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Abstract: With the rapid growth of express delivery industry, service failure has become an increas-
ingly pressing issue. However, there is a lack of research on express service failure risk assessment
within the Failure Mode and Effects Analysis (FMEA) framework. To address the research gap,
we propose an improved FMEA approach based on integrating the uncertainty reasoning cloud
model and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. The
cloud model describing randomness and fuzziness in uncertainty environment is adopted to achieve
the transformation between the qualitative semantic evaluation of occurrence (O), severity (S), and
detection (D) risk factors of FMEA and the quantitative instantiation and set up the comprehensive
cloud of risk assessment matrix for express delivery service failure (EDSF). The TOPSIS method
calculates and ranks the relative closeness coefficients of EDSF mode. Finally, the rationality and
applicability of the proposed method are demonstrated by an empirical study for the express delivery
service in China. It is found that among 18 express delivery service failure modes, six service failure
modes with high risk are mainly located in the processing and delivery stages, while six service
failures with the relatively low risk are involved in the picking-up and transportation stages. This
study provides insight on how to explore the risk evaluation of express delivery service failure, and
it helps express delivery firms to identify the key service failure points, develop the corresponding
service remedy measures, reduce the loss from service failures, and improve the service quality.

Keywords: express delivery; service failure; cloud model; failure mode and effects analysis (FMEA);
entropy weight method; TOPSIS

1. Introduction

Thanks to the rapid development of e-commerce, the express delivery service industry
has witnessed a rapid growth in China. According to the statistics of the State Post Bureau
of China, the total volume of package delivered exceeded 83 billion in 2020, representing a
30% increase over the previous year. The annual per capita volume of packages sent or
received reached 59 items, representing a growth rate of 31%. Meanwhile, the revenue of
this industry reached about $135 billion, representing a 16.7% increase over the previous
year. Nevertheless, the unprecedented growth is accompanied with frequent service
failure (SF), such as sluggish websites, payment problems, privacy security, lost packages,
delayed delivery, damaged products, and rough sorting and handling. In 2020, a total
of 188,326 customer complaints involving express service were formally filed with State
Post Bureau of China alone; the complaints received by local government and express
delivery companies were not included. The finding by Dospinescu et al. [1] indicates that
express delivery option has significant influence on e-commerce customer’s satisfaction
level. It is thus clear that frequent service failure not only leads to losses of business
and damaged reputation for e-commerce and express delivery companies but also causes
the emotional anxiety of customers and negatively affects their satisfaction which then
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leads to negative Word of Mouth (WOM) as well as complaints and change of repurchase
behavior. Holloway et al. [2] adopted the Critical Incident Technique (CIT) to analyze the
online retail service faults and indicated that the main types of service faults are delivery
problems, website design problems, payment problems, security problems, product quality
problems, and customer service problems. Forbes et al. [3] also carried out CIT analysis
on e-commerce service failures, which involve product packaging errors, slow delivery,
system checkout errors, missing information, and website design errors. Compared to
other intangible service quality factors by using both exploratory and confirmatory factor
analysis, Subramanian et al. [4] pointed out that to be competitive, e-retailers in China must
pay increasing attention to the express delivery service from third-party logistics companies.
Zemke et al. [5] collected information from online shoppers and concluded that the SF
modes related to express delivery service include delayed delivery, extra transportation
costs for the punctual arrival, incomplete delivery of orders, and damaged objects.

As shown above, early research mainly focuses on relatively narrow segments in
analyzing the sources of service failures, types of service failures, remedial measures,
and so on. More recently, Chen et al. [6,7] studied the influence of causal attributions
on trust conflicts and the service failure recovery policies in e-commerce. Kim et al. [8]
investigated consumer-perceived attribution of service failures and its influence on negative
emotions and post-purchase activities in social commerce. The finding by Vakeel et al. [9]
shows that there is a three-way interaction among deal proneness, locus of attribution,
and past emotions; compared with external locus of attribution in the context of online
flash sales (OFS), service failures attributed to internal locus of attribution also have a
negative impact on reparticipation. Saini et al. [10] also presented a novel contextual scale
to measure OFS e-commerce service failures and studied its impact on recovery-induced
justice on customer’s loyalty. As such, the recent research diverts attention on service
failure attributions based on customer-perception, the relationship of service failure and
recovery policy, and customer emotion or post-purchase behaviors.

However, there has been lack of research on occurrence (O), severity (S), and detection
(D) of service failures and their risk priority number (RPN), which is related to the deter-
mination of recovery strategies in e-commerce. In addition, express service failures are
often neglected or overlooked. It should be noted that express delivery service is a complex
and special multi-link and multi-participator activity process that crosses organizations,
regions, and even borders, so it plays a prominent role in the success of electronic transac-
tions. In this regard, express delivery service failure (EDSF) is a critical issue that should
be mitigated by scientific and viable methods. As a result, this research aims to identify
the EDSF modes and evaluate their risk levels in a comprehensive way, as well as reveal
the importance of individual service failure modes in the different operational stages of
express delivery process. The work will help express delivery companies to develop the
proper service remedial measures, reduce waste of resources, lower the operation risks,
and improve customer satisfaction.

To bridge the above research gaps, this paper attempts to answer the following
research problems: (1) what are the critical modes of EDSF and where are they located in
express delivery process? (2) under the context of randomness and fuzziness of semantic
assessment information, how can the risk of EDSF be more effectively evaluated? (3) how
serious are the risk factors, namely occurrence (O), severity (S), and detection (D) of
different modes of EDSF?

As such, the objective of this study is to address the above research problems by
presenting a systematic quantitative approach to investigate the risk assessment issue for
EDSF. Specifically, we present an improved Failure Mode and Effects Analysis (FMEA)
approach based on integrating the uncertainty reasoning cloud model and the TOPSIS
method. The cloud model for uncertainty reasoning is adopted to quantify the semantic
evaluation of the occurrence (O), severity (S), and detection (D) risk factors of EDSF and
set up the comprehensive cloud of risk assessment for EDSF. Finally, the Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS) method is adopted to calculate
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and rank the relative closeness coefficient of express delivery service failure modes. Com-
pared with the existing multi-criteria decision making (MCDM) techniques, the proposed
decision scheme in this paper is unique by constructing decision matrices of expectation
Ex, entropy En and hyper entropy He in the cloud model. Therefore, it not only describes
the randomness and fuzziness in uncertain information but also gives the comprehensive
closeness coefficient by TOPSIS, which makes the decision results more comprehensive
and reasonable. In this way, it contributes to the theoretical basis for the risk detection
ability of EDSF.

The remainder of this paper is arranged as follows. Section 2 provides a brief literature
review. Section 3 proposes the research methodology, including the verification of express
delivery service failure modes, construction of semantic evaluation of express delivery
service failure, and quantitative transformation of evaluation variables based on cloud
model, determination of the weight of FMEA risk factors, and calculation of risk assessment
comprehensive cloud and rank the risk of express delivery service failure. Section 4
presents an empirical study for the express delivery industry in China based on the
proposed methodology. In addition, the results are analyzed, and management implications
are discussed. Finally, in Section 5, major findings and contributions of this study are
summarized, and future research directions are pointed out.

2. Literature Review
2.1. Service Failure

On the general perspectives of service failure, there is a wealth of literature. Some
representative works are briefly summarized in the following. Bitner et al. [11] indicated
that service failure incurs when the firms provide the services which fail to meet the
requirement of the customers or are inconsistent with standard operating procedures in
the service execution, as well as below the acceptable level. Similarly, Maxham et al. [12]
suggested that when the business service is lower than the customer’s expectation or a
customer’s request fails to be realized, service failures take place. Michel [13] suggested that
service failures occur when customers perceive that the received goods or service does not
achieve what they expected, which is consistent with the viewpoint of Voorhees et al. [14].
Tan et al. [15] categorized e-commerce service failures as functional, information, and
system failures, proposed a theoretical model of e-commerce service failure classifications
and their consequences, and tested the relationship between three failure categories and
consumers’ disconfirmed expectancies. Moreover, it is commonly recognized that a critical
factor of service failure is the occurrence severity of service failure, and the increase of
service failure severity leads to the increase of customer dissatisfaction [16,17]. Hsieh
and Yen [18] indicated that customers are more inclined to blame service failures on
service providers, which turns into dissatisfaction with service and firm. The consequences
of service failure include lower customer satisfaction, distrust, negative evaluation and
diminutive employee motivation, customer loss, and revenue decrease [19–22]. In addition,
Gelbrich [23] investigated the essential role of helplessness in interpreting weird coping
responses to anger and frustration after service failure.

It is clear from the above analysis that the definition of service failure, categorization,
consequence of service failure, and its relationship with customer satisfaction have attracted
strong attention from many scholars.

