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Abstract: Cloud computing has rapidly penetrated enterprise and user computing markets with three
prominent service models: software as a service (SaaS), platform as a service (PaaS), and infrastructure
as a service (IaaS). Cloud computing has also proven to be one of the most important environmentally
sustainable technological innovations in the year of Industrial Revolution 4.0. While SaaS and IaaS
are the two largest revenue generating services in the cloud service market, the pricing and profit
generating mechanisms of the SaaS and IaaS providers have not yet been well understood. Unless the
SaaS providers’ profit-maximizing decision is considered, any pricing decision by the IaaS providers
is likely to be suboptimal. Hence, this paper proposes a Stackelberg game pricing decision model
with the aim of maximizing the profit of the IaaS provider, given the best response of the SaaS
provider. This paper develops an analytical closed-form solution to the pricing problem and presents
sensitivity analyses to give valuable insights into the pricing dynamics and negotiation between the
SaaS provider and IaaS provider. Finally, implications of these findings and future research directions
are discussed.

Keywords: cloud computing; SaaS; IaaS; pricing; reserved instance; spot instance; on-demand instance;
autoscaling; profit; decision model; Stackelberg game

1. Introduction

Cloud computing is one of the most paradigm-shifting Internet technology develop-
ments. With the development of hyper-speed Internet, cloud computing has become the
central computing resource in almost every industry. Cloud computing makes it possible
for companies to use IT resources as a service without upfront investment costs, and is
expected to grow at a rapid speed primarily because of the flexibility to satisfy fluctuating
demands [1,2]. Cloud computing has the potential to shift business to business (B2B)
e-commerce toward more open, loosely-coupled electronic exchanges [3]. Additionally,
countries around the world have been adopting new energy-efficient technologies that
help create a more sustainable economy [4]. Cloud computing is energy efficient and an en-
vironmentally sustainable innovation that offers rich opportunities for innovating existing
services and introducing creative new ones [5]. Cloud computing also helps companies
achieve rapid process and product innovations designed for sustainable economic, social,
and environmental growth [6].

The pricing clarity and transparency to cloud customers are two of the key success
factors for the growth of cloud services [7]. Cloud customers often commit more for services
than needed when the cloud providers’ pricing strategies are designed to maximize their
own profit and revenue [8]. However, proper pricing can not only increase their profit but
also help customers purchase cloud services efficiently [9]. To meet the fluctuating demands
of cloud customers created by peak and seasonal demands, cloud providers charge services
via on-demand pricing and reserve pricing [10]. The software industry is also heavily
affected by cloud computing. Moving from on-premise software to cloud-based SaaS
affects all business model components including the customer value proposition, resource
base, value configuration, and financial flows [11].
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According to Gartner [12], SaaS will remain the largest market segment in the future.
The second-largest market segment is IaaS, which will reach $50 billion in 2020. While major
cloud providers provide all types of services, many SaaS providers depend on the IaaS
providers. Many specialized niche software applications have been developed by relatively
small/medium-sized software vendors and have been offered as SaaS with infrastructure
support from IaaS providers. For example, HubSpot’s CRM is hosted on Amazon Web
Services (AWS) and the Google Cloud Platform (GCP) [13].

SaaS provides the opportunity to not only lower cost, but also deliver software appli-
cations to end-users over the Internet, providing a much more flexible experience regarding
time and location of access [14]. While SaaS providers are software providers to users,
most of them are customers of IaaS providers, which provide infrastructure hosting services
to customers. Pricing and performance of IaaS are important factors for the sustainable
revenues and profits of the SaaS providers and the IaaS providers. Despite potential bene-
fits of mixing the on-demand instance, spot instance, and reserved instance under a highly
fluctuating demand, there has been no study on how the pricing of the IaaS provider affects
the SaaS provider’s purchasing decision on the three pricing options.

In light of the gap in the prior studies, this paper investigates the pricing and pur-
chasing dynamics between SaaS providers and IaaS providers. This paper develops a
Stackelberg game pricing decision model in which the IaaS provider is a leader and the
SaaS provider is a follower in the pricing and purchasing decisions. In Section 2, prior stud-
ies are reviewed. In Section 3, a Stackelberg game pricing decision model is proposed which
maximizes the profit of the IaaS provider given the best response of the SaaS provider.
An optimal solution to the pricing problem is derived using a backward induction process
and the Newton Raphson root-finding algorithm. In Section 4, sensitivity analyses of
pricing decisions are conducted. In Section 5, implications for researchers and managers,
limitations of the study, and future research directions are discussed.

