
that the order will be delivered at one of them, taking into account their preferences. The
customer can then, for instance, receive their delivery at home early in the morning, or at
work during the day, or at their relatives’ house in the evening. This would represent a
higher level of flexibility for the carrier to adjust operations, while leaving the perception
of delivery service quality undamaged. This new approach—deliveries based both on time
and location—requires the formulation of a new methodology, since the VRPTW model no
longer encompasses it; customers would be willing to receive their order during different
time windows, but each time window would correspond to a different location.

In order to develop the concept of fleet optimization under time and location restric-
tions with priority suggestions, we studied the related literature, as described in Section 2.
The mathematical model for the problem is formulated in the following Section 3. Given
its NP-hard nature, Section 4 is then devoted to the description of different heuristics
and metaheuristics that can be used to solve large instances, and which are applied to
different simulation batteries. Finally, Section 5 analyzes the results obtained, and Section 6
concludes the paper.

2. Related Literature

To the best of our knowledge, the first publication of the VRPTW with alternative
delivery locations for each customer was proposed by Moccia et al. [32], who implemented
an incremental tabu search. The most recent and complete surveys of VRP (vehicle routing
problem) applications and variants [33–35] do not mention the possibility of contemplating
different locations for the same customer. The authors of [36,37] covered the taxonomy of
VRP variants extensively, and their only reference to the location of customers was related
to the possibility of their placement either in nodes or in arcs. Other contributions have
devoted attention to shared delivery locations [38–42]. This is therefore a novel and current
problem that may also be generalizable to other VRPs [43].

The vehicle routing problem with roaming delivery locations is a specific variant of the
problem proposed in this work [44–48]. However, real applications of roaming deliveries
seem to be limited, because of both the necessity of revealing sensitive information and the
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requirement of trust in the carrier [49]. Other proposals are far from being able to see real
implementation, such as the use of mobile parcel lockers [50].

Nevertheless, these works do not take into account customer preferences. Customer
preferences and location selection are considered only in some works. The authors of [51]
present a generalized pickup and delivery problem with multiple time–location combina-
tions for service and declared preferences that are solved by means of an adaptive large
neighborhood search metaheuristic. The authors of [52] analyzed three possible preferences
of the customer: attended home delivery, shared delivery locations, or both. Moreover, the
customers receive monetary compensation if assigned to a shared delivery location. The
authors of [53] also considered different sizes of parcels and slots of the parcel lockers. The
authors of [43] developed a branch-price-and-cut algorithm to solve a vehicle routing prob-
lem, in which some deliveries can be shipped to alternative locations and customers may
prefer certain delivery options. A minimum service level regarding customer preferences
is required.

3. Problem Formulation

The problem is formulated on a graph G(N,A), where the set of nodes N contains all of
the different customer locations plus the depot, and A is the set of undirected arcs joining
all of the nodes in N pairwise. We denote by I the set of all customers, and by N’ the set
of customer locations, without including the depot. The customers have to be serviced
by a fleet K of identical vehicles, without taking into account capacity restrictions, as is
often the case in B2C e-commerce deliveries [54]. Each customer i ε I is associated with a
set of time windows Vi, with each time window vi ε Vi defined by an earliest and latest
arrival time (evj and lvj), and by a specific location on the graph corresponding to one of
the nodes in N’. The data used to formulate the problem also include dvivj , which is the
distance from the location of customer i during time window vi to the location of customer
j during time window vj, and A as a sufficiently large constant. The first set of variables
used in the formulation are xk

vivj
, which take a value of 1 if vehicle k ε K travels from

customer i (departing during time window vi for that customer) to customer j (arriving
during time window vj for that customer), and 0 otherwise. The other variable used is tj,
which corresponds to the arrival time at customer j. The mathematical formulation of the
problem is thus as follows:

Minimize ∑
k∈K

∑
vi∈Vi

∑
vj∈Vj

dvivj x
k
vivj

(1)

Subject to ∑
k∈K

∑
i∈I

∑
vi∈Vi

∑
vj∈Vj

xk
vivj

= 1 ∀j ∈ I (2)

