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Abstract: Standard training via empirical risk minimization may result in making predictions that
overly rely on spurious correlations. This can degrade the generalization to out-of-distribution
settings where these correlations no longer hold. Invariant learning has been shown to be a promis-
ing approach for identifying predictors that ignore spurious correlations. However, an important
limitation of this approach is that it assumes access to different “environments” (also known as
domains), which may not always be available. This paper proposes a simple yet effective strategy
for discovering maximally informative environments from a single dataset. Our frustratingly easy
environment discovery (FEED) approach trains a biased reference classifier using a generalized
cross-entropy loss function and partitions the dataset based on its performance. These environments
can be used with various invariant learning algorithms, including Invariant Risk Minimization, Risk
Extrapolation, and Group Distributionally Robust Optimization. The results indicate that FEED
can discover environments with a higher group sufficiency gap compared to the state-of-the-art
environment inference baseline and leads to improved test accuracy on CMNIST, Waterbirds, and
CelebA datasets.

Keywords: environment discovery; invariant learning; out-of-distribution generalization; biased data

1. Introduction

Artificial intelligence systems may exhibit bias stemming from data (data bias), and
algorithmic design choices can expedite erroneous decisions during training (algorithm
bias) [1,2]. Generally, neural networks often exploit spurious correlations in training data
as shortcuts to make predictions [1,3,4]. This leads to suboptimal performance on examples
where the learned shortcuts do not apply [5–7]. This performance gap is observed across
various applications like medical imaging [8–10], and facial recognition [5,11]. Recent
methods have sought to mitigate unintended biases in AI systems through interventions
before (pre-processing), during (in-processing), or after (post-processing) training [12].
In-processing approaches directly target algorithmic design to alleviate biases by adjusting
sample importance [7,13,14], employing adversarial learning [15,16], or incorporating
invariant learning [3,17]. While these methods effectively address the problem, they rely
on having access to diverse environments (also known as domains) or prior knowledge of
protected groups. Unfortunately, obtaining such information is usually infeasible due to
expensive annotations, challenges in effectively grouping datasets, and privacy and ethical
constraints [18]. An approximation becomes necessary when the system does not have
direct access to diverse environments or protected groups.

Our goal is to strategically partition a training dataset and estimate distinct envi-
ronments (domains) to facilitate the use of invariant learning algorithms for bias re-
moval. Invariant learning methods learn an invariant predictor that remains robust
across environments [3,5,17], making them more effective compared to other debiasing
approaches [3]. Similar efforts, such as EIIL [6], also explore environment estimation for
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invariant learning. However, these approaches heavily rely on the assumption that biased
samples are easily identified through Empirical Risk Minimization (ERM) pre-training.
Real-world scenarios, on the other hand, challenge this assumption, as the ERM approach
might learn a combination of biased and causal features. Our paper acknowledges that
shortcuts are learned more easily due to their simplicity, which offers an opportunity for ef-
fectively partitioning the samples. To validate our intuitions, we conducted an experiment
on the Colored MNIST (CMNIST) dataset [3] with the target attribute y representing “the
digit smaller than five or not” and the protected attribute a representing digit color. The
target label exhibits a strong correlation with digit color (with a probability of 90%). Hence,
the model can easily use color as a spurious shortcut to make predictions during training.
As shown in Figure 1, training an ERM classifier revealed that the loss function rapidly
decreases for biased samples, while for bias-conflicting samples, it first increases and then
decreases when the model starts to overfit on all training samples. Two key observations
emerged. First, bias is learned faster from early epochs, suggesting a profitable opportunity
for a partitioning strategy. Second, given enough training, the ERM model can overfit even
on bias-conflicting samples, confirming the limitations of naïve ERM-based approaches
to separating biased samples. We propose to intentionally promote the features that are
learned during the early epochs of training using the Generalized Cross-Entropy (GCE)
loss function [4]. This reinforcement is followed by partitioning training samples into
two environments based on model performance. The discovered environments can then
be used to train invariant learning algorithms. Despite its simplicity compared to more
complex baselines, FEED effectively identifies environments with a high group sufficiency
gap. Our contributions can be summarized as follows:

• We present a novel environment discovery approach using the Generalized Cross-
Entropy (GCE) loss function, ensuring the reference classifier leverages spurious
correlations. Subsequently, we partition the dataset into two distinct environments
based on the performance of the reference classifier and employ invariant learning
algorithms to remove biases.