2. Related Works

This section reviews prior works on pricing models with the aim of assessing the
current status of research and practices and identifying gaps. While there exist pricing
studies in the software industry [15], pricing and profit management between the IaaS
providers and the SaaS providers has not been well investigated. Research on business-to-
business (B2B) marketing emphasizes the importance of pricing for every firm’s profitability
and long-term survival [16]. Likewise, the sustainable success of cloud providers in
large part depends on achieving profit maximization through superior cloud services and
competitive prices. Market-based, value-based, and cost-based approaches are the three
main pricing approaches that have been widely used [17]. Table 1 summarizes pricing
approaches, pricing models, pricing schemes, research methods, and the key findings of
the studies.

A number of researchers apply value-based pricing to cloud services. A reinforcement
learning (RL)-based dynamic cloud pricing scheme is proposed to optimize both cloud
provider’s profit and the costs of users with distinct personalities [18]. A stochastic dynamic
program is developed to solve the cloud provider’s pricing problem [19,20]. Game theory
is also used to analyze pricing schemes [21]. Lu et al. [22] propose a QoS-based auction
approach that can efficiently allocate resources according to customers’ QoS preferences.
Song and Guérin [23] focus on exploiting heterogeneity across jobs in terms of value and
sensitivity to execution delay, with a joint distribution that determines their relationship
across the user population. Wu et al. [24] demonstrate that the extrinsic values of the cloud
services would not only become one of the competitive advantages for cloud providers
to lead the cloud market but also increase the profit margin. Dimitri [25] presents a math-
ematical model to determine the relevant parameters of pricing schemes for on-demand
instances, reserved instances, and spot instances to maximize the provider’s revenue.
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Table 1. Pricing Approaches, Pricing Models, Pricing Schemes, Research Methods, and Key Findings of Select Studies.

Pricing Strate-
gies/Authors Pricing Models Pricing

Schemes Research Methods Key Findings

Value-based/
Cong et al. [18] Dynamic Spot

Machine learning
(reinforcement

learning)

Reinforcement learning (RL)-based dynamic cloud
pricing scheme can achieve up to 19.39% more profit

than the state-of-the-art scheme.

Value-based/
Jahandideh et al.

[19]
Dynamic Spot Mathematical

A contract-based model of selling interactive cloud
services achieves significantly greater revenue than the

prevalent alternative model.

Value-based/
Xu and Li [20] Dynamic Spot Mathematical

Optimality conditions and structural results are
obtained for revenue maximization, which yield
insights that the relative rewards as well as the

optimal price exhibit monotonicity.

Value-based and
Cost-based/

Chun and Choi
[21]

Fixed On-demand
and Reserved Mathematical

Service providers prefer pay-per-use pricing when the
providing cost is lower. However, when the cost is

higher, service providers prefer subscription pricing.

Value-based/
Lu et al. [22] Dynamic Spot Mathematical

A novel auction approach that can efficiently allocate
resources according to customers’ QoS preferences can

generate more revenue than a fixed-price strategy.

Value-based/
Song and Guérin

[23]
Dynamic Spot Mathematical

Correlation between delay sensitivity and job value
needs to exceed a certain threshold for a service

offering that differentiates based on speed of execution
to be beneficial to the provider.

Value-based/
Wu et al. [24] Fixed On-demand

Mathematical
prediction model

with real data

Value-based pricing for the service would not only
become one of the competitive advantages, but also

increase the profit margin.

Value-based/
Dimitri [25]

Fixed and
dynamic

Reserved,
On-demand,

and Spot
Mathematical

The coexistence of an on-demand instance, a reserved
instance, and a spot instance may be due to the need

for a large coverage of the potential demand.

Cost-based/
Lee [26] Fixed Reserved and

On-demand Game theory
Discrimination pricing for multiple customers

generates a slightly larger profit than a uniform price
for all customers.

Cost-based/
Nasiriani et al.

[27]
Dynamic Spot Mathematical and

empirical

A pricing scheme was proposed to more fairly
distribute a cloud’s costs among its tenants for the

costs related to customers’ peak demands.

Market-based/
Rohitratana and

Altmann [28]
Fixed On-demand Simulation

The demand-driven pricing scheme is the best
performer but is difficult to use due to imperfect

knowledge about customers and competitors.

Market-based/
Jin et al. [29] Fixed On-demand Simulation

The proposed optimized fine-grained pricing scheme
increases the maximum social welfare significantly

compared to the classic coarse-grained hourly
pricing scheme.