∑
k∈K

∑
i∈I

∑
vi∈Vi

∑
vj∈Vj

xk
vivj

= 1 ∀i ∈ I (3)

∑
i∈I

∑
vi∈Vi

xk
vivj

= ∑
r∈I

∑
vr∈Vr

xk
vjvr∀j ∈ I, ∀vj ∈ Vj, ∀k ∈ K (4)

ti + dvivj ∑
k∈K

xk
vivj
≤ tj + A

(
1− ∑

k∈K
xk

vivj

)
∀i ∈ I, ∀vi ∈ Vi, ∀j ∈ I, ∀vj ∈ Vj (5)

evj −A

(
1− ∑

k∈K
∑
i∈I

∑
vi∈Vi

xk
vivj

)
≤ tj ≤ lvj − A

(
1− ∑

k∈K
∑
i∈I

∑
vi∈Vi

xk
vivj

)
, ∀j ∈ I, ∀vj ∈ Vj (6)

∑
j∈I

∑
vj∈Vj

xk
0vj

= 1 ∀k ∈ K (7)

∑
i∈I

∑
vi∈Vi

xk
vj0 = 1 ∀k ∈ K (8)
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xk
vivj
∈ 0, 1; tj ≥ 0

The constraints in Equations (2) and (3) guarantee that vehicles arrive at and depart
each of the customers, independently of their locations, during the established time win-
dows. The constraints in Equation (4) imply that vehicles must arrive at and leave each
node during the same time window. The constraints in Equation (5) ensure that the arrival
at customer j, visited later than customer i, cannot happen later than the arrival at cus-
tomer i. The constraints in Equation (6) set the limits of the arrival time at each customer
depending on the specified time windows. The constraints in Equations (7) and (8) force
all of the vehicles in the fleet to start and end their journeys at the depot, even though
the possibility exists to follow a direct loop arc that starts and ends at the depot with zero
cost for unused vehicles. Finally, the objective function minimizes the total length of the
routes. The routing problem thus defined is NP-hard, with its size (number of variables
and restrictions) being O(#N)2.

This formulation can be extended to problems of priorities, where customers state
their preferences among the possibilities of delivery, changing the objective function (1)
by (9). wvivj = αAcvivj + βBpvivj

is a consideration of cost cvivj and priorities pvivj , where α

and β, α + β = 1, represents the relative preference of the decision maker, and A and B are
scale constants.

Minimize ∑
k∈K

∑
vi∈Vi

∑
vj∈Vj

wvivj x
k
vivj

(9)

4. Solution Procedures

After decades of research on vehicle routing, there is still no general consensus with
respect to the ideal procedure to employ with the different variants of this NP-hard problem.
According to [55], the metaheuristic procedures showing the best performances for the
VRPTW are based on local search, neighborhood search, and evolutionary algorithms.
However, [56] claimed that the most successful metaheuristics are often overengineered,
powerful tools to address very specific problem characteristics. The author of [57] ob-
served a tradeoff between solution time and complexity between techniques based on
simulated annealing, genetic algorithms, and ant colony optimization. From a different
perspective, [58] presents a survey on metaheuristics for routing problems.

In the case of the vehicle routing problem with deliveries based on time and location,
we decided to test a number of techniques in order to compare their performance when
confronted with the main characteristics of the problem. Combinatorial methods working
on vehicle routing rely on the fact that if the distance between customers i and j is short,
then sending a vehicle through the arc (i,j) should be attractive in general for the overall
solution, and the question is where to insert those two customers in one of the routes. In
our case, however, the distance between customers i and j can switch from being very short
to very long, depending on the time of the day, and depending on the locations stated by
those two customers for their different time windows.

We implemented and compared six numerical techniques, including three ad hoc
heuristics, one ad hoc metaheuristic (evolutionary procedure), and two standard meta-
heuristics. Their main characteristics are described briefly in the following sections.