• We study the environments in invariant learning from the perspective of the “Environ-
ment Invariance Constraint” (EIC), which forms the foundation for FEED.

• We introduce the Square-MNIST dataset to evaluate the ability of our model in more
challenging scenarios where the true causal features (strokes) and spurious features
(squares) closely resemble each other. Our evaluation demonstrates the superior
performance of FEED compared to other environment discovery approaches.

Figure 1. Training dynamics for CMNIST benchmark. For bias-aligned samples, the label y can
be easily predicted based on the spurious associations, however, for other samples, this spurious
correlation does not apply. While the loss for bias-aligned samples decreases quickly, for other
samples the loss increases at early epochs.
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2. Related Works

Bias Removal without Environment Labels. Since obtaining environments or group
annotations can be costly or infeasible, various methods have been proposed to remove
biases by exploiting the mistakes of an ERM model (also known as reference model).
One line of work utilizes these mistakes to reweigh the data for training the primary
model [7,13,19–22]. For example, [7] up-weight the error samples from the reference
model or [13] determine importance weights based on the relative cross-entropy losses
of the reference and primary models. These methods, however, differ from ours because
instead of training a classifier with curated importance weights, we trained an invariant
predictor. Another line of work leverages the mistakes to apply an invariant learning
algorithm [6,23,24]. Refs. [23,24] both train a GroupDRO model by inferring subclasses
from the representations learned by the reference model. The most closely related work to
our paper is EIIL [6], which infers the environments for invariant learning by maximizing
the regularization term of IRM. The main drawback of the above-mentioned methods is the
assumption that the ERM model always learns the shortcut. This is the case in benchmarks
like CMNIST, which are specifically created to frustrate ERM [25]. However, we show that
these methods fail miserably on simpler tasks that do not follow the assumption. Another
group of works trains a separate network to find either sample weights or environment
assignment probability. Ref. [26], for instance, extends DRO using an auxiliary model to
compute the importance weights. However, rather than training an online fair model for
accurate predictions within a given distribution, we aim to find data partitions that allow
us to employ invariant learning techniques to address distribution shifts [6]. ZIN [27] also
uses an auxiliary network to learn a partition function based on IRM. This structure cannot
be generalized to provide environments for other robust algorithms. Ref. [28] also proposes
a framework to partition the data. However, their method is limited to the case where the
input can be decomposed into invariant and variant features. Other works create domains
for adversarial training [29], but we focus on invariant learning due to the limitations of
adversarial methods.

Invariant Learning. Recent studies have addressed biases by learning invariances
in training data. Motivated by casual discovery, IRM [3] and its variants [25,30–33] learn
a representation such that the optimal classifier built on top is the same for all training
environments. LISA [34] also learns invariant predictors via selective mix-up augmenta-
tion across different environments. Other methods like Fish [35], IGA [36], and Fishr [37]
introduce gradient alignment constraints across training environments. Another large class
of methods for generalizing beyond training data is distributionally robust optimization
(DRO) [5,38–40]. REx [17] and GroupDRO [5] are notable instances of DRO methods, aim-
ing to find a solution that performs equally well across all environments. The success of
the above-mentioned methods depends on environment partitions or group annotations.
However, these annotations are often unavailable or expensive in practice. Beyond the
methods discussed above, adversarial training is another popular approach for learning
invariant or conditionally invariant representations [15,16,29,41,42]. However, the per-
formance of adversarial training degrades in settings where distribution shift affects the
marginal distribution of labels [3,42]. Due to these limitations, recent works have focused
on learning invariant predictors.