2.2. Express Delivery Service Failure (EDSF)

For EDSF, its footprint could be found in the research on e-commerce SF and logistics
service quality. Compared with tangible products, less attention has been received. For
example, the findings by Durvasula et al. [24] show that the SF occurrence does not imply
that the logistics service provider is insufficient; even the best service supplier makes a mis-
take and perfect service is impossible in the context of B-to-B marketing. Zhong et al. [25]
considered that the perceived information sharing quality from express service providers
could affect logistics service performance of online shoppers. Holloway et al. [2] discovered
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that delivery problems are the main types of service faults besides payment problems,
security problems, and customer service problems. Subramanian et al. [4] pointed out that
e-retailers should pay increasing attention to the express delivery service from third-party
logistics providers. Zemke et al. [5] collected information from online shoppers and con-
cluded that the SF modes related to express delivery service include delayed delivery, extra
transportation costs for the punctual arrival, incomplete delivery of orders, and damaged
objects. Saura et al. [26] pointed out that the timeliness, personnel quality, information
accuracy, and order response speed of logistics service quality all have clear, positive,
and significant impact on customer satisfaction. Therefore, it is expected that the above-
mentioned logistics service components will lead to the most significant service failure.
Importantly, all services must recover in time because of the time sensitivity of delivery
service. Ping et al. [27] suggested that for logistics firms, a high level of logistics services
can improve customer satisfaction, maintain customer loyalty, gain potential customers,
and improve profits and competitiveness. Giovanis et al. [28] analyzed the impact of
logistics service quality on customer satisfaction and loyalty. Ma et al. [29] developed a
combined SERVUQAL-AHP-TOPSIS method to assess the quality of service (QoS) of the
city express service industry. It was believed that the main dimension of logistics service
quality consists of product availability, order accuracy, timeliness, order condition, ordering
procedures, personnel contact quality, information quality, order discrepancy handling.
Furthermore, the consequences of logistics delivery failure have been reinforced in more
recent studies [30–32]. In addition, by analyzing the common main topics of complaints
from consumers and suppliers in express delivery, Gyu [33] showed that the parcel delivery
industry faces challenges such as delay, loss, wrong delivery and fierce competition, and
customers demanding higher quality of express logistics service. In studying the problems
faced by strategic distribution and transportation in the e-commerce environment in China,
Liu et al. [34] argued that the solution of logistics service problems will be a determining
factor to define the success or failure of the future development of e-commerce.

To summarize, the existing research efforts have recognized the importance of EDSF
to e-commerce market and logistics service quality, but the quantitative studies on how to
evaluate the seriousness of risk factors for different EDSF modes have been lacking.

2.3. FMEA

Failure Mode and Effects Analysis (FMEA) is a systematic analysis tool of product
function or service quality reliability, which was first proposed in the 1950s. This method
can be used to identify the potential failure pattern of product or service and the risk
degree and rationally allocate resources to take corresponding intervention measures to
avoid the failure of product or service quality. In the FMEA method, Risk Priority Number
(RPN) is generally calculated to define the risk level, and different control measures are
taken according to its ranking, i.e., RPN = O × S × D (O, S, and D are the risk factors
representing occurrence, severity, and detection respectively). To date, FMEA has been
widely used in aerospace, medical, service, and other fields to provide forward-looking and
operational decision support for enterprise management [35–37]. The traditional FMEA
may not be very effective as a result of ignoring the fuzziness of evaluation information
and inaccuracy of RPN obtained by multiplication of Q, S, and D. To address this issue,
researchers have made extensive efforts, and improvements have been suggested in litera-
ture. Wang [38] presented fuzzy risk priority numbers (FRPN) to measure the risk priority
in a more credible way. Gargama [39] constructed a criticality assessment model for FMEA
by applying fuzzy logic to accomplish the convert randomness of evaluated data into a
convex normalized fuzzy number. Pillay et al. [40] introduced fuzzy rule base and grey
relation analysis (GRA) theory into the marine industry and solved the prioritization of
potential failure modes in the situation of the same RPN value but different actual risk
levels. Liu [41] proposed an RPN evaluation method using evidential reasoning (ER)
method and gray correlation operator, which improved the effectiveness of traditional
FMEA. Geum [35] also studied FMEA and GRA to identify and assess potential faults
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in hospital services. Ahmet et al. [42] determined experts’ evaluation of risk factors O,
S, and D through fuzzy sets and realized the calculation of RPN by using fuzzy analytic
hierarchy process (FAHP) and TOPSIS method. Hyung et al. [43] proposed analyzing the
service risk and service reliability of supermarkets based on FMEA and grey correlation
theory. Liu et al. [44] employed the VIKOR method in a fuzzy environment to obtain
the priority order of failure modes in general anesthesia process. Liu et al. [45] devel-
oped a risk assessment approach in FMEA based on combining fuzzy weighted average
with fuzzy decision-making trial and evaluation laboratory (DEMATEL). Liu et al. [46]
adopted an intuitionistic fuzzy hybrid TOPSIS approach to improve the FMEA. Kok [47]
indicated that perception calculation could be used to solve the uncertainty of FMEA in
language evaluation. Moreover, Vodenicharova [48] discussed the use of FMEA method
in the logistics processes in manufacturing plants and showed that FMEA is a method
that can maintain the connection between logistics elements for analysis and follow the
logical sequence of “cause-and-measure”. Zhang et al. [49] suggested a consensus-based
group decision-making method for FMEA to classify failure modes into several ordinal risk
categories. Alvand et al. [50] presented a combination model based on FMEA, stepwise
weight assessment ratio analysis (SWARA), and weighted aggregated sum product assess-
ment (WASPAS) approach under fuzzy environment. Khalilzadeh et al. [51] developed an
FMEA approach by integrating SWARA and PROMETHEE techniques with the augmented
e-constraint method (AECM) for risk assessment in the planning phase of the oil and gas
construction projects in Iran.

In view of the above analysis, due to the imperfection of FMEA in uncertain envi-
ronments, a few MCDM methods have been integrated into FMEA decision process to
increase its performance, such as various types of fuzzy sets, GRA, FAHP [52], VIKOR,
DEMATEL [53], etc. While efforts have been made to decrease the fuzziness of decision
information in the uncertainty environment, they may not be effective in the processing of
randomness, which is an essential component for uncertain cases. In essence, fuzziness
and randomness are often equally important in the decision-making process. As such, new
FMEA approaches for EDSF risk assessment, which can address fuzziness and randomness
simultaneously to improve the reliability of FMEA risk priority ranking, are called for.

3. Research Methodology

To address the research gap, we propose an improved FMEA approach by integrating
the uncertainty reasoning cloud model and the TOPSIS method to investigate the risk as-
sessment of EDSF. The cloud model developed by Li et al. [54] employs the basic principles
of probability theory and fuzzy set theory to form the mutual transformation between
qualitative linguistic variable and quantitative value through specific algorithms, and
thus high-quality uncertainty can be obtained. In addition, the cloud model converts the
quantitative random number into interval number, which decreases the information loss in
the transformation process and will be convenient for decision-making evaluation. In this
paper, the cloud model is selected to achieve the transformation between the qualitative
semantic evaluation of the occurrence (O), severity (S), and detection (D) risk factors and
the quantitative evaluation. Meanwhile, the TOPSIS model is used for obtaining the relative
proximities between an evaluation objective and its optimal scheme and worst scheme,
respectively, and it has no tight restrictions on the data distribution and sample size. Thus,
it is adopted to calculate and rank the relative closeness coefficients of EDSF modes. It is
believed that the proposed approach can more objectively assess the risk degree of EDSF
for empirical studies. The framework of methodology consists of multiple steps, which are
briefly described as below in Figure 1:
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Figure 1. Framework of the proposed methodology.

Step 1: The semantic evaluation of express delivery service failure is constructed to
measure risk assessment indicator of EDSF based on the FMEA. Then the key process
mainly realizes transformation between the qualitative FMEA semantic evaluation and the
quantitative cloud model.

Step 2: The entropy weight method is used to calculate the weight of risk factors of
EDSF, so that the cloud matrix of the risk assessment of express delivery service failure is
established.

Step 3: According to the comprehensive digital characteristics of the cloud model,
the risk assessment comprehensive cloud of express delivery service failure modes is
determined.

Step 4: Based on the TOPSIS method, Hamming distance and closeness degree of
positive ideal solution and negative ideal solution of the comprehensive cloud for risk
assessment are calculated and ranked.

3.1. Cloud Model for Uncertainty Reasoning

“Cloud model”, first proposed by Li et al. [54,55], is a methodology that studies fuzzi-
ness and randomness as well as their correlation and constitutes the mapping relationship
between qualitative linguistic indicators and quantitative values. Cloud model is not only
competent for the modeling and calculation of imprecise, fuzzy, and incomplete infor-
mation but also has unique advantages in dealing with random information. It has thus
become a new uncertain information processing theory with high research popularity in
many fields [56–59]. It has been recognized that the cloud model possesses the capability of
the semantic conversion between quantitative and qualitative and increasing the accuracy
of risk assessment.