4.1. Ad Hoc Heuristics

Savings heuristic (SH): Initially, a route is formed to service every customer location
independently; that is, there exist as many routes as customer locations. Then, the best
merging operation is completed, as long as it is feasible, and according to a weighted sum
of distance reduction, waiting time between the two routes, and distance between the last
customer in the merged route and the depot. After two routes have been thus merged, all
of the other locations corresponding to the customers in the merged routes are eliminated.
The procedure is repeated until there are no more saving possibilities. Then, if there remain
customers with more than one location active, all are eliminated except for the best one.
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Insertion heuristic (IH): The procedure starts by opening a single empty route, and
then feasible customer locations are inserted into it according to a weighted sum of the
distance to the customer location, the distance between that customer location and the
depot, and the extra waiting time required. When a customer location is inserted into the
route, all of the other locations corresponding to that customer are eliminated from the list.
Then, when the route is full and there are no more feasible insertion possibilities, a new
route is initialized, and the process continues until all of the customers have been allocated
to a route.

Parallel insertion (PI): Similar to the previous heuristic, there is always an empty
route available other than the active one. Then, customer locations can be inserted into
either of them, depending on the evaluation of the insertion process.

4.2. Ad Hoc Metaheuristics

Evolutionary procedure (EP): Solutions in the population are coded using a data
structure containing the routes and the customer locations inserted in each of them. Each
generation conducts a tournament process where four individuals are selected, and the best
two are chosen as parents. Then, the best route in each parent (smallest distance/number of
customers ratio) replaces the worst route in the other one, and then the missing customers
are inserted in the best possible positions on all of the routes, taking into account their
different locations and time windows. With respect to mutation, it is applied to descendants
according to a fixed probability, and it randomly eliminates one-third of the customers in
the routes, and then assigns them one of their locations and the associated time window
randomly, and inserts them in the best possible position on all of the routes. The descendant
replaces another individual in the population, selected randomly from among the worst
10%. When the population’s average fitness is only 8% greater than the best individual’s,
the population is restarted except for the five best solutions. The algorithm stops after four
restarts, or when a maximum number of iterations is reached.

4.3. Standard Metaheuristics

Tabu search (TS): The neighborhood is formed by all of the possible insertions of each
customer into each route, under any of its possible time windows. The best solution in the
entire neighborhood is selected as the new solution in each iteration, unless it is included
in the tabu list. Only if the desired insertion is better than the absolute best is it selected,
even if it appears in the tabu list.

Simulated annealing (SA): The neighborhood criteria are the same that were used for
the TS procedure, only here a single neighbor is chosen. This neighbor is selected as the

new solution if rand[0, 1] ≤ e
f itnessold− f itnessnew

t .
After a certain number of neighbors have been tested, the cooling procedure reduces

the temperature t by 1%. The algorithm ends when the final temperature is reached, or
after a given number of iterations do not result in any improvements.

5. Results and Discussion

The proposed problem was tested by means of different batteries developed using the
Solomon VRPTW instance. These batteries help to test and compare the performance of
the above algorithms. We developed instances with random customer distribution, and
assuming that each customer has three time windows (and, thus, three different locations)
during the day. In each case, we kept the same depot, and then the first three customers
in Solomon’s instance corresponded to the three locations and time windows for the first
customer in our problem, the next three customers to the second, and so on, until reaching
a given number of customers. The fact that, when thus generating simulation batteries,
some scenarios may occur where the different time windows for a given customer may
overlap is irrelevant from a methodological point of view.

We then calibrated the heuristics and metaheuristics with the first scenario in each
battery, obtaining the following parameter values:
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1. SH: the weights of the distance to the depot, distance to the next customer location,
and waiting time were taken as 0.34, 0.14, and 0.52, respectively.

2. IH: in this case, the above weights were taken as 0.21, 0.49, and 0.30, respectively.
3. PI: the weights were chosen as 0.26, 0.49, and 0.25, respectively.
4. EP: maximum number of iterations equal to 50 times the total number of customer

locations; population size equal to 150 for 10 and 25 customers, and to 200 for 50 and
100 customers; probability of mutation equal to 15%.

5. TS: maximum number of iterations equal to 20 times the total number of customer
locations; residence time in the tabu list approximated by the total number of customer
locations divided by 7.