3. Frustratingly Easy Environment Discovery

In this section, we present our frustratingly easy framework (FEED) for partitioning a
dataset into environments (domains) tailored for invariant learning. Our approach does
not require prior knowledge of environment assignments or protected groups. Instead,
we assume that the training dataset is affected by a shortcut that might be learned by
the model to accurately predict outcomes for the majority of samples [3,5,6,17]. This
shortcut, however, does not apply to the remaining samples, which may be either bias-
conflicting or bias-irrelevant. Formally, we consider a dataset D = {De}e∈supp(Etr), where
x, y, e ∼ p(x, y, e) be observational data from multiple training environments e ∈ supp(Etr).
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In each environment, data are generated from the same input and label spaces X × Y
according to some distribution. The environments differ in how labels are spuriously
correlated with the spurious attribute a ∈ A. In an invariant learning problem, the goal is to
find a predictor function f : X → Y that generalizes well across all possible environments
in supp(E) ⊇ supp(Etr). However, the required environment assignments are not always
available. In this paper, we aim to create useful environments to remove shortcuts and
enhance generalization. After discovering the environments, we evaluate their efficacy
by measuring the sufficiency gap [6] and their practical utility in mitigating biases using
invariant learning.

We begin by defining the Environment Invariance Constraint (EIC) [6]. EIC is an
important condition that invariant predictors must satisfy. Assume H is a representation
space. Φ : X → H denotes the parameterized mapping or model that we optimize. We refer
to Φ(x) ∈ H as the representation of sample x. Invariant models learn a representation Φ(x)
that performs simultaneously optimal for all environments; i.e., it has stable relationships
with y across environments. In addition, for regular loss functions like cross-entropy and
mean squared error, optimal classifiers can be expressed as conditional expectations of the
output variable. Therefore, the data representation function Φ must satisfy the Environment
Invariance Constraint (also known as Invariance Property), defined as:

E[y|Φ(x) = h, e] = E[y|Φ(x) = h, e′]

∀h ∈ H ∀e, e′ ∈ supp(E)
(1)

This means that invariant models learn a set of features such that the conditional
distribution of outcomes given the predictor is invariant across all training environments.
Our goal was to partition a training dataset into environments that could promote effective
invariant learning by maximally satisfying the EIC. In other words, we sought environments
so that the invariant learning method could not satisfy the EIC unless it learned invariant
associations and ignored shortcuts.

Following [36], we defined the invariant set as IE = {Φ(x) : y⊥E|Φ(x)}. Similarly,
given training environments, we can define IEtr = {Φ(x) : y⊥Etr|Φ(x)}. IE is the set of
features that are invariant for all possible unseen environments e ∈ supp(E). However,
using the training environments Etr, we can only learn IEtr . The learned predictor is only
invariant to such limited environments, and it is not guaranteed to be invariant with respect
to all possible environments E [28]. As a result, for a set of training environments Etr, we
have IE ⊆ IEtr . Intuitively, the invariant set IE is smaller because it has to generalize
across all domains. Hence, not all environments are helpful to tighten the invariant set, and
even available labeled environments may be insufficient for learning the optimal IE , as we
will empirically demonstrate in the Experiment Section. Additionally, in many real-world
applications, environments may not be available. This motivated us to study how to exploit
the latent intrinsic variations in training data to discover refined environments.

Since spurious attribute a can introduce shortcuts for labels y, it follows that there exist
latent intrinsic spurious features Ψ in our input samples x, e.g., the digit color in CMNIST
or the background in the Waterbirds dataset. However, these shortcuts can vary across
domains and degrade the generalization. To put it formally, for a pair (x, Φ(x)) satisfying
EIC, there exists Ψ(x) such that E[y|Ψ(x), e] can arbitrarily change across environments.
Higher variation of Ψ among environments leads to a smaller |IEtr | since more variant
(unstable) features can be excluded by leveraging invariant learning algorithms, thereby
bringing us closer to IE . In this regard, we redefine our research question as “how we can
effectively partition the dataset into environments with significant variations in E[y|Ψ, e]”.

While in general, we may require a large number of environments to tighten the
IEtr , in most cases, two environments may suffice to recover invariance [3,6,17]. These
are situations where the EIC cannot be satisfied for two different environments, e1 and e2,
unless Φ extracts the causal invariance [3]. To discover such environments, one approach is
to partition the dataset into two opposite environments based on the agreement between y
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and the spurious attribute a. In one environment, the network can directly use the shortcut
to make predictions (i.e., they agree). However, in the second environment, the association
between the label and shortcut does not apply, meaning that the network has to use the
shortcut but in a reverse manner (i.e., they disagree) to make correct predictions. This setup
creates two environments with diverse E[y|Ψ(x), e] because the association between the
label and the spurious attribute exhibits significant variation.