In the cloud model [60], C is a qualitative linguistic variable defined on U, which
represents the universe of discourse. Cloud refers to the distribution of the mapping of
concept C from U to the interval [0, 1] in the numerical domain space. x represents a cloud
droplet and the distribution of x over U is a cloud. The cloud model is a normal cloud
constructed by expectation Ex, entropy En and hyper entropy He, which can be denoted
as Ĉ = (Ex, En, He). Expectation Ex is the point that makes the most contribution when
describing qualitative concepts and represents the expectation of the spatial distribution of
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cloud droplets. Entropy En describes the uncertainty degree of qualitative concept, which
is determined by both the randomness and fuzziness. The larger the entropy is, the larger
the cloud granularity will be (where cloud granularity reflects the degree of dispersion of
cloud droplets). Hyper entropy He refers to the index changing under the random state,
which represents the uncertainty of entropy. The higher the hyper entropy, the thicker
the cloud (where cloud thickness reflects the dispersion of cloud), then the greater the
randomness of membership degree of x belonging to U. Membership can be calculated

from the definition of cloud model and its numerical value: µ = exp
(
− (x−Ex)2

2En′2

)
, which

satisfies x ∼ N
(

Ex, En′2
)

, En′ ∼ N
(

En, He2
)

, and the certainty degree of x belonging to
concept C. The distribution of x over U is a normal cloud. Figure 2 shows the numerical
characteristic cloud of the cloud model. In the figure, Ex = 0.5, En = 0.1, He = 0.01.

Figure 2. Normal cloud Ex = 0.5, En = 0.1, He = 0.01.

3.2. FMEA Risk Assessment Indicators for Express Delivery Service
3.2.1. Semantic Evaluation of FMEA Risk Assessment Indicators

For the risk assessment of EDSF, in accordance with professional knowledge of expert
team, cloud quantitative evaluation can be conducted to measure the occurrence (O), sever-
ity (S) and detection (D) of the FMEA model. This study used 7-point Likert scale, including
extremely low, very low, low, moderate, high, very high, extremely high, respectively. The
semantic evaluation of FMEA assessment indicators is shown in Table 1.

Table 1. Semantic evaluation of FMEA assessment indicators.

Linguistic Variable Symbol Occurrence (O) Severity (S) Detection (D)

Extremely low EL almost impossible
occurrence almost no impact extremely easy to detect

Very low VL rare occurrence very low impact very easy to detect
Low L low occurrence low impact easy to detect

Moderate M moderate occurrence moderate impact detectable
High H high occurrence high impact difficult to detect

Very high VH very high occurrence very high impact very difficult to detect
Extremely high EH almost constant occurrence extremely high impact extremely difficult to detect

3.2.2. Quantitative Evaluation of FMEA Risk Assessment Indicators

In the risk assessment of express delivery service failure modes, linguistic variables as
shown in Table 1 are used for expert assessment. Numerical domain U = (X min, Xmax)
is determined by experts. The mapping relationship between the qualitative language
variables and the cloud model is established by the Golden Section, also known as
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the Golden Ratio, in which a line segment is divided into two parts so that the ra-
tio of one part to the whole length is equal to the ratio of the other part to this part.
The ratio is an irrational number with an approximation value 0.618. In this paper,
U = [0, 1], t = 7 and the corresponding semantic variables are selected as (extremely
high, very high, high, moderate, low, very low, extremely low). If the moderate cloud
is set as Y0(Ex 0, En0, He0), the t normal clouds are arranged from left to right in order

and can be denoted as: Y−( t−1
2 )(Ex−( t−1

2 ), En−( t−1
2 ), He−( t−1

2 )

)
, Y−2(Ex−2, En−2, He−2

)
,

Y−1(Ex−1, En−1, He−1
)
, Y0(Ex 0, En0, He0), Y1(Ex 1, En1, He1), Y2(Ex 2, En2, He2),

Yt−1
2
(Ex t−1

2
, En t−1

2
, He t−1

2
)). Then the numerical characteristics of the 7 generated clouds

are calculated as follows [61],

Ex0 = Xmin+Xmax
2 , Ex3= Xmax, Ex−3= Xmin;

Ex2= Ex0+0.382 (X min+Xmax)
2 , Ex−2= Ex0 − 0.382 (X min+Xmax)

2 ;
Ex1= Ex0+0.382 (X min+Xmax)

4 , Ex−1 = Ex0 − 0.382 (X min+Xmax)
4 ;

En0= 0.618En1, En2= En−2 = En1
0.618 , En3= En−3 = En2

0.618 ;
He0= k, He1= He−1 = He0

0.618 , He2= He−2 = He1
0.618 , He3= He−3 = He2

0.618 .

(1)

The transformation between semantic variables of evaluation level and the benchmark
cloud model is shown in Table 2.

Table 2. Benchmark cloud model levels.

Semantic Variable (Ex, En, He)

Extremely high (EH) 1.000, 0.500, 0.042
Very high (VH) 0.691, 0.309, 0.026

High (H) 0.596, 0.191, 0.016
Moderate (M) 0.500, 0.118, 0.010

Low (L) 0.405, 0.191, 0.016
Very low (VL) 0.309, 0.309, 0.026

Extremely low (EL) 0.000, 0.500, 0.042

The benchmark cloud model levels is generated by the forward normal cloud genera-
tor, and the digital characteristics of the reference cloud of the evaluation level listed in
Table 2 are shown in Figure 3.

Figure 3. Benchmark cloud.

3.3. Weight Determination of Risk Factor for EDSF

In this study, experts with managerial roles from receiving, transportation, customer
service, quality, transit, and delivery departments in express delivery companies are invited
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to evaluate the risk factors in an electronic questionnaire survey, and then these semantic
evaluation data are converted into quantitative values through three parameters of cloud
model. Note that before the comprehensive expert survey, the risk factors need to be
identified by working with a focus group of people and then finalized using a customer-
oriented investigation.

Suppose that experts Ek(k = 1, 2, · · · t) use semantic evaluation variables to describe
the occurrence O, severity S and detection D of express delivery service failure modes
and quantify the semantic evaluation through three parameters of cloud model. Then the
cloud quantitative evaluation values of service failure mode FMi(i = 1, 2, · · · , n) from

the kth expert are as follows: y
k

iO
=
(

Exk
iO, Enk

iO, Hek
iO

)
, y

k
iS

=
(

Exk
iS, Enk

iS, Hek
iS

)
,

y
k

iD
=
(

Exk
iD, Enk

iD, Hek
iD

)
. The risk assessment cloud of risk factors O, S, and D is ob-

tained by cloud synthesis of the evaluation values from t experts: yiO = (ExiO, EniO, HeiO),
yiS = (ExiS, EniS, HeiS), yiD = (ExiD, EniD, HeiD).

yiO = 1
t ×

t
∑

k=1
y

k
iO

yiS = 1
t ×

t
∑

k=1
y

k
iS

yiD = 1
t ×

t
∑

k=1
y

k
iD

(2)

The cloud risk assessment matrix of EDSF under the risk factors of Occurrence O,
Severity S, and Detection D is as follows:

B =
(
bij
)
=

FM1
...

FMi
...

FMn



y1O y1S y1D
...

...
...

yiO yiS yiD
...

...
...

ynO ynS ynD

 (3)

On the above quantitative evaluation values of O, S, and D risk factors, the weights of
risk factors for each express delivery service failure mode will affect the comprehensive
risk assessment value of the individual failure modes. To avoid the subjectivity influence,
this study adopts the entropy weight method to calculate the weight of risk factors. The
basic steps of this method are as follows:

(1) Assuming that there are n evaluation indexes and m evaluation objects, the risk
factor evaluation matrix is constructed as follows:

R′ =

FM1
...

FMm

 r′11 · · · r′1m
...

. . .
...

r′n1 · · · r′nm

 (4)

(2) The evaluation matrix is normalized: R =
(
rij
)

n+m, rij is the value of the jth
measurement object on the index i, and rij ∈ [0, 1].