6. SA: initial temperature equal to 1000; final temperature equal to 1; number of neighbor
tests before cooling approximated by the total number of customer locations divided
by 7.

The experiment was run on an Intel® Core™ i5-4460 CPU @ 3.20 GHz processor.

5.1. Delivery Options vs. Only One Option

Table 1 shows a comparison between the best results of batteries with 25 customers
using the proposed approach of deliveries—VRPTWDO—where three location–times are
possible, and the classical approaches of deliveries in parcel companies. Regarding classical
approaches, two possibilities are considered: (a) only one localization–time possibility—
VRPTW—and (b) there do not exist time window constraints, and delivery must be per-
formed in a strict location—VRP. The results reveal that this new method improves the
quality of the service (offering more possibilities of deliveries to the customers) and can
result in cost savings. The best results are marked in bold type.

Table 1. Comparison with classical approaches of deliveries (25-customer problem).

Instance VRPTWDO VRPTW VRP

r25_3_1 349.26 567.58 317.26
r25_3_2 294.40 523.99 342.69
r25_3_3 267.77 436.43 340.07
r25_3_4 232.36 393.20 304.87
r25_3_5 310.91 493.10 347.42
r25_3_6 271.09 460.06 326.25
r25_3_7 260.37 404.27 348.73
r25_3_8 231.49 374.97 367.14
r25_3_9 272.37 428.79 358.40
r25_3_10 243.74 412.46 336.69
r25_3_11 241.77 397.84 318.76
r25_3_12 230.82 392.83 324.04

mean 267.19 440.46 336.03

5.2. Comparison of Solution Procedures

Table 2 shows the results obtained by the heuristic and metaheuristic procedures for
four simulation batteries (10, 25, 50, and 100 customers). The table shows only the fitness
values obtained. The best results obtained are marked in bold for each instance. Finally, the
instances of the battery of 10 customers were also solved using mathematical formulations
by means of the Gurobi solver for the sake of validation. Gurobi could not obtain solutions
for the scenarios with 25 or more customers. These results prove that the EP can achieve a
high performance in the resolution of the proposed problem. Table 2 shows that the EP
always provides the best results, replicating the optimal results in almost all of the smaller
problems, and outperforming the other algorithms in the larger ones.

More information is provided in the case of the evolutionary procedure and the
standard metaheuristics (Table 3). The EP, TS, and SA were run 50 times for each scenario,
and the table shows the average and best fitness values obtained, the standard deviation of
the results, and the average computation time in seconds.
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Table 2. Comparison of solution procedures.

Customers Instance Gurobi SH IH PI TS SA EP

10 r10_3_1 156.77 218.55 182.54 182.54 158.20 156.77 156.77
r10_3_2 129.01 170.72 193.66 241.75 129.01 129.01 129.01
r10_3_3 122.46 206.31 197.14 208.26 129.01 129.01 122.46
r10_3_4 113.72 151.51 181.42 175.79 133.47 113.72 113.72
r10_3_5 154.15 184.45 191.13 191.13 154.76 154.15 154.15
r10_3_6 129.01 155.48 230.56 201.63 129.01 129.01 129.01
r10_3_7 99.90 187.06 169.36 179.07 129.01 122.46 122.46
r10_3_8 113.72 151.51 148.29 175.79 128.34 113.72 113.72
r10_3_9 141.67 172.37 178.49 178.49 141.67 141.67 141.67

r10_3_10 121.87 206.18 199.99 199.99 129.56 123.32 121.87
r10_3_11 129.01 163.29 152.73 221.45 129.01 129.01 129.01
r10_3_12 114.28 151.51 188.42 170.23 114.28 114.28 114.28