Market-based/
Pal and Hui [30] Fixed Reserved Game theory The pricing game exhibits a unique and optimal

Nash equilibrium.

Market-based/
Tang and Chen

[31]
Fixed Reserved Game theory

The conditions under which there exists a unique
Nash equilibrium was derived for a Stackelberg

pricing game by the IaaS provider.

Market-based/
Chen, Lee, and
Moinzadeh [32]

Fixed Reserved and
On-demand Game theory

Customers with lower demand volatility would prefer
the reserved instance, while those with higher demand

volatility would prefer the on-demand instance.

Market-based/
Huang,

Kauffman, and
Ma [33]

Dynamic Spot Mathematical
A hybrid strategy (fixed-price reserved services to

spot-price on-demand services) outperforms a
one-service-only strategy in most cases.

Market-based/
Kansal et al. [34] Dynamic Spot Computational

(genetic algorithm)

The dynamic demand-based pricing model for
on-demand IaaS cloud service instances increases
users’ utility considerably in comparison with the

existing utility-based pricing model.
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Cost-based pricing is a pricing approach where the actual cost of producing and
offering the cloud service unit such as virtual machine (VM) instances is the basis for
prices. When the cloud providers pursue cost-based pricing as their competitive advantage,
they try to become the lowest cost provider with a good quality service and the effort is
made to reduce cost as much as possible. An in-depth understanding of the cost compo-
nents of cloud services is necessary for cost-based pricing [26]. Cost categories of cloud
services include data centers, services, hardware, software, network, and development.
The specific weights of the individual cost elements would vary, depending on the types of
the cloud services such as SaaS, PaaS, and IaaS.

Lee [26] develops a Stackelberg game decision model from the perspectives of both
the IaaS providers and the corporate cloud customers for the IaaS provider’s profit maxi-
mization, given the best response of the corporate cloud customers to minimize their cloud
cost. The analytical results show the effectiveness of the decision model in achieving a
sustainable profit for both the IaaS providers and the corporate cloud customers, and that
discrimination pricing for multiple customers generates a slightly larger profit than a
uniform price. Nasiriani et al. [27] note that the costs incurred by cloud providers for the
operation of their datacenters are often determined in large part by the peak demands.
Assessing the cost incurred at the peak demands, they develop a pricing scheme to more
fairly distribute a cloud’s costs among its tenants.

Market-based pricing is competition-based as the demand and supply of cloud services
determines the price. Market-based pricing applies when services are commodity-type
or there exist many buyers and sellers in a market. Rohitratana and Altmann [28] use
simulation to investigate market-based pricing in SaaS and perpetual software (PS) license
markets. They find that the demand-driven pricing scheme is best, but difficult to use due
to imperfect knowledge about customers and competitors. As an alternative, they suggest
penetration pricing and price skimming as an easy-to-implement solution. Jin et al. [29] also
use simulation to develop a dynamically optimized fine-grained pricing scheme to solve
the partial usage waste issue with a virtual machine-maintenance overhead. They show
the proposed fine-grained pricing scheme increases social welfare significantly compared
to the classic coarse-grained hourly pricing scheme.

Game theory has been widely used in many disciplines, such as economics, computer
science, and political science, to develop mathematical models of interactions among
rational decision-makers and measure payoffs at the equilibrium if any exists. Game theory
has also been applied to study pricing and payoffs among cloud providers and customers
as rational decision-makers. Pal and Hui [30] develop a non-cooperative game model
where public cloud providers compete on price and quality of service (QoS) levels related
to a particular application type and show the existence and convergence of price in Nash
equilibria. Tang and Chen [31] develop a Stackelberg game model to investigate pricing in
the IaaS provider market with a set of SaaS providers and derive the conditions under which
there exists a unique Nash equilibrium. Chen, Lee, and Moinzadeh [32] also use game
theory to evaluate reserved pricing and on-demand pricing. They show that customers
with lower demand volatility would prefer reserved pricing, while those with higher
demand volatility would prefer on-demand pricing.