(3) The entropy of the risk factor of EDSF is defined as:

HI= −K
n

∑
j=1

Pijln f ij(i = 1, 2, . . . , n) (5)

where fij =
rij

∑n
j=1 rij

, k = 1
lnn . if fij = 0, fijln f ij = 0.
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(4) The weight of risk factors for EDSF is:

wi =
1− Hi

m−∑n
j=1 Hi

(6)

3.4. Comprehensive Cloud of EDSF Risk Assessment

The comprehensive cloud is formed by the combination of two or more same clouds
generated in the same theoretical domain. Qualitative variables are often assigned by
comments of experts using language description. The digital characteristics of the com-
prehensive cloud generated by n cloud models described semantically by experts are
calculated as: 

Ex =w1Ex1En1 +w2Ex2En2+···+wnExnEnn
En1+En2+···+Enn

En = w1En1+w2En2 + · · ·+wnEnn

He =w1 He1En1 +w2 He2En2+···+wn HenEnn
w1En1+w2En2+···+wnEnn

(7)

In Equation (7), Ex1, Ex2, . . . , Exn refer to the expectations, En1, En2, . . . , Enn refer
to the entropies, He1, He2, . . . , Hen refer to the hyper entropies of the express delivery
service FMEA, and w1, w2, . . . , wn represent the weights obtained from Equation (6). Sup-
pose two clouds are Yα = (Exα , Enα, Heα), Yβ =

(
Exβ , Enβ, Heβ

)
, then the Hamming

distance (HMD) is:

d
(
Yα, Yβ

)
=

√(
Exα−Exβ

)2
+
(
Enα−Enβ

)2
+
(

Heα−Heβ

)2√
(Ex α)

2+(En α

)2
+(He α)

2 +

√
(Ex β

)2
+(En β

)2
+(He β

)2
(8)

The semantic evaluation value of the risk factors O, S, and D by the expert group is
expressed by a basic cloud. Considering the weight of risk factors, the digital characteristics
of the comprehensive cloud assessment of the EDSF risks are calculated as follows:

Exi =
wOExiOEniO+wiSExiSEniS+wDExiDEniD

wOEniO+wSExiS+wDExiD
En = wOEniO + wSExiS + wDExiD

Hei =
wO HeiOEniO+wiS HeiSEniS+wD HeiDEniD

wOEniO+wSExiS+wDExiD

(9)

where wO, wS, and wD represent the weights of occurrence (O), severity (S), and detection
(D) risk factors in the ith failure mode, respectively.

3.5. Risk Ranking for EDSF Based on TOPSIS

To sort failure modes, TOPSIS method is adopted. Often combined with fuzzy theory,
it is a method used in multi-objective decision analysis for various applications [62–65].
The risk ranking of the failure modes is determined by relative closeness coefficient (Ui).
The specific steps are as follows [66]:

Step 1: Determine the weights of the risk factors of the target attributes according to
Equations (4)–(6). Then take the weights into the risk assessment cloud matrix B to obtain
the weighted cloud matrix B′.

B′= (b ′ij) =

FM1
...

FMi
...

FMn



w0y1O wSy1S wDy1D
...

...
...

w0yiO wSyiS wDyiD
...

...
...

w0ynO wSynS wDynD

 (10)

Step 2: Establish the risk assessment cloud matrix and determine the cloud positive
ideal solution (CPIS) and the cloud negative ideal solution (CNIS). The CPIS is the cloud
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with the least risk, while the CNIS is the cloud with the greatest risk [67]. For the efficiency-
oriented index (J+), the CPIS selects the cloud with the greatest risk, while the CNIS selects
the cloud with the least risk. For the cost-oriented index (J−), the CPIS is represented by:

B+ =

{(
max

1≤i≤n
bij |j ∈ J+

)
,
(

min
1≤i≤n

bij |j ∈ J−
)}

= bj
+ (11)

the CNIS is represented by:

B− =

{(
min

1≤i≤n
bij |j ∈ J+

)
,
(

max
1≤i≤n

bij |j ∈ J−
)}

= bj
− (12)

where maxbij represents the bij that maximizes Ex, and if the Ex values are the same, select
the bij that leads to the lowest En and He; minbij represents the bij that minimize Ex, and if
the Ex values are the same, select the bij that leads to the lowest En and He.

Step 3: Calculate the distance between the comprehensive cloud risk assessment
according to Equation (9) and the cloud positive and negative ideal solution according to
Equations (11) and (12). The distance to the cloud positive ideal solution is

Di
+ =

√√√√ n

∑
j=1

d2
(

b′ij, bj
+
)

(13)

The distance to the cloud negative ideal solution is

Di
− =

√√√√ n

∑
j=1

d2(b ′ij, bj
−

)
(14)

Step 4: Calculate relative closeness coefficient (Ui) for EDSF to determine the risk
ranking:

Ui =
Di
−

Di
++Di

− (15)

4. Empirical Study
4.1. Risk Assessment Indicators for EDSF

To assess the soundness of methodology for risk assessment of EDSF, we conducted
an empirical study for express delivery service in China. The main reason is that the
express service industry has experienced significant growth in China, and it has become
a critical sector for the society. The enormous user base could lead to the convenience of
information collection, while the results could potentially benefit the important industry.
The research team carried out a field study by working with the major express delivery
service companies, such as SF Express, STO Express, YTO Express, ZTO Express, YunDa
Express, and Chinese Post EMS in China. We interviewed a focus group of about 20 people
from the quality management and customer service departments and consulted with
them about the customers’ complaints. As a result, the initial evaluation indices for risk
assessment of EDSF were established and categorized in accordance with four major stages
of express service operation process, including picking-up, processing, transportation, and
delivery. The initial evaluation indicators are shown in Table 3.
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Table 3. The initial risk assessment indicator for EDSF and its explanation.

Operation Processes Failure Modes Explanation

Picking-up

Service acceptance error Outgoing package pick-up delay or mistake due to
carelessness of attendants.

Poor network coverage Insufficient coverage of express delivery service, which causes
inconveniency for customers.

Inconsistent charge rate Service pricing is random and not consistent, resulting in
erosion of customer trust.

Handover omission Packages are not forwarded to the next stage in time.

Processing

Sorting error Packages are sorted to wrong addresses

Delayed processing Packages are not processed in time, resulting in prolonged
receiving time for customers.

Rough handling Packages are processed in an aggressive way, which causes
damages to the goods.

Loss of package Packages are lost and cannot be recovered during the
processing stage.

Transportation

Unreasonable routing Transportation routing is not reasonable, which causes the
delay of shipment.

Delayed transportation Delays due to poor road condition, unreasonable routing,
traffic jam, and other reasons.

Lack of due diligence Lack of good skills and work enthusiasm affects the
transportation efficiency.

Delivery

Delivery error Packages have not been received by customers while the
system indicates otherwise.

Unauthorized delivery to a pick-up
place

Packages are delivered to a convenient pick-up place without
consent of customers.

Unexpected charges Extra (unexpected) charges are incurred for delivery.

Privacy leakage Privacy information of customers is leaked in the delivery of
packages.

Inflexible pick-up time Pick-up time is not flexible for customers when packages are
left in pick-up places (e.g., convenience stores or cabinets).

Damaged package Packages are damaged upon arrival.

Receiving signature is-sue Release of packages without following the operational
procedure (such as checking ID).

Poor service attitude Impatient or rude service from the delivery people.

No response to complaints Customer concerns and complaints are not handled in a
timely manner.

We further conducted a customer-oriented investigation for the importance of the
initial evaluation indicators, which determines as the final EDSF risk assessment indicator
system. In this regard, the entire list of indicators developed by working with the focus
group was provided to the customers, instead of just those indicators that are directly
connected to their personal experience. This is because most customers possess certain
knowledge on “what could go wrong” in the entire express delivery process. In addition,
by giving the initial list of indicators to the general customers, the meaning and cause of
each indicator were explained in the survey. As a result, it was believed that the customers
are empowered and less important indicators should be filtered out by the customers. The
survey results from the general customers should still be regarded complementary to the
field interview with the focus group. The importance of each index is scored by 7-point
Likert scale: 1 means extremely unimportant, 2 means unimportant, 3 means somewhat
unimportant, 4 means neutral, 5 means somewhat important, 6 indicates important, and
7 indicates extremely important. This survey was distributed to the customers who have
used or received express services (namely sender or addressee) in all walks of life through
phone calls, email, and/or social media platforms. A total of 500 questionnaires were
collected in May to August, 2020. After eliminating the questionnaires with invalid entries,
491 questionnaires were kept. To test the quality of questionnaire and data, the reliability
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and validity tests were performed using SPSS 25.0. The results in Tables 4 and 5 indicate
that the reliability of the questionnaire is 0.938 and validity of the questionnaire is 0.965,
which reflects a good internal consistency between variables and questionnaire items.

Table 4. Analysis of data reliability.

Cronbach’s Alpha Number of Items

0.938 20

Table 5. Analysis of data validity.

KMO 0.965

Bartlett’s test for sphericity
The approximate chi-square 11,682.460

Df. 190
Sig. 0.000

The cloud model requires the sample data to be normally distributed. The measured
skewness and kurtosis should be less than 3 and 10 respectively. The analysis using SPSS
25.0 leads to the descriptive statistics of the survey, as shown in Table 6. The output results
show that the absolute value of skewness coefficient of each item is 0.583 at most, which
is far less than the standard value 3. The absolute value of the kurtosis coefficient of each
item is 0.762 at most, which obviously meets the requirement that kurtosis is less than 10.
It can be seen that the results all fit the requirements of normal distribution. In addition,
the standard deviations of the obtained indicators are all less than 2, showing that the
importance of each indicator is relatively consistent. On the other hand, the mean scores of
“Unreasonable route” and “Unexpected charges” indicators are less than 4 points, while
other indicators have the mean scores of higher than 4.5. As such, the two indicators are
deemed less important and eliminated from further consideration. This is because in the
7-point Likert scale, the median is 4. Therefore, if the average score of an indicator is lower
than the median, it is deemed less important. Finally, 18 EDSF modes are determined as the
risk assessment indicator system, expressed as FMi(i = 1, 2, . . . , 18), as shown in Table 7.