25 r25_3_1 466.34 627.87 576.40 401.59 395.89 349.26
r25_3_2 494.06 550.33 453.79 336.32 342.97 294.40
r25_3_3 451.88 372.21 431.85 296.95 308.38 267.77
r25_3_4 409.21 349.75 357.18 253.32 255.09 232.36
r25_3_5 438.77 522.69 494.48 317.50 326.46 310.91
r25_3_6 390.57 380.89 366.43 306.73 319.54 271.09
r25_3_7 400.16 373.07 343.99 290.91 305.26 260.37
r25_3_8 382.33 382.65 351.15 233.86 251.57 231.49
r25_3_9 409.52 461.67 441.79 303.11 310.18 272.37

r25_3_10 399.46 421.96 448.25 268.57 276.74 243.74
r25_3_11 374.57 454.23 401.71 285.02 280.77 241.77
r25_3_12 400.73 420.28 375.77 227.98 229.34 230.82

50 r50_3_1 1297.38 1548.89 1707.91 1118.22 1141.15 987.70
r50_3_2 1216.53 1586.59 1405.93 1093.75 965.66 890.44
r50_3_3 1084.07 1088.47 1136.47 936.67 861.56 803.45
r50_3_4 955.23 981.75 958.16 870.22 722.52 749.97
r50_3_5 1290.79 1537.16 1544.38 1137.34 1039.29 944.77
r50_3_6 1063.07 1547.61 1311.73 1022.85 922.67 868.44
r50_3_7 1057.04 1238.69 1054.89 878.92 832.91 833.60
r50_3_8 901.20 987.49 1043.09 814.85 711.16 781.93
r50_3_9 1068.03 1538.13 1478.49 1036.22 974.39 838.68

r50_3_10 1174.49 1264.31 1272.67 949.90 905.58 837.46

100 r100_3_1 2849.88 4163.91 4116.51 2915.56 2705.07 2464.56
r100_3_2 3033.32 3850.26 3441.89 2611.55 2322.26 2288.27
r100_3_3 2488.50 2804.90 2381.78 2266.40 2026.82 2096.77
r100_3_4 2222.10 2051.82 2128.04 2010.68 1798.69 2048.31
r100_3_5 3018.96 4146.17 4014.05 2989.49 2611.47 2513.44
r100_3_6 2894.37 3449.80 3166.35 2536.25 2152.14 2208.82
r100_3_7 2376.72 2467.02 2445.43 2326.58 1987.55 2050.95
r100_3_8 2096.30 2051.91 1863.85 1967.73 1769.55 2017.25
r100_3_9 2931.43 3816.00 3572.80 2766.03 2483.00 2437.38

r100_3_10 2672.54 3323.05 3400.73 2541.36 2230.80 2210.17

With respect to the other ad hoc heuristics, they are much faster, with SH providing
slightly better results—particularly for larger problem instances—although their compari-
son with the Gurobi results for the smaller instances and with the EP results for the larger
ones show how far they remain from the best solutions found. In the case of the stan-
dard metaheuristics, on the other hand, the TS seems to result in a worse performance
pattern; the SA shows a peculiar behavior, also reaching the optimum in most of the smaller
instances, losing pace in the scenarios with 25 and 50 customers, and then almost outper-
forming the EP in the larger scenarios with 100 customers. In any case, the computational
times required by the EP (around 6.5 min for the larger scenarios with 100 customers and
300 customer locations) are notably more reduced than those needed by the two standard
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metaheuristics, and are acceptable for industrial applications. The results provided by
the EP are also more robust by comparison, with much smaller values of the standard
deviations of solution fitness obtained in the 50 runs completed for each scenario.

Table 3. Performance measures of metaheuristic procedures.

Customers Instance TS SA EP

Avg. Std.
Dev Time Avg. Std.