Spot pricing is a dynamic market-based pricing scheme to sell computing capacity.
The spot instances are interruptible if other prioritized instances require access to the
computing resources. Huang, Kauffman, and Ma [33] investigate whether interruptible
spot instances are valuable to cloud providers. They note that the presence of interruptions
serves as a quality differentiator between spot instance services and reserved instance ser-
vices. A dynamic demand-based pricing model for on-demand IaaS cloud service instances
is developed to determine the price of provisioning the cloud services by considering the
provider’s and users’ utility concurrently [34]. IaaS providers are offering various types
of spot services with different service names, such as Amazon EC2 spot instances [35],
Google’s preemptible virtual machines [36], and Microsoft Azure’s low-priority virtual
machines [37].
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The review of prior studies on cloud pricing reveal that the majority of studies focus on
value-based pricing. Value-based pricing is used to charge customers according to the value
created for the customer [38]. Value-based pricing is a potentially powerful tool to capture
a fair share of the value created [39] and to gain a competitive advantage [40]. Based on the
perceived value customers are willing to pay for cloud services, cloud providers will set
the price to maximize their profit [41]. However, while customers’ perceived value is the
fundamental basis for all marketing activities [42], subjective value perception makes the
valuation of the service very challenging.

The cost-based pricing model is the least investigated. On-demand, spot, and reserved
instance pricing are widely used pricing schemes for either the goal of revenue or profit
maximization. Most studies develop mathematical models to analyze the pricing dynamics.
Most studies focus on the pricing of IaaS. Based on the literature review, it was clear that
pricing and profit management among different types of cloud providers have not received
a proper attention. For example, pricing and profit interactions between IaaS providers
and SaaS providers have not been investigated.

This gap in the prior studies motivates us to develop a Stackelberg game pricing
decision model in which the IaaS provider is a leader and the SaaS provider is a follower in
the pricing and purchasing decisions. The Stackelberg game was originally developed by
Heinrich Freiherr von Stackelberg in 1934 in the context of static competition games [43].
In the Stackelberg game, the leader announces his/her decision first to maximize the
leader’s profit given the knowledge of the best response of the follower. Next, the follower
observes the leader’s decision and makes the best response to it. In the cloud service market,
pricing and purchasing interactions between the IaaS provider and the SaaS provider can
be captured through the Stackelberg game. The IaaS provider is the leader who decides
on the price to maximize the leader’s profit with the knowledge of the best response of
the SaaS provider who is the follower. Once the SaaS provide learns the price of the IaaS
provider, he/she makes the best purchasing decision.

This type of relationship is quite commonly observed in the cloud market where the
IaaS provider has a dominant market position and a small/medium-sized SaaS provider
has few choices of reliable IaaS providers. In addition, major IaaS providers are willing
to negotiate mutually agreeable prices with strategic partners. For example, Amazon
AWS is known to negotiate service prices with large corporate customers for large volume
cloud services through the AWS Enterprise Discount Program (EDP) [44]. Understanding
the pricing and profit dynamics between the SaaS provider and the IaaS provider and
negotiating mutually agreeable pricing will create a sustainable business relationship.

3. Determining Optimal Pricing of IaaS with a Stackelberg Game

This section discusses the development of a pricing and profit management model
based on a Stackelberg game in which the IaaS provider determines the price of IaaS,
given the knowledge of the best response of the SaaS provider to the prices of the three
instance types. The IaaS provider considers the best response functions of the SaaS provider
through a backward induction process. Currently, the three popular pricing schemes are
reserved instance pricing, on-demand pricing, and spot instance pricing. This model
helps cloud providers understand how the pricing of the IaaS provider affects the SaaS
provider’s purchasing decision on the three pricing options. The nomenclature used for the
Stackelberg game pricing and profit management models is given at the end of this paper.

In the following, the decision model of the SaaS provider is discussed first and the
decision model of the IaaS provider follows.

3.1. SaaS Provider’s Decision Model

The SaaS provider’s decision is to choose the best mix of the reserved instances
and autoscaling group of the on-demand instances and the spot instances to maximize
his/her profit given the prices of the three instance types. Autoscaling monitors the
computing demand of SaaS users and automatically adjusts capacity to maintain steady,
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predictable performance at the lowest possible cost. While a proper autoscaling of the
on-demand instances and the spot instances gives a reduced expense for the SaaS provider,
spot instances suffer from frequent service interruptions when the resources are short and
allocated to other tasks. The SaaS provider chooses their autoscaling ratio between the
on-demand instances and the spot instances. While the price of the spot instance is typically
10% of the price of the on-demand instance, the interruption rate of the spot instances
should be taken into account in determining the autoscaling ratio of the on-demand
instances and the spot instances. For example, assume that the spot instance has a 10%
interruption rate. The autoscaling group of 50% for spot instances and 50% for on-demand
instances would result in a 5% overall interruption rate for the autoscaling group.