4.2. Development of Cloud Charts

After the field interview with a focus group and the customer-oriented survey, the
semantic evaluation data on risk factors of express service FMEA: occurrence (O), severity
(S), and detection (D) were obtained through a comprehensive questionnaire survey with
industry experts. The research team visited the above mentioned major express companies
in China again. Experts with managerial roles from receiving, transportation, customer
service, quality, transit, and delivery departments in the companies were invited to partic-
ipate in the electronic questionnaire survey from December 2020 to February 2021. The
invited expert composition is shown in Figure 4. Eighteen invalid questionnaires among
the 118 responses were eliminated, and 100 qualified questionnaires were retained. The
results are shown in Tables 8–10.
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Table 6. Descriptive statistics of questionnaire results.

Express
Delivery Service

Express Delivery
Service Failure Mode

Average Standard
Deviation

Skewness Kurtosis
NStatistics Standard

Errors Statistics Standard
Errors

Picking-up

Service acceptance
error 4.66 1.748 −0.543 0.110 −0.468 0.220 491

Poor network coverage 4.59 1.667 −0.371 0.110 −0.511 0.220 491
Inconsistent charge rate 4.77 1.716 −0.581 0.110 −0.454 0.220 491

Handover omission 4.70 1.773 −0.504 0.110 −0.666 0.220 491

Processing

Sorting error 4.75 1.807 −0.540 0.110 −0.651 0.220 491
Delayed processing 4.79 1.714 −0.487 0.110 −0.725 0.220 491

Loss of package 4.65 1.830 −0.548 0.110 −0.574 0.220 491
Rough handling 4.59 1.673 −0.392 0.110 −0.450 0.220 491

Transportation
Unreasonable routing 3.43 1.812 0.514 0.110 −0.537 0.220 491

Delayed transportation 4.56 1.687 −0.411 0.110 −0.518 0.220 491
Lack of due diligence 4.58 1.658 −0.506 0.110 −0.468 0.220 491

Delivery

Unauthorized delivery
to a pick-up place 4.63 1.832 −0.460 0.110 −0.678 0.220 491

Delivery error 4.86 1.799 −0.480 0.110 −0.761 0.220 491
Unexpected charges 3.19 1.857 0.550 0.110 −0.700 0.220 491

Privacy leakage 4.74 1.945 −0.583 0.110 −0.718 0.220 491
Inflexible pick-up time 4.68 1.828 −0.511 0.110 −0.636 0.220 491

Damaged package 4.68 1.717 −0.557 0.110 −0.589 0.220 491
Receiving signature

issue 4.69 1.722 −0.508 0.110 −0.603 0.220 491

Poor service attitude 4.83 1.854 −0.555 0.110 −0.762 0.220 491
No response to

complaints 4.73 1.730 −0.454 0.110 −0.696 0.220 491

Table 7. Index system of EDSF risk assessment.

Express Delivery Service Failure Modes Express Delivery Service Failure Mode

Picking-up

FM1 Service acceptance error
FM2 Poor network coverage
FM3 Inconsistent charge rate
FM4 Handover omission

Processing

FM5 Sorting error
FM6 Delayed processing
FM7 Rough handling
FM8 Loss of package

Transportation FM9 Lack of due diligence
FM10 Delayed transportation

Delivery

FM11 Delivery error
FM12 Unauthorized delivery to a pick-up place
FM13 Privacy leakage
FM14 Inflexible pick-up time
FM15 Damaged package
FM16 Receiving signature issue
FM17 Poor service attitude
FM18 No response to complaints
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Figure 4. Summary of expert composition.

Table 8. Occurrence (O) semantic evaluation results and risk assessment cloud.

Extremely
Low (EL)

Very Low
(VL) Low (L) Moderate

(M) High (H) Very High
(VH)

Extremely
High (EH)

Risk Assessment
Cloud

FM1 20 27 20 14 13 3 3 (0.363,0.233,0.024)
FM2 25 22 24 12 10 3 4 (0.346,0.257,0.025)
FM3 33 22 13 12 10 5 5 (0.325,0.288,0.028)
FM4 23 33 22 12 4 3 3 (0.326,0.239,0.026)
FM5 15 20 24 20 13 2 6 (0.410,0.227,0.022)
FM6 7 22 21 21 14 10 5 (0.461,0.207,0.021)
FM7 9 16 24 15 17 8 11 (0.488,0.238,0.023)
FM8 12 15 17 8 14 22 12 (0.511,0.273,0.025)
FM9 17 21 28 18 10 2 4 (0.382,0.228,0.023)
FM10 11 23 20 22 13 7 4 (0.428,0.211,0.022)
FM11 14 20 19 17 10 11 9 (0.449,0.246,0.024)
FM12 23 16 16 24 12 4 5 (0.383,0.252,0.024)
FM13 20 31 14 11 9 7 8 (0.390,0.252,0.026)
FM14 20 17 22 19 9 7 6 (0.399,0.252,0.024)
FM15 13 20 25 21 12 5 4 (0.414,0.218,0.022)
FM16 22 27 20 15 8 6 2 (0.349,0.239,0.025)
FM17 21 28 19 14 9 4 5 (0.365,0.243,0.025)
FM18 32 22 19 12 6 3 6 (0.321,0.285,0.028)

Note: EL, VL, L, M, MH, VH and EH respectively denote expert semantic rating as extremely low, very low, low, moderate, high, very high
and extremely high.

Tables 9–11 are used to achieve the quantitative conversion of the language evaluation
of the occurrence O, severity S, and detection D for the express delivery service FMEA, and
Equation (2) is used to calculate the risk evaluation cloud on the expert language value.
According to Equations (4)–(6), the weights of risk factors O, S, and D are wO = 0.474,
wS = 0.313, wD = 0.213, respectively. Finally, the comprehensive cloud of express delivery
service FMEA can be obtained by Equation (9). The results are shown in Table 11.
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Table 9. Severity (S) semantic evaluation results and risk assessment cloud.

Extremely
Low (EL)

Very Low
(VL) Low (L) Moderate

(M) High (H) Very High
(VH)

Extremely
High (EH)

Risk Assessment
Cloud

FM1 26 16 18 18 8 7 7 (0.378,0.275,0.026)
FM2 27 18 16 16 10 8 5 (0.365,0.273,0.026)
FM3 29 14 16 14 8 6 13 (0.397,0.306,0.028)
FM4 23 22 18 12 12 7 6 (0.381,0.262,0.026)
FM5 16 18 19 19 16 6 6 (0.424,0.237,0.023)
FM6 9 17 15 20 18 12 9 (0.493,0.232,0.022)
FM7 13 14 11 20 19 9 14 (0.503,0.259,0.024)
FM8 10 12 15 15 14 18 16 (0.541,0.272,0.025)
FM9 18 16 21 18 10 6 11 (0.436,0.261,0.025)
FM10 15 15 15 19 22 5 9 (0.458,0.245,0.023)
FM11 17 14 15 10 13 16 15 (0.492,0.290,0.027)
FM12 15 14 10 20 15 8 18 (0.508,0.276,0.026)
FM13 20 20 9 14 9 8 20 (0.477,0.297,0.028)
FM14 20 17 22 21 11 5 4 (0.387,0.242,0.023)
FM15 15 8 27 16 15 10 9 (0.463,0.259,0.023)
FM16 23 15 20 12 16 8 6 (0.398,0.269,0.025)
FM17 22 17 14 12 13 13 9 (0.427,0.279,0.026)
FM18 24 16 17 13 10 6 14 (0.424,0.293,0.027)

Table 10. Detection (D) semantic evaluation results and risk assessment cloud.