Dev Time Avg. Std.
Dev Time

10 r10_3_1 177.33 13.10 11.14 162.85 5.33 6.00 157.31 1.57 5.28
r10_3_2 153.43 21.17 14.92 137.06 4.94 6.00 129.15 1.02 5.28
r10_3_3 147.76 11.47 18.76 133.26 4.15 8.00 123.55 4.05 5.99
r10_3_4 144.85 6.05 19.54 128.08 4.10 10.24 115.79 3.68 6.22
r10_3_5 161.52 6.64 12.98 156.35 1.82 6.00 154.95 0.93 5.18
r10_3_6 140.76 12.79 14.72 134.22 4.91 7.00 132.97 9.24 5.27
r10_3_7 144.76 17.91 21.66 130.18 3.50 8.26 125.52 6.03 6.01
r10_3_8 141.08 12.27 18.56 123.22 5.68 10.90 114.22 1.82 6.29
r10_3_9 154.72 13.20 14.74 146.36 3.39 7.00 147.62 7.54 5.29
r10_3_10 140.73 20.06 20.10 129.46 0.89 8.52 127.00 8.44 5.24
r10_3_11 145.33 18.81 19.56 131.51 3.40 8.02 132.53 4.20 5.50
r10_3_12 135.75 21.04 19.40 122.71 5.68 11.98 114.68 1.78 5.93

25 r25_3_1 452.10 27.14 47.98 430.42 12.09 66.48 365.24 11.21 27.49
r25_3_2 396.71 28.75 60.58 370.88 9.71 83.08 301.42 4.69 29.95
r25_3_3 357.17 36.60 73.22 331.61 7.35 95.56 280.13 7.67 30.86
r25_3_4 284.37 29.41 112.34 274.89 8.34 121.42 254.11 11.21 31.50
r25_3_5 395.15 41.95 49.10 381.09 17.92 67.04 318.74 5.97 30.52
r25_3_6 375.00 28.24 57.72 344.08 10.19 86.40 286.24 9.07 30.61
r25_3_7 343.67 30.72 77.94 319.36 7.60 103.86 272.19 7.03 32.43
r25_3_8 263.91 17.77 124.92 272.38 7.44 134.60 250.67 9.36 32.49
r25_3_9 352.53 26.28 56.82 341.33 10.76 79.62 285.86 11.79 30.54
r25_3_10 325.70 29.20 74.58 300.20 7.84 94.56 266.81 14.89 30.65
r25_3_11 326.09 29.99 80.66 305.31 10.51 101.04 255.35 11.23 31.49
r25_3_12 279.84 39.48 100.98 248.15 8.66 130.84 242.88 10.27 32.59

50 r50_3_1 1238.11 66.62 284.66 1234.20 44.99 171.02 1043.90 27.07 122.55
r50_3_2 1257.79 101.16 305.68 1082.78 48.46 240.32 928.96 12.49 119.01
r50_3_3 1158.92 155.55 446.30 916.23 33.29 310.52 846.11 21.47 118.38
r50_3_4 1067.64 111.08 584.86 804.39 40.51 480.58 822.05 30.86 115.30
r50_3_5 1251.80 81.35 200.58 1144.72 55.01 168.32 988.17 25.11 116.37
r50_3_6 1204.22 115.91 297.08 1030.90 44.72 232.74 920.01 24.38 111.20
r50_3_7 1134.73 126.78 436.32 899.99 39.85 331.82 870.59 28.57 113.61
r50_3_8 1085.62 122.97 544.00 788.34 32.37 512.06 841.80 33.18 117.75
r50_3_9 1245.75 103.36 200.68 1056.64 35.44 181.00 898.47 29.47 110.75
r50_3_10 1156.13 95.65 267.60 998.06 45.67 212.82 917.38 39.96 112.82

100 r100_3_1 3217.75 163.13 988.88 2959.41 98.62 707.82 2634.96 58.72 397.32
r100_3_2 3010.34 243.96 1207.06 2496.54 91.85 1241.44 2457.43 59.51 393.39
r100_3_3 2627.79 173.99 1727.04 2200.64 99.99 1546.28 2246.53 98.21 399.38
r100_3_4 2240.21 115.45 3799.78 1932.28 64.63 2171.92 2159.23 66.61 410.37
r100_3_5 3197.04 157.74 767.36 2833.05 101.60 730.58 2607.26 56.85 392.36
r100_3_6 2953.05 217.49 1335.36 2423.52 91.42 1219.56 2337.40 80.01 384.46
r100_3_7 2603.03 177.52 1800.94 2162.49 88.99 1576.56 2180.11 75.83 391.04
r100_3_8 2191.85 130.92 4149.24 1886.96 59.33 2230.52 2110.78 58.49 393.81
r100_3_9 3056.98 176.51 956.02 2706.84 90.47 793.64 2530.86 37.09 390.98
r100_3_10 2852.15 206.34 1171.50 2452.96 93.26 966.90 2308.79 48.83 378.20