Given the price differential, the SaaS provider attempts to maximize his/her profit
with an optimal mix of the reserved instances, the on-demand instances, and the spot
instances. The purchase of the on-demand instances and the spot instances is made in an
autoscaling weight of the on-demand instance (e.g., 50% for the on-demand instances and
the remaining 50% for the spot instances). The optimal number of reserved instances, s*,
and the autoscaling weight of the on-demand instance, a*, are obtained from the following
profit function TPSaaS of the SaaS provider:

(s∗, a∗) = arg max
s,a

TPSaaS = (n·m)− (k·s)− (1− (1− a)·r)·(a·
∫ ∞

s λe−λx(x− s)dx·p + (1− a)·∫ ∞
s λe−λx(x− s)dx·(o·p))− (1− a)·r

∫ ∞
s λe−λx(x− s)dx·(n·m·λ)

(1)

where n·m is the SaaS subscription revenue, k·s is the total cost for the IaaS reserved
instances, (1− a)·r is the interruption rate for the autoscaling group (i.e., for both the
on-demand instances and the spot instances), (1− (1− a)·r)·a·

∫ ∞
s λe−λx(x− s)dx·p is the

total cost of the on-demand instances, (1− (1− a)·r)·(1− a)·
∫ ∞

s λe−λx(x− s)dx·(o·p) is
the total cost of the spot instances, and (1− a)·r

∫ ∞
s λe−λx(x− s)dx·(n·m·λ) is the revenue

loss related to a service outage due to the interruption of the spot instances.
In the SaaS providers’ decision model, the number of reserved instances, s, and the

autoscaling weight of the on-demand instance, a, are the decision variables. Equation (1)
assumes that if the actual computing need exceeds the number of the reserved instances,
the autoscaling group of the on-demand and spot instances is used to meet the shortage
of the IaaS instances,

∫ ∞
s λe−λx(x− s)dx. However, if the actual computing need is lower

than the number of the reserve instances purchased, there will be underutilized reserved
instances,

∫ s
0 λe−λx(s− x)dx, unless the idle portion is allowed to be sold to the cloud mar-

ketplace. In this model, an exponential distribution of the computing demand is assumed.
However, it is possible to extend the model with other types of probabilistic distributions.

Applying integration techniques, Equation (1) is transformed into Equation (2).

(s∗, a∗) = arg max
s,a

TPSaaS(s, a) = (n·m)− (k·s)− (1− r + ra)·(a·p)·
(

1
λ e−λs

)
− (1− r + ra)·(1− a)

(o·p)·
(

1
λ e−λs

)
− (1− a)·r·(n·m·λ)·

(
1
λ e−λs

) (2)

Differentiating TPSaaS(s, a) in terms of s leads to:

dTPSaaS (s, a)
ds

= −k + e−λs
(

ap− rap + ra2 p + op− orp + 2 orap − aop− a2 orp + nmλr− nmλra
)
= 0 (3)

Then, the optimal number of IaaS reserved instances, s*, is:

s∗ =
ln
(

k
(ap−rap+ra2 p+op−orp+2orap−aop−a2orp+nmλr−nmλra)

)
−λ

(4)

Next, differentiating TPSaaS(s, a) in terms of a leads to:

dTPSaaS (s, a)
da

=

(
1
λ

e−λs
)
(−p + rp− 2rpa + op− 2orp + 2orp a + nmλr) = 0 (5)
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Then, the optimal autoscaling weight of the on-demand instances, a*, is:

a∗ =
p− rp− op + 2orp− nmλr

−2rp + 2orp
(6)

Equation (6) shows that a* is independent of the optimal number of reserved instances,
s*. Equation (7) is the second derivative of Equation (2) in terms of s. Given a is fixed,
the second derivative is always negative for positive values of s, indicating concave down
with a local maximum at s*.

d2TPSaaS (s, a)
ds2 = −λe−λs

(
ap− rap + ra2 p + op− orp + 2orap − aop− a2 orp + nmλr− nmλra

)
(7)

Equation (8) is the second derivative of Equation (2) in terms of a. The second
derivative is negative, indicating concave down, for all values of a with the maximum at a*.

d2TPSaaS (s, a)
da2 =

(
1
λ

e−λs
)
(−2rp + 2 orp) < 0 (8)