We aimed to generate two environments with opposite associations between labels
and shortcuts. To achieve this, we trained a neural network, M, as a reference classifier
for partitioning the dataset. We then compared the performance between model M and
a dummy model 1 − M to separate bias-aligned and bias-conflicting samples. This way,
we ensured that the two environments exhibited reverse associations. To guarantee that
our reference classifier M utilized the shortcut for predictions, we intentionally forced
M to make predictions based on the shortcut. Analyzing the training loss dynamics, we
observed that the training loss of samples containing shortcuts reduced quickly, whereas
the loss for other samples first increased and then decreased (Figure 1). Empirical evidence
suggests that neural networks tend to rely on shortcuts that may exist in the dataset and
memorize them during the early stages of training, as these concepts are often simpler than
the main task [4,13,43]. Therefore, by deliberately reinforcing the predictions of model M
in the early stages of training, we could encourage it to learn the intrinsic spurious features
Ψ. We accomplished this using the Generalized Cross-Entropy (GCE) [44] loss function:

lGCE(M(x), y) =
1 − Mj(x)q

q
(2)

where Mj(x) is the softmax output for the j-th element of M(x) corresponding to the
target y, and q ∈ (0, 1] is a hyperparameter to control the degree of amplification. Using
L’Hopital’s rule, GCE is equivalent to the standard Cross-Entropy (CE) when q → 0 [44].
Compared to the Cross-Entropy, GCE weighs the gradient of each sample by an additional
Mj(x)q, i.e., ∂lGCE(M(x),y)

∂θ = Mj(x)q ∂lCE(M(x),y)
∂θ , where θ is the model parameters. As a

result, using the GCE loss, we could place more emphasis on samples for which the model
has a higher confidence level (i.e., higher softmax output). Since the shortcut is easier and
learned from the early epochs, we were encouraging our reference classifier to focus more
on them.

Furthermore, it was crucial to ensure that as we continued the training of model M
by increasing the number of epochs, the model did not overfit on bias-conflicting samples
(Figure 1). This precaution was to guarantee that our reference classifier was making
predictions solely based on the shortcut. In this regard, we proposed to train M only on
bias-aligned samples. We began with two randomly assigned environments e1 and e2
(np.random.randint ∼ discrete uniform) with equal sizes. We then selected one of these
two random environments, say e1, as an initialization for the biased environment to train
the reference classifier. After each training epoch, we updated both e1 and e2 based on
a difficulty score that reflected how challenging each sample is. We chose to use the
minimum of Cross-Entropy loss per sample for model M and model 1 − M, as it would
provide a continuous metric that could be easily compared. Since model M is intentionally
biased, it exhibits superior performance (i.e., lower Cross-Entropy loss) on biased samples,
while model 1 − M uses the shortcut in the opposite direction and performs better on bias-
conflicting samples. Consequently, as we iteratively updated the environment partitions,
e1 progressively contained more bias-aligned samples, while e2 comprised an increasing
proportion of bias-conflicting samples. This approach ensures that model M continued
training on an increasingly biased dataset without overfitting on all samples. Algorithm 1
provides the pseudocode for FEED. Following the partitioning of the training data into
two environments, we could then apply invariant learning algorithms. Additionally, we
empirically observed that we could use FEED to estimate groups based on the pair (e, y)
(rather than (a, y)) for the GroupDRO algorithm and achieve favorable performance.
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Algorithm 1 FEED Algorithm

Input: dataset D = {(xi, yi)}N
i=1, model M

Output: environments e1, e2

1: Randomly initialize e1 and e2 using np.random.randint
2: for epochs do
3: train M by minimizing Ep((x,y)|e1)

[
lGCE(M(x), y)