Extremely
Low (EL)

Very Low
(VL) Low (L) Moderate

(M) High (H) Very High
(VH)

Extremely
High (EH)

Risk Assessment
Cloud

FM1 22 18 23 21 7 8 1 (0.361,0.241,0.023)
FM2 32 14 26 13 7 4 4 (0.323,0.286,0.026)
FM3 37 17 14 12 7 8 5 (0.316,0.308,0.029)
FM4 30 22 22 14 8 2 2 (0.309,0.264,0.026)
FM5 19 18 25 16 13 6 3 (0.386,0.240,0.023)
FM6 15 21 21 16 14 9 4 (0.416,0.231,0.023)
FM7 19 20 19 12 15 7 8 (0.417,0.258,0.025)
FM8 15 21 23 9 11 11 10 (0.445,0.257,0.025)
FM9 21 24 20 18 7 7 3 (0.365,0.241,0.024)
FM10 21 20 24 15 12 5 3 (0.370,0.244,0.024)
FM11 21 19 22 10 9 11 8 (0.407,0.271,0.026)
FM12 21 17 17 20 9 8 8 (0.410,0.262,0.025)
FM13 24 19 12 13 11 10 11 (0.417,0.286,0.027)
FM14 24 16 25 17 11 5 2 (0.356,0.252,0.024)
FM15 16 20 26 17 9 7 5 (0.404,0.235,0.023)
FM16 25 18 23 16 5 9 4 (0.361,0.265,0.025)
FM17 26 19 19 15 11 6 4 (0.358,0.264,0.025)
FM18 30 24 18 9 8 4 7 (0.337,0.284,0.028)

According to the results of the comprehensive cloud in Table 12, the risk degree
of EDSF in the picking up, processing, transportation, and delivery cloud charts can
be seen in Figures 5–8, respectively. In the cloud model, ExFMi(I = 1, 2, 3, . . . ,18) re-
flects the central point in the domain space. Figure 5a shows the risk level of compre-
hensive cloud of EDSF in the picking-up stage compared with the benchmark clouds
(which are indicated by the black dots). Figure 5b in close-up view clearly shows that
ExFM1, ExFM2, ExFM3, ExFM4 ⊂ (0 .309, 0 .405), and this indicates that the risk of EDSF

in the picking-up stage is between Very Low (VL) and Low (L). Similarly, Figure 6a shows
the risk level of comprehensive cloud of EDSF in the processing stage compared with the
benchmark clouds. Figure 6b in close-up view clearly shows that ExFM5, ExFM6, ExFM7,
ExFM8 ⊂ (0 .405, 0 .596), then the risk of EDSF in the processing stage is between Low
(L) and High (H). Figure 7a shows the risk level of comprehensive cloud of EDSF in
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the transportation stage compared with the benchmark clouds. Figure 7b shows that
ExFM9, ExFM10 ⊂ (0 .309, 0 .500), the risk of EDSF in the transportation stage is between

Very Low (VL) and Moderate (M). Figure 8a shows the risk level of comprehensive cloud
of EDSF in the delivery stage compared with the benchmark clouds. Figure 8b in close-up
view shows that ExFM11, ExFM12, ExFM13, ExFM14, ExFM15, ExFM16, ExFM17, ExFM18 ⊂
(0 .309, 0 .500); the risk of EDSF in the delivery stage is between Very Low (VL) and Mod-

erate (M).

Table 11. Risk assessment cloud and comprehensive cloud.

O S D Comprehensive Cloud

FM1 (0.363,0.233,0.024) (0.378,0.275,0.026) (0.361,0.241,0.023) (0.368,0.248,0.025)
FM2 (0.346,0.257,0.025) (0.365,0.273,0.026) (0.323,0.286,0.026) (0.347,0.268,0.026)
FM3 (0.325,0.288,0.028) (0.397,0.306,0.028) (0.316,0.308,0.029) (0.346,0.298,0.028)
FM4 (0.326,0.239,0.026) (0.381,0.262,0.026) (0.309,0.264,0.026) (0.340,0.252,0.026)
FM5 (0.410,0.227,0.022) (0.424,0.237,0.023) (0.386,0.240,0.023) (0.409,0.233,0.023)
FM6 (0.461,0.207,0.021) (0.493,0.232,0.022) (0.416,0.231,0.023) (0.461,0.220,0.022)
FM7 (0.488,0.238,0.023) (0.503,0.259,0.024) (0.417,0.258,0.025) (0.477,0.249,0.024)
FM8 (0.511,0.273,0.025) (0.541,0.272,0.025) (0.445,0.257,0.025) (0.507,0.269,0.025)
FM9 (0.382,0.228,0.023) (0.436,0.261,0.025) (0.365,0.241,0.024) (0.396,0.241,0.024)
FM10 (0.428,0.211,0.022) (0.458,0.245,0.023) (0.370,0.244,0.024) (0.425,0.228,0.023)
FM11 (0.449,0.246,0.024) (0.492,0.290,0.027) (0.407,0.271,0.026) (0.455,0.265,0.025)
FM12 (0.383,0.252,0.024) (0.508,0.276,0.026) (0.410,0.262,0.025) (0.430,0.261,0.025)
FM13 (0.390,0.252,0.026) (0.477,0.297,0.028) (0.417,0.286,0.027) (0.425,0.274,0.027)
FM14 (0.399,0.252,0.024) (0.387,0.242,0.023) (0.356,0.252,0.024) (0.386,0.249,0.024)
FM15 (0.414,0.218,0.022) (0.463,0.259,0.023) (0.404,0.235,0.023) (0.429,0.234,0.022)
FM16 (0.349,0.239,0.025) (0.398,0.269,0.025) (0.361,0.265,0.025) (0.368,0.254,0.025)
FM17 (0.365,0.243,0.025) (0.427,0.279,0.026) (0.358,0.264,0.025) (0.384,0.259,0.026)
FM18 (0.321,0.285,0.028) (0.424,0.293,0.027) (0.337,0.284,0.028) (0.358,0.287,0.028)

Figure 5. Evaluation and benchmark clouds for the pick-up stage: (a) overall plot; (b) close-up view.
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Table 12. Relative closeness coefficient of express delivery service FMEA.

Comprehensive Cloud Di
+ Di

− Ui Ranking

FM1 (0.368,0.248,0.025) 0.138 0.032 0.190 15
FM2 (0.347,0.268,0.026) 0.158 0.021 0.117 17
FM3 (0.346,0.298,0.028) 0.158 0.053 0.251 13
FM4 (0.340,0.252,0.026) 0.168 0.000 0.000 18
FM5 (0.409,0.233,0.023) 0.099 0.081 0.448 9
FM6 (0.461,0.220,0.022) 0.062 0.134 0.685 4
FM7 (0.477,0.249,0.024) 0.032 0.143 0.816 2
FM8 (0.507,0.269,0.025) 0.000 0.168 1.000 1
FM9 (0.396,0.241,0.024) 0.109 0.065 0.372 10
FM10 (0.425,0.228,0.023) 0.087 0.097 0.529 8
FM11 (0.455,0.265,0.025) 0.047 0.122 0.721 3
FM12 (0.430,0.261,0.025) 0.071 0.098 0.581 5
FM13 (0.425,0.274,0.027) 0.075 0.095 0.558 6
FM14 (0.386,0.249,0.024) 0.119 0.052 0.306 11
FM15 (0.429,0.234,0.022) 0.080 0.099 0.553 7
FM16 (0.368,0.254,0.025) 0.137 0.032 0.190 16
FM17 (0.384,0.259,0.026) 0.119 0.051 0.299 12
FM18 (0.358,0.287,0.028) 0.145 0.045 0.238 14

Figure 6. Evaluation and benchmark clouds for the processing stage: (a) overall plot; (b) close-up
view.
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Figure 7. Evaluation and benchmark clouds for the transportation stage: (a) overall plot; (b) close-up
view.

4.3. Ranking of EDSF Risks

To obtain the ranking of EDSF risk more accurately and clearly, this paper uses the
TOPSIS method. CPIS and CNIS are determined according to Equations (11) and (12):
B+ = (0.511, 0.269, 0.025); B− = (0.347, 0.254, 0 .026). According to Equations (13) and (14),
the distance between express delivery service comprehensive cloud with CPIS and CNIS are
calculated respectively. Finally, the relative closeness coefficient (Ui) of express delivery service
FMEA is calculated according to Equation (15). The results are shown in Table 12. According to
the results, the overall ranking of the failure modes is: FM8 > FM7 > FM11 > FM6 > FM12
> FM13> FM15 > FM10 > FM5 > FM9> FM17 > FM14 C> FM3 > FM18> FM16 > FM1
> FM2 > FM4.
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Figure 8. Evaluation and benchmark clouds for the delivery stage: (a) overall plot; (b) close-up view.

The EDSF risk ranking in the picking-up stage is: FM3 > FM1 > FM2 > FM4. FM3
has the highest risk among four service failure modes. This indicates that customers
may most likely become unsatisfied and transfer a different express delivery firm if they
encounter the inconsistent charges service failure. The EDSF risk ranking in the processing
stage is: FM8 > FM7 > FM6 > FM5. The service failure with the highest risk is FM8.
Package loss not only bring the benefit losses to customers but also damages a firm’s
reputation. If it is not remedied in time, the customer’s trust in the service provider will
be greatly declined. The risk ranking of EDSF in the transportation stage is: FM10>FM9.
Compared with FM9, the risk of express delivery service failure caused by lack of due
diligence FM10 will reduce the customer’s satisfaction with the express company.

Compared with the first three stages, more service failures are prone to occur in
the delivery stage. According to Table 8, the EDSF risk ranking in the delivery stage
is:FM11 > FM12 > FM13 > FM15 > FM17 > FM14 > FM18 > FM16. Among them,
FM11 is the highest risk of service failure. If express packages cannot arrive as promised,
the timeliness of express delivery service is disrupted, which increases the customer
dissatisfaction and decreases customers’ loyalty to a firm. FM12 is also the second most
significant one. While leaving packages in a pick-up place does provide great convenience
for carriers and customers, the extra charge incurred is usually absorbed by the customers.
Such action without consent from customers indeed leads to dissatisfaction. FM13 is easy
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to occur due to the leakage of customer information. Under the increasing demand for
privacy protection, customers regard this as a major risk.