3.2. IaaS Provider’s Decision Model

Depending on the way the SaaS provider chooses the autoscaling group and the
reserve instances, the IaaS provider will offer different prices for the instance types to
maximize his/her profit. Currently, the price of the on-demand instance is comparable
among IaaS cloud providers, but the discount rates of their reserved instances vary widely.
For example, Microsoft offers customers 40–70% discount for one- or two-year reserved
instances compared to the price of the on-demand instance. Amazon offers a 75% discount
to some of EC2’s reserved instance compared to the price of their on-demand instance.
In this decision model, the IaaS provider makes a pricing decision on the reserve instance
with the knowledge of the best response of the SaaS provider, while fixing the price of the
on-demand instance. Discounting the price of the reserved instance would encourage the
SaaS provider to purchase more reserved instances over the autoscaling group up to the
point where the marginal profit from the use of the reserved instance is equal to marginal
profit from the use of the autoscaling group.

For the IaaS provider, finding the optimal price of the reserved instance is a compli-
cated task, since the IaaS provider needs to know the best response of the SaaS provider.
This situation is modeled as a Stackelberg game in which the IaaS provider is the leader,
whose strategy is determining the optimal pricing of the reserved instance, k*, and the
SaaS provider is the follower whose strategy is determining the optimal number of the
reserved instances, s*, and the optimal autoscaling weight of the on-demand instance, a*.
The Stackelberg equilibrium is defined as:

k∗ = arg max
k

TPIaaS(k) = (k− c)·s + (1− r + ra)·(a·
∫ ∞

s λe−λx(x− s)dx·(p− g) + (1− a)·∫ ∞
s λe−λx(x− s)dx·(o·p− g))

s.t.k = arg max
s,a

TPSaaS(s, a)

(9)

Applying integration techniques, Equation (9) is transformed into Equation (10).

k∗ = arg max
k

TRIaaS(k) = (k− c)·s + ((1− r + ra)(ap− ag) + (1− r + ra)·(op− g− aop+

ag))
(

1
λ e−λs

)
s.t.k = arg max

s,a
TPSaaS(s, a)

(10)

To get the optimal price of the IaaS provider, differentiate TRIaaS(k) with respect to k:

dTRIaaS (k)
dk = −1

λ

(
1 + ln(k)− ln

(
ap− rap + ra2 p + op− orp + 2orap − aop − a2 orp + nmλr− nmλra

)
−

c
k
)
+ ((1−r+ra)(ap−ag)+(1−r+ra)·(op−g−aop+ag))

λ(ap−rap+ra2 p+op−orp+2 orap −aop−a2 orp +nmλr−nmλra)

(11)
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Note that a = p−rp−op+2orp−nmλr
−2rp+2orp .

Equation (12) is the second derivative of Equation (10) in terms of k. Since
d2TRIaaS(k)

dk2 < 0 for k > 0, it is proven that there is a maximum profit in the positive
price range.

d2TRIaaS(k)
dk2 ==

−1
λ

(
1
k
+

c
k2

)
(12)

Since there is no closed-form optimal value of k, the Newton Raphson root-finding
algorithm is used to find k* of the IaaS provider’s Stackelberg game.

3.3. An Illustration of the Stackelberg Equilibrium for the SaaS Provider and the IaaS Provider

Table 2 lists assumptions for an illustration of the Stackelberg equilibrium with the
IaaS provider as the leader and the SaaS provider as the follower. Table 3 shows the three
decision variables and their optimal values.

Table 2. Assumptions for the Illustration.

1/λ: expected computing demand in IaaS instances 2000
n: the number of SaaS subscriptions 5000
m: the subscription fee per SaaS subscription $1000
p: price per on-demand instance $400
o: discounted rate 0.1
r: the probability of spot instance interruption 0.15
c: cost per reserved instance of the IaaS provider $80
g: cost per on-demand/spot instance of the IaaS provider $160

Table 3. Decision Variables and Their Optimal Values.

a*: autoscaling weight of the on-demand instances determined by the SaaS provider 0.58333
s*: the number of the reserved instances purchased by the SaaS provider 919
k*: price per reserved instance determined by the IaaS provider $246.67

Applying the Newton Raphson method and Stackelberg game’s backward induction
process, the optimal decision by the IaaS provider for the optimal reserved instance price,
k*, is $246.67 which is about a 39% discount from the price of the on-demand instance. Then,
the best response of the SaaS provider for the optimal number of the reserved instances, s*,
is 919. The best response of the SaaS provider for the optimal autoscaling weight of the
on-demand instance, a*, is 0.58333 determined by a∗ = p−rp−op+2orp−nmλr

−2rp+2orp .
Figure 1 shows that the total profit function of the IaaS provider is concave down

with the optimal profit at the price of $246.67 for the reserved instance, given the SaaS
provider’s best response. The best response (s* = 919, a* = 0.58333) of the SaaS provider is
shown in Figure 2, given the price of $246.67 for the reserved instance. At the Stackelberg
equilibrium, the total profit of the IaaS provider is $259,797 and the total profit of the SaaS
provider is $ 4,279,873. Deviating from the Stackelberg equilibrium would render either
provider a less total profit.