]
4: for (xi, yi) ∈ D do
5: if lCE

(
M(xi), yi

)
< lCE

(
1 − M(xi), yi

)
then

6: Assign (xi, yi) to e1
7: else
8: Assign (xi, yi) to e2
9: end if

10: end for
11: end for
12: return e1, e2

Leveraging FEED allowed us to partition the dataset into two environments with
high variation in spurious correlations. In these environments, an invariant model can-
not satisfy the EIC unless it ignores the shortcut. While FEED employs the Generalized
Cross-Entropy (GCE) loss to promote the learning of spurious correlations, other methods
such as EIIL [6] and JTT [7] use the Cross-Entropy loss to train their reference models.
However, Cross-Entropy may not always recover a biased model. Furthermore, unlike
prior approaches [6,7] that utilize the entire dataset to train the reference classifier, we
exclusively used e1 for training our reference classifier. This is to prevent overfitting and
focusing solely on spurious correlations. Overfitting on all training samples would make
partitioning the samples impossible. Moreover, rather than defining an optimization prob-
lem for environment discovery, as seen in previous works [6], we proposed a simple yet
effective approach for updating the environment assignments at each epoch. Employing
an optimization problem is not easily scalable to the mini-batch training paradigm of
neural networks.

4. Experiments

Here, we empirically show that FEED can significantly improve the performance
of invariant learning algorithms. We compare it with EIIL [6] and study how training
environments created by each method help IRM [3] and REx [17] to improve generalization.
We compare the performance with ERM, CVaR DRO [45], GEORGE [24], Fish [35], Spectral
Decoupling (SD) [43], CORAL [46], and two recent reweighing algorithms, namely Just
Train Twice (JTT) [7] and Learning from Failure (LfF) [13]. We consider GroupDRO [5] as
an upper bound since it assumes access to protected group annotations.

4.1. Dataset

We used three classification datasets for which prior works have observed poor gener-
alization performance due to spurious correlations. Figure 2 shows details of these datasets.
For CMNIST dataset, we considered the task from [3], where we had a binary classification
of colored digit images of [0, 4] vs. [5, 9]. Two training environments were provided such
that the color correlated with the target label with probabilities of 0.8 and 0.9. However, in
the test dataset, this correlation dropped to 0.1. Also, the target label was noisy and only
matched the digit class with a probability of 0.75.
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CMNIST

Waterbirds

CelebA

y: smaller than 5
a: green color

y: bigger than 5
a: green color

y: landbird
a: land background

y: waterbird
a: water background

y: waterbird
a: land background

y: blond hair
a: female

y: blond hair
a: male

Common Training Samples Test Samples

y: dark hair
a: male

y: bigger than 5
a: red color

SMNIST

y: smaller than 5
a: square

y: bigger than 5
a: no square

y: bigger than 5
a: square

Figure 2. Sample training and test images for our datasets. The spurious correlation between the
label y and the attribute a changes at test time, making the tasks challenging.

In the Waterbirds dataset, we classified waterbirds vs. landbirds [5]. The label is
spuriously correlated with the image background, which is either land or water. Similarly,
for the CelebA dataset, the task was to classify the hair color of celebrities as blond or not
blond [5]. The label is spuriously correlated with gender, which is either male or female. We
also introduced Square MNIST (SMNIST) to evaluate the effectiveness of FEED in creating
useful environments when the spurious attribute created a more challenging shortcut. We
used a setting similar to the standard CMNIST and create grayscale images where the
spurious attribute was a square randomly placed in the corners of the image.

4.2. Implementation Details

We used an MLP architecture for CMNIST and SMNIST datasets, and a ResNet-50
for Waterbids and CelebA. For each dataset, we employed the same model architecture
across all approaches. For ResNet-50, we used the PyTorch implementation with ImageNet
pre-trained weights. For CMNIST, we used batch training, a learning rate of 10−3, and
Adam optimizer. For Waterbirds and CelebA, we used a batch size of 64 and a learning rate
of 10−6 with SGD optimizer. For FEED, we tuned the hyperparameter q by grid searching
over q ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. This yielded q = 0.7 for CMNIST and Waterbirds, and
q = 0.5 for CelebA. We repeated all experiments five times. We tuned the hyperparameters
based on the “average” performance on a validation set without environment labels. All
codes will be made available.