4.4. Managerial Implications

Based on the above analysis, it can be seen that, among 18 EDSF modes in the four
major stages, the service failures modes with the high risk in the processing and delivery
stages are loss of package, rough handling, sorting error, privacy leakage, unauthorized
delivery to a pick-up place, and poor service attitude. At the same time, six service failures
with the relatively low risk involved in the picking-up and transportation stages are delayed
transportation, lack of due diligence, inconsistent charge rate, service acceptance error,
handover omission, and poor network coverage. On the basis of the research findings,
the following suggestions are developed for express delivery companies, which help the
companies to identify the key failure points, develop service remedial measures, reduce
the loss from failures, and improve service quality and customer satisfaction.

(1) Management should enhance the operations of sorting and processing, by standard-
izing the basic operation procedure and eliminating human caused errors. Firms
are suggested to increase the investment on facilities and equipment to reduce the
handling error caused by aging equipment or software.

(2) The express delivery firms should establish an effective insurance claim system. To
deal with weather and other force majeure factors, the firms should strengthen the
effort to guide customers to purchase the necessary insurance to reduce the loss
caused by those factors. As such, the interests of customers and firms are protected.

(3) The firms should provide continuous education and training to employees to improve
their work skills. Therefore, the employees can become better prepared to cope
with various emergency scenarios and improve their sense of responsibility, service
awareness, and adaptability.

(4) The firms should enhance the tracking of service responsibilities. It is essential to
be able to know who are responsible when service failures occur and to establish a
rewarding system for the employees. Meanwhile, the after-sales service of express
delivery should not be neglected so that customer feedback can be properly collected
and analyzed.

5. Conclusions and Future Perspectives
5.1. Conclusions

In brief, the paper presents an improved Failure Mode and Effects Analysis (FMEA)
approach based on the uncertainty reasoning cloud model and the TOPSIS method to
evaluate the risk of express delivery service failure (EDSF). The approach is implemented
in an empirical study for EDSF in China. The major contributions are summarized as
follows:

(1) This study addresses the research gap on the risk assessment of express delivery
service failure. The established risk assessment indicators for EDSF by the empir-
ical study provide a useful reference for the in-deep study and enrich the body of
knowledge related to express delivery service failure.

(2) Compared with the other decision techniques, this paper provides a new insight of
FMEA by constructing decision matrices of expectation Ex, entropy En, and hyper
entropy He of the cloud model, which describes the randomness and fuzziness in un-
certain information and decreases the information loss in the transformation process.
The integration with TOPSIS method further generates the comprehensive closeness
coefficients. The approach provides a comprehensive decision process and makes the
results more reasonable, and thus it enhances the risk detection ability of EDSF.

(3) Based on the empirical study on express delivery service in China, this paper finds that
six service failure modes with the highest risk are mainly located in the processing and
delivery stages, while six service failures with the relatively low risks are involved in
the picking-up and transportation stages. The findings provide the decision-making
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basis for the express firms to mitigate the express delivery service failure and take
remedial measures.

5.2. Limitation and Future Research Directions

This study has certain limitations. First, although we shared the findings with the
field experts, and they were generally in agreement. However, the rankings have not had
the opportunity to be validated by their day-to-day operations through long-term data
accumulation. Second, the data collection in the empirical study is only limited to the
well-known major express companies, and it may not cover all representative customer
groups in China. Third, although this research is intended to understand the critical express
service failure modes through field study with focus group, customer survey, and expert
questionnaires, the regional differences and correlation among service failure modes is
not considered. Last, the research focuses on the risk evaluation of express service failure,
while the corresponding recovery and remedial measures for the critical service failures
are not addressed.

In the future, the immediate research extensions are called to address the above limita-
tions. While it is for the first time that EDSF has been classified using such classification,
the findings need to be further validated through long-term data collection. In addition,
research could be extended through data collection from small to medium sized delivery
service companies in China and expanding the customer questionnaires to more user
groups. In this way, differentiation in findings might be obtained between the major
companies and the smaller companies and/or different customer groups. Similarly, the
methodology may be adopted for investigating express service failures in other countries,
such that new issues might be identified and regional difference could be revealed. Mean-
while, the remedial measures and recovery issues from express delivery service failures
should be further studied to effectively prevent and avoid high-risk service failures. In
addition, the proposed FMEA approach of combining the cloud model with the TOPSIS
method deserves efforts for improvement. In this regard, other MCDM methods [52,53,68]
could be attempted and compared with the proposed approach in this study. Lastly, when
the dataset from empirical studies is meaningfully large, machine learning approaches
could be incorporated to further improve robustness.

Author Contributions: Conceptualization, H.S. and Q.T.; methodology, H.S. and Q.T.; software, Q.T.;
validation, H.S., Q.T. and J.S.; formal analysis, H.S., Q.T. and J.S.; investigation, H.S., Q.T. and J.S.;
resources, H.S., Q.T. and J.S.; data curation, Q.T., Q.Z.; writing—original draft preparation, H.S., Q.T.;
writing—review and editing, H.S., J.S.; visualization, H.S., Q.T., Q.Z.; supervision, H.S., J.S.; project
administration, H.S.; funding acquisition, H.S. All authors have read and agreed to the published
version of the manuscript.

Funding: The first and second authors recognize research grants from the Humanities and Social
Sciences Fund of Ministry of Education in China (Grant No.19YJA790070) and Shaanxi Federation of
Social Sciences (Grant No.2020Z406).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are available upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dospinescu, O.; Dospinescu, N.; Bostan, I. Determinants of e-commerce satisfaction: A comparative study between Romania and

Moldova. Kybernetes 2021. [CrossRef]
2. Holloway, B.B.; Beatty, S.E. Service failure in online retailing: A Recovery Opportunity. J. Serv. Res. 2003, 6, 92–105. [CrossRef]
3. Forbes, L.P.; Kelley, S.W.; Hoffman, K.D. Typologies of e-commerce retail failures and recovery strategies. J. Serv. Mark. 2005, 19,

280–292. [CrossRef]
4. Subramanian, N.; Gunasekaran, A.; Yu, J. Customer satisfaction and competitiveness in the Chinese E-retailing: Structural

equation modeling (SEM) approach to identify the role of quality factors. Expert Syst. Appl. 2014, 41, 69–80. [CrossRef]

http://doi.org/10.1108/K-03-2021-0197
http://doi.org/10.1177/1094670503254288
http://doi.org/10.1108/08876040510609907
http://doi.org/10.1016/j.eswa.2013.07.012


J. Theor. Appl. Electron. Commer. Res. 2021, 16 2512

5. Zemke, R.; Connellan, T. E-Service: 24 Ways to Keep Your Customers When the Competition Is Just a Click Away; AMACOM: New
York, NY, USA, 2001.

6. Chen, M.Y.; Teng, C.I. A comprehensive model of the effects of online store image on purchase intention in an e-commerce
environment. Electron. Commer. Res. 2013, 13, 1–23. [CrossRef]

7. Chen, Y.H.; Wu, J.J.; Chang, H.T. Examining the mediating effect of positive moods on trust repair in e-commerce. Internet Res.
2013, 23, 355–371. [CrossRef]

8. Kim, Y.; Chang, Y.; Wong, S.F.; Park, M.-C. Customer attribution of service failure and its impact in social commerce environment.
Int. J. Electron. Cust. Relatsh. Manag. 2014, 8, 136–158. [CrossRef]

9. Vakeel, K.A.; Sivakumar, K.; Jayasimha, K.R.; Dey, S. Service failures after online flash sales: Role of deal proneness, attribution,
and emotion. J. Serv. Manag. 2018, 29, 253–276. [CrossRef]

10. Das, S.; Mishra, A.; Cyr, D. Opportunity gone in a flash: Measurement of e-commerce service failure andjustice with recovery as a
source of e-loyalty. Decis. Support Syst. 2019, 125, 113–130. [CrossRef]

11. Bitner, M.J.; Booms, B.H.; Mohr, L.A. A Critical Service Encounters: The Employee’s Viewpoint. J. Mark. 1994, 58, 95–106.
[CrossRef]

12. Maxham, J.G., III. Service recovery’s influence on consumer satisfaction, positive word-ofmouth, and purchase intentions. J. Bus.
Res. 2001, 54, 11–24. [CrossRef]

13. Michel, S. Analyzing service failures and recoveries: A process approach. Int. J. Serv. Ind. Manag. 2001, 12, 20–33. [CrossRef]
14. Voorhees, C.M.; Brady, M.K. A Service Perspective on the Drivers of Complaint Intentions. J. Serv. Res. 2005, 8, 192–204. [CrossRef]
15. Tan, C.; Benbasat, I.; Cenfetelli, R.T. An exploratory study of the formation and impact of electronic service failures. MIS Q. 2016,

40, 1–29. [CrossRef]
16. Hess, R.L.; Ganesan, S.; Klein, N.M. Service failure and recovery: The impact of relationship factors on customer satisfaction. J.