It is noted that in the Stackelberg game, the leader has an advantage over the follower.
The follower makes the best response given the leader’s strategy. While the Stackelberg
game shows there exists an equilibrium between the two providers, the leader may want to
deviate from the equilibrium at his own expense to have a sustainable strategic relationship
with the follower. For example, despite the reduced total profit, the IaaS provider may
want to offer to the SaaS provider a deeper price discount of the reserved instance in order
to build a strategic partnership (e.g., a strategic partnership between HubSpot and Amazon
AWS). Figure 1 shows that a price decrease (i.e., to the left of the optimal price) will lower
the total profit of the IaaS provider. However, the price decrease of the reserved instance
will increase the total profit of the SaaS provider. Raising the price of the reserved instance
beyond $246.67 (i.e., to the right of the optimal price) will decrease not only the total profit
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of the IaaS provider, but also that of the SaaS provider. The Stackelberg game proves
to be a powerful tool for the IaaS provider in negotiating volume discounts with major
SaaS providers.

Figure 1. Reserved Instance Price and the Total Profit of the IaaS Provider.

Figure 2. Autoscaling Weight of On-demand by the SaaS Provider and the Total Profit.

4. Sensitivity Analyses of Pricing Decisions

This section conducts sensitivity analyses of the Stackelberg game to understand the
model’s behavior when changing the parameter values of the decision models. The param-
eter values in Table 2 are used in the sensitivity analyses. Figure 3 shows the impact of
the price of the on-demand instance on the autoscaling weight of the on-demand instance.
The result shows that the increase of the price of the on-demand instance lowers the au-
toscaling weight of the on-demand instance. The autoscaling weight of the on-demand
instance is nearly 100% at $360 for the on-demand instance and declines to nearly 0% at
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$480. A further analysis reveals the upper bound price to include the on-demand instance
to the autoscaling group is $480.76.

Figure 3. Price of On-demand Instance and Autoscaling Weight of On-demand Instances.

On the other hand, an increase of the probability of spot instance interruptions in-
creases the autoscaling weight of the on-demand instance (Figure 4). The autoscaling
weight of the on-demand instance goes down to nearly 0% at a 0.13 probability of a spot
instance interruption and increases to nearly 100% at a probability 0.17. Further analysis
reveals a lower bound probability of a spot instance interruption to include any amount of
on-demand instance to the autoscaling group is 0.12766.

Figure 4. Probability of Spot Instance Interruption and Autoscaling Weight of On-demand Instances.

This section continues the sensitivity analyses by varying values of the IaaS providers’
cost per reserved instance, c, and the cost per on-demand/spot instance of the IaaS provider,
g. When there is an increase in the cost of the reserved instance and a decrease in the cost
of the on-demand instance, the IaaS provider should increase the price of the reserved
instances (Figure 5), and the SaaS provider should decrease the number of the reserved
instances, but increase the autoscaling group (Figure 6).
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Figure 5. Costs of Reserved Instance and On-demand Instance vs. Price of Reserved Instance.

Figure 6. Costs of Reserved Instance and On-demand Instance vs. Number of Reserved Instance.

Figures 7 and 8 show how the changes in the cost of the reserved instance and the cost
of the on-demand instance affect the profits of the IaaS provider and the SaaS provider.
As the cost of the reserved instance and the cost of the on-demand instance increase,
the optimal total profit of the IaaS provider decreases due to the declining margin of the
cloud services. However, contrary to conventional wisdom, while an increase in the cost of
the reserved instance decreases the profit of the SaaS provider, an increase in the cost of
the on-demand instance increases the profit of the SaaS provider. This is explained by the
fact that an increase in the cost of the on-demand instance encourages the IaaS provider to
sell more reserved instances by lowering the price of the reserved instance, given the price
of the on-demand instance is fixed. Therefore, the profit of the SaaS provider increases,
but the profit of the IaaS provider decreases. These results provide valuable insights on the
impact of the costs of IaaS on the profits of both providers.
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Figure 7. Cost of Reserved Instance and On-demand Instance vs. Total Profit of IaaS Provider.