4.3. Results and Discussions

Table 1 presents average and worst-group accuracy for all approaches. The worst
group refers to the group (a, y) in which the model obtains the lowest test accuracy when
tuned for average validation accuracy. For Waterbirds and CelebA, IRM and REx cannot
be directly applied as the environment assignments were originally unavailable. ERM
achieved a good average accuracy since it minimizes the average risk over all training
samples. However, its worst-group accuracy was low because there were fewer training
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samples for that group. Other methods, on the other hand, attempted to have a balanced
performance across different environments. Compared to the EIIL [6], using FEED to create
environments for invariant learning algorithms substantially improved the worst-group
accuracy. Furthermore, using FEED+(invariant learning algorithms) could outperform
other approaches and achieve a comparable performance relative to GroupDRO [5]. An-
other interesting finding is that for CMNIST, even though the training environment labels
are available, FEED can create a set of new environments (given the combination of two
available environments) with which invariant learning algorithms can achieve better ac-
curacy. Furthermore, for the CMNIST dataset, using the estimated pair of (e, y), we can
fully recover (a, y). Therefore, FEED+GroupDRO will be identical to GroupDRO. In the
following, we analyze the created environments and provide a probable explanation for
the performance improvement.

Table 1. Test accuracy. Compared to EIIL, the environments created by FEED substantially improve
worst-group accuracy. GroupDRO sets an upper bound since it assumes access to group annotations.
Since environment labels for the Waterbirds and CelebA datasets are unavailable, IRM and REx
are not applicable. On the CMNIST dataset, although the training environments are available, our
created environments improved the performance. Experiments were repeated five times.

CMNIST WaterBirds CelebA
Avg. Acc. Worst-Group Acc. Avg. Acc. Worst-Group Acc. Avg. Acc. Worst-Group Acc.

ERM 17.1 ± 0.4% 8.9 ± 1.8% 97.3 ± 0.2% 60.3 ± 1.9% 95.6 ± 0.2% 47.2 ± 3.7%
LfF 42.7 ± 0.5% 33.2 ± 2.2% 91.2 ± 0.7% 78.0 ± 2.3% 85.1 ± 0.4% 72.2 ± 1.4%
JTT 16.3 ± 0.8% 12.5 ± 2.4% 93.3 ± 0.7% 86.7 ± 1.2% 88.0 ± 0.3% 81.1 ± 1.7%
GEORGE 12.8 ± 2.0% 9.2 ± 3.6% 95.7 ± 0.5% 76.2 ± 2.0% 94.6 ± 0.2% 54.9 ± 1.9%
CVar DRO 33.2 ± 0.5% 27.9 ± 1.1% 96.0 ± 1.0% 75.9 ± 2.2% 82.5 ± 0.6% 64.4 ± 2.9%
Fish 46.9 ± 0.9% 35.6 ± 1.5% 85.6 ± 0.8% 64.0 ± 1.7% 93.1 ± 0.4% 61.2 ± 1.8%
SD 68.4 ± 1.1% 62.3 ± 1.4% 76.8 ± 1.3% 71.8 ± 1.8% 91.6 ± 1.3% 83.2 ± 2.0%
CORAL 65.1 ± 2.5% 60.2 ± 4.1% 90.3 ± 1.1% 79.8 ± 2.5% 93.8 ± 0.9% 76.9 ± 3.6%
IRM 66.9 ± 1.1% 58.1 ± 3.7% – – – –
vREx 68.7 ± 0.7% 63.8 ± 2.8% – – – –
EIIL+IRM 68.4 ± 0.8% 16.7 ± 14.2% 90.3 ± 0.2% 63.1 ± 1.0% 72.5 ± 0.1% 54.0 ± 0.8%
EIIL+vREx 57.4 ± 0.8% 14.7 ± 11.8% 89.7 ± 0.8% 65.2 ± 3.4% 76.4 ± 0.7% 54.9 ± 2.6%
EIIL+GroupDRO 44.4 ± 1.0% 35.2 ± 8.2% 96.9 ± 0.8% 78.7 ± 1.0% 90.7 ± 0.5% 71.3 ± 0.9%

FEED+IRM (ours) 70.4 ± 0.02% 69.7 ± 0.8% 92.3 ± 0.2% 88.4 ± 0.9% 86.0 ± 0.5% 81.3 ± 1.4%
FEED+vREx (ours) 71.1 ± 0.08% 69.1 ± 1.2% 93.3 ± 0.3% 88.6 ± 1.0% 86.9 ± 0.8% 83.7 ± 1.4%
FEED+GroupDRO
(ours) 71.4 ± 0.02% 71.0 ± 0.05% 90.0 ± 0.3% 88.0 ± 1.2% 87.3 ± 0.6% 84.3 ± 2.0%