5.3. Priority Considerations

With the objective of analyzing the effects of priorities on the preferences of the cus-
tomers, an experiment with a 25-customer instance was run. The priorities were established
by means of sorting the different options using an integer number. In the case of three
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possible options, maximum priority was linked with number 1, and minimum priority
would be number 3. Since α+ β = 1 represents the relative preference of the decision maker,
the evolution of objective function (9), the cost, and the average priority are represented by
different combinations of α and β. The results are shown in Figure 1. When α = 1 and β = 0,
the priorities of the customer are not taken into account, so the problem is considered to be
a VRPTWDO problem with no priorities. At the other extreme, when α→ 0 and β→1,
the algorithm will select all of the first priorities, turning the problem into a traditional
VRPTW problem whose time windows correspond to those set as priority 1.

Figure 2 represents the solution of a problem with 25 customers and 3 possible options
of delivery. We can observe how the increase in the possibilities of deliveries lets the
planner look for better solutions more efficiently. In this problem, the first preference
is satisfied for 80% of customers, the second preference for 16% of them, and the last
preference for 4% of the customers. The algorithm tries to prioritize consumer preferences,
and only when not attending to these preferences results in significant cost savings are
other options considered.
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Figure 2. Example of routes for a problem with 25 customers and 3 possible options.

Table 4 shows the results obtained by the evolutionary procedure (EP) for three
simulation batteries (25, 50, and 100 customers) where priorities were declared by the
customers. Every instance was run 50 times. The table shows the best value, the average
value of the fitness values obtained (OF), the cost, and the priority. The gap between the
average value and the best value is shown to demonstrate the convergence of the procedure.

Table 4. Results of the EP with priority considerations.

Customers Instance OF Cost Priority

Avg. Min Gap Avg. Min Gap Avg. Min Gap

25 r25_3p_1 424 413 2.66% 5223.09 5014.87 4.15% 1.036 1 3.60%
r25_3p_2 413 388 6.44% 5195.87 4505.05 15.33% 1.064 1 6.40%
r25_3p_3 428 419 2.15% 5245.62 5115.03 2.55% 1.028 1 2.80%
r25_3p_4 408 393 3.82% 5530.29 5304.27 4.26% 1.008 1 0.80%
r25_3p_5 411 402 2.24% 5197.58 4998 3.99% 1.004 1 0.40%
r25_3p_6 411 405 1.48% 5251.48 5160.81 1.76% 1 1 0.00%
r25_3p_7 407 394 3.30% 5223.87 4967.22 5.17% 1.032 1 3.20%
r25_3p_8 431 418 3.11% 5614.3 5066.46 10.81% 1.108 1 10.80%
r25_3p_9 385 370 4.05% 4574.93 4363.56 4.84% 1 1 0.00%

r25_3p_10 398 387 2.84% 4815.47 4533.15 6.23% 1.02 1 2.00%

50 r50_3p_1 356 346 2.89% 8533.94 8260.79 1.80% 1.006 1 0.60%
r50_3p_2 364 355 2.54% 8607.28 8347.22 1.89% 1.03 1 3.00%
r50_3p_3 365 351 3.99% 9037.99 8165.41 3.94% 1.022 1 2.20%
r50_3p_4 363 347 4.61% 9190.26 8131.28 5.58% 1.022 1 2.20%
r50_3p_5 345 329 4.86% 8228.71 7767.57 3.43% 1 1 0.00%
r50_3p_6 357 348 2.59% 8941.46 8528.38 2.42% 1.012 1 1.20%
r50_3p_7 349 337 3.56% 8553.5 8177.82 3.42% 1.014 1 1.40%
r50_3p_8 365 355 2.82% 9369.44 8771.76 3.26% 1.012 1 1.20%
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Table 4. Cont.