Figure 8. Cost of Reserved Instance and On-demand Instance vs. Total Profit of SaaS Provider.

5. Conclusions

While a well-developed pricing strategy increases cloud providers’ profits and rev-
enues, most previous studies focus on the technological aspects of cloud computing such
as resource allocation and scheduling. However, understanding pricing dynamics be-
tween different types of cloud providers is critical to improving their profits and revenues.
For example, without taking into account the SaaS providers’ profit-maximizing decision,
any pricing decision of the IaaS providers is likely to be suboptimal. Based on the literature
review on pricing of cloud services, this paper proposes a Stackelberg game pricing decision
model. In the proposed Stackelberg game, the IaaS provider identifies the optimal price of
the reserved instance price given the knowledge of the SaaS provider’s best response to the
prices of the reserved instance, on-demand instance, and spot instance. The Stackelberg
equilibrium was derived from the game pricing decision model.
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This study found that for the SaaS provider, the optimal autoscaling weight of the
on-demand instance is independent of the optimal number of reserved instances. The price
increase of the on-demand instance lowers the autoscaling weight of the on-demand
instance. On the other hand, an increased probability of spot instance interruptions
increases the autoscaling weight of the on-demand instance. When there is an increase in the
cost of the reserved instance and a decrease in the cost of the on-demand instance, the IaaS
provider should increase the price of the reserved instances. Contrary to conventional
wisdom, while a cost increase of the reserved instance decreases the profit of the SaaS
provider, a cost increase of the on-demand instance increases the profit of the SaaS provider.

This paper has a few implications for cloud providers. First, cloud providers need to
understand complex interactions among costs and prices of multiple service categories.
The cost increase of the on-demand instance encourages the IaaS provider to sell more
reserved instances by lowering the price of the reserved instance, given the price of the
on-demand instance is fixed. Therefore, the profit of the SaaS provider increases due to
the price decrease of the reserved instance, but the profit of the IaaS provider decreases.
Second, SaaS providers need to carefully decide the autoscaling weight between the on-
demand instance and the spot instance. They need to measure the complex interactions
among the on-demand price, the spot price, and the interruption rate of the spot instances.
Third, the insights gained from this Stackelberg game decision model can also be used for
negotiating volume discounts with the SaaS provider. For example, if the IaaS provider
wants to deviate from the Stackelberg equilibrium at his own expense to have a sustainable
strategic relationship with the SaaS provider, the Stackelberg equilibrium of the proposed
decision model provides a starting point for the price negotiation. The IaaS provider needs
to decide how much discount is necessary beyond the Stackelberg equilibrium price in
order to have s sustainable relationship with the SaaS provider in a competitive market.

Like many studies, this study has limitations. First, it is noted that the successful use
of these models would require accurate estimation of the model parameters and the use of
various modeling techniques. Future research may explore various estimation techniques
of the model parameters to develop more realistic models. Second, future studies need to
investigate additional variables for the pricing model. For example, different IaaS providers
employ different pricing schemes. Each SaaS may have a different level of QoS preference
and a different willingness to pay for the service (i.e., reservation price). Future research
may include these variables for model enhancement. The SaaS is a useful application for
inter-organizational supply chain management (SCM). It would be interesting to investigate
how an organization’s technological maturity and its capabilities of SaaS SCM affect
their adoption.

Author Contributions: In Lee is the sole author. The author has read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

x an actual SaaS demand in terms of IaaS instances
λe−λx an exponential probability distribution function for the demand of IaaS instances
1-e−λx a cumulative exponential distribution function for the demand of IaaS instances
1/λ mean value of the demand of IaaS instances
n the number of SaaS subscriptions
m the subscription fee per SaaS subscription
k price per reserved instance; decision variable of the IaaS provider
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s
the number of the reserved instances purchased by the SaaS provider;
decision variable of the SaaS provider

a autoscaling weight of the on-demand instances; decision variable of the SaaS provider
(1-a) autoscaling weight of spot instance
p price per on-demand instance
o discounted rate
o·p price per spot instance
r the probability of spot instance interruption
c cost per reserved instance
g cost per on-demand and spot instance
(1-a)·r the expected rate of interruption for the entire autoscaling group
n·m·λ revenue loss per instance of spot instance interruption
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