Acad. Marke. Sci. 2003, 31, 127–145. [CrossRef]
17. Vázquez-Casielles, R.; Suárez Álvarez, L.; Díaz Martín, A.M. Perceived justice of service recovery strategies: Impact on customer

satisfaction and quality relationship. Psychol. Mark. 2010, 27, 487–509. [CrossRef]
18. Hsieh, A.-T.; Yen, C.-H. The effect of customer participation on service providers’ job stress. Serv. Ind. J. 2005, 25, 891–905.

[CrossRef]
19. Lewis, B.R.; McCann, P. Service failure and recovery: Evidence from1998 the hotel industry. Int. J. Contemp. Hosp. Manag. 2004,

16, 6–17. [CrossRef]
20. Mattila, A.S. The effectiveness of service recovery in a multi-industry setting. J. Serv. Mark. 2001, 15, 583–596. [CrossRef]
21. Miller, J.L.; Craighead, C.W.; Karwan, K.R. Service recovery: A framework and empirical investigation. J. Oper. Manag. 2000, 18,

387–400. [CrossRef]
22. Lin, W.B. Service failure and consumer switching behaviors: Evidence from the insurance industry. Expert Syst. Appl. 2010, 37,

3209–3218. [CrossRef]
23. Gelbrich, K. Anger, frustration, and helplessness after service failure: Coping strategies and effective informational support. J.

Acad. Market. Sci. 2010, 38, 567–585. [CrossRef]
24. Durvasula, S.; Lysonski, S.; Mehta, S.C. Business-to-business marketing service recovery and customer satisfaction issues with

ocean shipping lines. Eur. J. Mark. 2000, 34, 433–452. [CrossRef]
25. Zhong, Y.; Lai, I.K.W.; Guo, F.; Tang, H. Effects of Partnership Quality and Information Sharing on Express Delivery Service

Performance in the E-commerce Industry. Sustainability 2020, 12, 8293. [CrossRef]
26. Saura, I.G.; Francés, D.S.; Contrí, G.B. Logistics service quality: A new way to loyalty. Ind. Manage. Data Syst. 2008, 108, 650–668.

[CrossRef]
27. Ping, H.; Huang, D.Q. Logistics Service Failure and Logistics Service Recovery Measures Research. Proceedings of 2011

International Conference on Management Science and Intelligent Control (ICMSIC 2011), Hefei, China, 24–26 August 2011;
Volume 2, pp. 600–603.

28. Giovanis, A.N.; Tsoukatos, E. On the relationships between logistics service deliverables, customer satisfaction and loyalty in
industrial supply chains. J. Int. Bus. Entrep. Dev. 2013, 7, 1549–1564. [CrossRef]

29. Ma, P.; Yao, N.; Yang, X. Service Quality Evaluation of Terminal Express Delivery Based on an Integrated SERVQUAL-AHP-
TOPSIS Approach. Math. Probl. Eng. 2021, 2021, 8883370. [CrossRef]

30. Lin, Y. Exploring the service quality in the e-commerce context: A triadic view. Ind. Manage. Data Syst. 2016, 116, 388–415.
[CrossRef]

31. Adebayo, A.I.T. An Evaluation of the Impact of Business-To-Customer (B2C) Logistics Service Quality (LSQ) on Customer
Satisfaction in Niger. IOSR J. Bus. Manag. 2017, 19, 111–115.

32. Giìdener Özaydın, N.G. The Service Failure and Recovery Strategies in Logistics Service Sector. Celal Bayar Üniversitesi Sos.
Bilimler Dergisi 2016, 14, 445–449. [CrossRef]

33. Gyu, S.J. Analysis regarding Complaints of Courier Consumers and Workers in the Parcel Delivery Service by using Topic Model.
J. Converg. Inf. Technol. 2020, 10, 39–48.

34. Liu, L.G.; Zhang, C.X.; LI, P. Research on Logistics Management in Electronic Commerce. Proceedings of 2018 International
Conference on Modeling, Simulation and Analysis, Wuhan, China, 7–8 February 2018; pp. 149–154.

http://doi.org/10.1007/s10660-013-9104-5
http://doi.org/10.1108/10662241311331772
http://doi.org/10.1504/IJECRM.2014.066890
http://doi.org/10.1108/JOSM-08-2017-0203
http://doi.org/10.1016/j.dss.2019.113130
http://doi.org/10.1177/002224299405800408
http://doi.org/10.1016/S0148-2963(00)00114-4
http://doi.org/10.1108/09564230110382754
http://doi.org/10.1177/1094670505279702
http://doi.org/10.25300/MISQ/2016/40.1.01
http://doi.org/10.1177/0092070302250898
http://doi.org/10.1002/mar.20340
http://doi.org/10.1080/02642060500134162
http://doi.org/10.1108/09596110410516516
http://doi.org/10.1108/08876040110407509
http://doi.org/10.1016/S0272-6963(00)00032-2
http://doi.org/10.1016/j.eswa.2009.09.059
http://doi.org/10.1007/s11747-009-0169-6
http://doi.org/10.1108/03090560010311957
http://doi.org/10.3390/su12208293
http://doi.org/10.1108/02635570810876778
http://doi.org/10.1504/JIBED.2013.052132
http://doi.org/10.1155/2021/8883370
http://doi.org/10.1108/IMDS-04-2015-0116
http://doi.org/10.18026/cbusos.07810


J. Theor. Appl. Electron. Commer. Res. 2021, 16 2513

35. Geum, Y. A systematic approach for diagnosing service failure: Service-specific FMEA and grey relational analysis approach.
Math. Comput. Model. 2011, 54, 3126–3142. [CrossRef]

36. Bozdag, E. Risk prioritization in Failure Mode and Effects Analysis using interval type-2 fuzzy sets. Expert Syst. Appl. 2015, 42,
4000–4015. [CrossRef]

37. Liu, H.C. Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Syst. Appl. 2013, 40, 828–838.
[CrossRef]

38. Wang, Y.M.; Chin, K.S.; Poon, G.K.; Yang, J.B. Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric
mean. Expert Syst. Appl. 2009, 36, 1195–1207. [CrossRef]

39. Gargama, H.; Chaturvedi, S.K. Criticality assessment models for failure mode effects and criticality analysis using fuzzy logic.
IEEE Trans. Reliab. 2011, 60, 102–110. [CrossRef]

40. Pillay, A.; Wang, J. Modified failure mode and effects analysis using approximate reasoning. Reliab. Eng. Syst. Safe. 2003, 79,
69–85. [CrossRef]

41. Liu, H.C.; Liu, L.; Bian, Q.H. Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert
Syst. Appl. 2011, 38, 4403–4415. [CrossRef]

42. Ahmet, C.K.; Mehmet, E.L. Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Syst. Appl.
2012, 39, 61–67.

43. Hyung, S.O.; Seung, K.M.; Jung, S.Y. Service-Oriented FMEA and Grey Relational Analysis Based Approach to Service Reliability
Assessment. Int. J. Adv. Comput. Technol. 2013, 5, 225–234.

44. Liu, H.C.; Liu, L.; Liu, N.; Mao, L.X. Risk evaluation in failure mode and effects analysis with extended VIKOR method under
fuzzy environment. Expert Syst. Appl. 2012, 39, 12926–12934. [CrossRef]

45. Liu, H.C.; You, J.X.; Lin, Q.L.; Li, H. Risk assessment in system FMEA combining fuzzy weighted average with fuzzy decision-
making trial and evaluation laboratory. Int. J. Comput. Integ. Manuf. 2015, 28, 701–714. [CrossRef]

46. Liu, H.C.; You, J.X.; Shan, M.M.; Shao, L.N. Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach.
Soft Comput. 2015, 19, 1085–1098. [CrossRef]

47. Kok, C.C.; Chian, J.; Kai, M.T. A perceptual computing-based method to prioritize failure modes in failure mode and effect
analysis and its application to edible bird nest farming. Appl. Soft Comput. 2016, 49, 734–747.

48. Vodenicharova, M. Opportunities for the applications of FMEA Model in logistics processes in Bulgarian enterprises. Logist.
Sustain. Transp. 2017, 8, 31–41. [CrossRef]

49. Zhang, H.; Dong, Y.; Palomares-Carrasosa, I.; Zhou, H. Failure mode and effect analysis in a linguistic context: A consensus-based
multiattribute group decision-making approach. IEEE Trans. Reliab. 2018, 68, 566–582. [CrossRef]

50. Alvand, A.; Mirhosseini, S.M.; Ehsanifar, M.; Zeighami, E.; Mohammadi, A. Identification and assessment of risk in construction
projects using the integrated FMEA-SWARA-WASPAS model under fuzzy environment: A case study of a construction project in
Iran. Int. J. Constr. Manag. 2021. [CrossRef]

51. Khalilzadeh, M.; Ghasemi, P.; Afrasiabi, A.; Shakeri, H. Hybrid fuzzy MCDM and FMEA integrating with linear programming
approach for the health and safety executive risks: A case study. J. Model. Manag. 2021. [CrossRef]
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