Customers Instance OF Cost Priority

Avg. Min Gap Avg. Min Gap Avg. Min Gap

r50_3p_9 367 346 6.07% 8577.33 8020.42 4.00% 1.054 1 5.40%
r50_3p_10 357 348 2.59% 8821 8526.94 2.03% 1 1 0.00%

100 r100_3p_1 353 341 3.52% 16,851.63 16,159.34 3.55% 1.028 1 2.80%
r100_3p_2 353 334 5.69% 16806.4 15,673.85 4.45% 1.007 1 0.70%
r100_3p_3 353 343 2.92% 17,144.93 16,683.24 2.15% 1.036 1 3.60%
r100_3p_4 351 336 4.46% 17,229.21 16,397.92 2.82% 1.014 1 1.40%
r100_3p_5 343 331 3.63% 16,270.05 15,392.24 4.25% 1.028 1 2.80%
r100_3p_6 354 327 8.26% 16,716.27 15,018.89 5.36% 1.042 1 4.20%
r100_3p_7 362 341 6.16% 17,520.29 15,962.86 5.97% 1.069 1 6.90%
r100_3p_8 355 349 1.72% 17,191.82 16,492.24 2.90% 1.048 1 4.80%
r100_3p_9 365 343 6.41% 17,151.35 15,961.33 3.02% 1.028 1 2.80%
r100_3p_10 348 335 3.88% 16,610.44 15,859.48 3.70% 1.025 1 2.50%

5.4. Discussion of Results

Increasing the possibilities of delivery locations, with defined time windows at each
location, would favor successful deliveries. However, this new perspective of the last-
mile logistics leads to an increase in the mathematical complexity of this type of NP-hard
problem. Despite this, it is possible to find solution methods that present admissible
solutions in real-world implementations.

From the economic point of view, this strategy provides cost savings in the scheduling
of trips in most cases (see Table 1). As the distribution company has more possibilities for
deliveries, they can use this method to adapt the deliveries to their needs.

In the case of stated user preferences regarding locations, where the different location–
temporal window pairs are prioritized by the customer, the proposed methodology achieves
high levels of compliance with these preferences, only using the lowest preferences when
there is a strong economic justification (see Table 4).

Increasing customers’ options would increase customer satisfaction, especially if the
number of failed deliveries is reduced. This latter aspect would increase customer loyalty.

6. Conclusions

With increasing volumes of e-commerce transactions and subsequent home deliveries,
the economic benefits of logistical operators depend on the reduction in costs without
affecting the perceived level of service. Allowing the customer to choose a preferred time
slot for the delivery increases that service quality, but at the cost of concentrating most of
the deliveries during the evening hours, resulting in growing imbalances between peak
and valley demands, and larger and more infra-used fleets.

The possibility of asking customers to provide different locations or places—each
one associated with a different time window—for the delivery day thus represents an
opportunity for carriers to increase the balance between peak and valley hours, providing
flexibility to manage their operations without damaging the level of service. The problem
of scheduling a vehicle fleet under requirements of time and location is thus relevant from
the point of view of operational research, and with a clear industrial application. We have
presented the mathematical formulation of the problem and tested the performance of
different heuristics and metaheuristics on different problem instances, obtaining the best
results with the application of a technique based on evolutionary optimization. Given the
characteristics of the problem, where the degree of complexity depends not only on the
number of customers, but also on the number of different locations and time windows
associated with each of them, the use of numerical methods proves to be a necessary tool.

Further research may be focused on gaining methodological insight, testing additional
solution techniques, and improving the performance of algorithms, but our interest lies
also in the applicability of the concept. Dynamic variants—in order to develop techniques
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to re-plan routes when a time window is missed—or cost-based analyses—estimating
the tradeoffs between total distance, number of vehicles used, penalties for missing time
windows, and total driving plus waiting time—are two of the most promising directions
for future research efforts.

This work has been developed based on simulated data and assuming that more
delivery possibilities, where customers identify their availability at each location, decreases
the rate of failed deliveries. The analysis of the real cost of externalities due to missed
deliveries, as well as the objective calculation of how this approach can reduce the rate of
missed deliveries, are avenues for future research.
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