GroupDRO 71.4 ± 0.02% 71.0 ± 0.05% 93.5 ± 0.3% 91.4 ± 1.1% 92.9 ± 0.2% 88.9 ± 2.3%

Analysis of Discovered Environments. We studied how samples from different
groups were distributed across the environments created by FEED, as shown in Table 2.
Note that we did not use such group annotations in FEED. We expected that e1 contained
samples where the shortcut exists in images. For instance, in CMNIST, we observed that
e1 only contained the samples where the label and color (spurious attribute) agree. This
property is reasonable since in this dataset, the digit color and target agree for 85% of the
training images (on average). All other samples were assigned to e2 where this shortcut
performed reverse and color and label disagree. Thus, E[y|Ψ, e] varies substantially, i.e., the
correlation between color and target is unstable and varies across environments. However,
the correlation between the digit shape and the target remains invariant. Consequently,
when we applied an invariant learning algorithm, the model could satisfy the EIC unless it
learned the digit shape. On the other hand, in the standard CMNIST training environments,
there is still a slight chance of assuming an invariant association between color and target
across the environments (about 10%). For the Waterbirds and CelebA, we observe similar
behavior. For instance, in Waterbirds, only 56 training images from waterbirds on land
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are available, out of which 50 images are assigned to e2. We further analyzed those six
images that were assigned to e1 (shown in Figure 3). As can be seen, most of these samples
have backgrounds resembling water, i.e., they are similar to waterbirds on water, which are
mainly assigned to e1 (861 vs. 195). This may explain why these six images are assigned
to e1. Note that waterbirds on the water are mostly assigned to e1 since it is intended to
contain the samples with the prevalent shortcut.

Table 2. Distribution of each group in created environments. a = 0 and a = 1 corresponds to green
and red for CMNIST, land and water background in Waterbirds, and female and male for CelebA,
respectively. The numbers show how each group is distributed in environments.

CMNIST WaterBirds CelebA
e1 e2 e1 e2 e1 e2

(a = 0, y = 0) 100.0 0.0 93.8 7.2 95.5 4.5
(a = 1, y = 0) 0.0 100.0 16.9 83.1 99.5 0.5
(a = 0, y = 1) 0.0 100.0 10.7 89.3 82.8 17.2
(a = 1, y = 1) 100.0 0.0 81.5 18.5 30.5 69.5

Group Sufficiency Gap. Another way to explain the efficacy of our environments is
by evaluating the group sufficiency gap g =

∣∣E[Y|Ψ(x), e1]−E[Y|Ψ(x), e2]
∣∣, defined based

on the EIC [6]. This metric measures the degree to which the environment assignments
can violate the EIC. We had to find a partitioning strategy that maximized g; i.e., greater
g means higher variation in environments, which can lead to a tighter invariant set. In
each created environment, the classifier could rely solely on the spurious attribute a to
make predictions, i.e. Ψ(x) = a. Then the gap would be g =

∣∣E[Y|a, e1]− E[Y|a, e2]
∣∣. In

environment e1, all digits [5,9] (y = 1) are red (a = 1) and digits [0,4] (y = 0) are green
(a = 0), while in environment e2, all digits [5,9] (y = 1) are green (a = 0), and digits [0,4]
(y = 0) are red (a = 1). In this case, we had g = 1, which is its maximum value. On the
other hand, for the standard CMNIST environments, the gap is 0.1 [6], and for the EIIL
environments g = 0.83. The proof is provided in the Appendixes A–C.

Figure 3. Waterbirds on land images that are assigned to e1. In most of them, the background is or
resembles water.

Why are ERM-based models not sufficient? EIIL [6] assumes that the reference model,
which is trained using ERM, is learning the shortcut in the training dataset. Furthermore,
recent work like JTT [7] claims to achieve out-of-distribution generalization by discovering
the errors of an ERM model and then upweighing them during the next steps of training.
Also, one may ask whether similar techniques like JTT, for example, can be used to partition
the dataset and create environments for invariant learning methods. Although this strategy
often works on datasets that were constructed to showcase out-of-distribution problems,
assuming that the reference ERM model always learns the easy shortcuts is unrealistic. To il-
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lustrate this claim, we constructed a variant of the CMNIST dataset where the robust feature
(digit shape) was more predictive than the spurious feature (digit color) by decreasing the
label noise level to 10% [25]. Table 3 compares the performance of different methods on this
new dataset, called INVERSE-CMNIST. While ERM method failed on standard CMNIST
(Table 1), it performed well on INVERSE-CMNIST because relying on the most predictive
features (digit shape) is a good strategy for this task [25]. Other methods fail to achieve a
good performance on INVERSE-CMNIST because they are based on the assumption that
the ERM model is learning the shortcut. EIIL also cannot create useful environments in this
case. In contrast, FEED utilizes the GCE loss function to encourage the model to learn the
shortcut and increase variation among environments. In this experiment, FEED assigned
environments exactly similar to the standard CMNNIST, shown in Table 2.

Table 3. Test accuracy for INVERSE-CMNIST. Although shortcut exists in the dataset, ERM can
perform well. Hence, ERM-based models cannot achieve a good generalization. FEED can create
effective environment partitioning that helps invariant learning algorithms.

Avg. Acc. Worst-Group Acc.

ERM 72.1% 68.1%
LfF 34.5% 13.3%
JTT 26.1% 18.1%
CVar DRO 38.4% 35.1%
SD 79.1% 74.9%
IRM 78.3% 75.3%
vREx 83.5% 81.7%
EIIL+IRM 42.8% 12.6%
EIIL+vREx 42.5% 6.0%
EIIL+GroupDRO 12.9% 2.5%

FEED+IRM (ours) 85.6% 84.7%
FEED+vREx (ours) 85.9% 85.2%
FEED+GroupDRO (ours) 86.1% 85.4%

GroupDRO 86.1% 85.4%

Figure 4 also compares the results of this experiment for EIIL and FEED for different
levels of label noise. EIIL generalizes better with sufficiently high label noise (greater than
25%) but poorly with low label noise [6]. This controlled study highlights the limitations
of EIIL and other ERM-based models in finding environments that emphasize the right
invariances. They leave the question of how to effectively choose a reference ERM model
in general open. However, FEED encourages learning the shortcut and shows promise in
addressing this challenge.
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Figure 4. Test Accuracy for CMNIST with varying levels of label noise. While EIIL can only perform
well under high noise, FEED consistently performs well. After both EIIL and FEED, IRM is used as
the invariant learning algorithm.
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What if we have more challenging shortcuts? In the introduced SMNIST dataset,
although the square can serve as a shortcut, it is not as straightforward as using the color
in CMNIST or the background in Waterbirds. This is because, in the feature space, the
square is at a similar level as the digit strokes, making it more challenging to distinguish
from the digits themselves. The results are shown in Table 4. The results indicate that the
ERM model learns a mix of the shortcut and main task. Therefore, similar to the INVERSE-
CMNIST, ERM-based models like EIIL cannot perform well in this task. In contrast, FEED
can effectively create useful environments, although this is a challenging scenario for FEED
as well. We started updating environments after a few epochs (five epochs) of training
with the initial random assignments in order to give the model enough time to learn
the challenging shortcut before updating the partitioning. By repeating the partitioning
experiment 10 times, the group sufficiency gap for the environments created by FEED was
g = 0.98 on average, while for EIIL, it was g = 0.74. Additionally, our created environments
improve the performance of the invariant learning algorithms. This challenging dataset
also sheds light on the effect of GCE in FEED. We repeated this experiment by replacing
the GCE with standard cross-entropy (CE), as shown in Table 4. In this case, CE FEED was
unable to identify the shortcut and partitioned the dataset based on the target. Therefore,
invariant algorithms cannot learn a tight invariant set (g = 0.5).

Table 4. Test accuracy for SquareMNIST. Environments created by FEED enhance the accuracy of
the invariant learning algorithms. Also, using GCE in FEED helps it find the shortcut in order to
effectively partition the dataset.

Avg. Acc. Worst-Group Acc.

ERM 37.3% 4.7%
LfF 46.1% 43.3%
JTT 47.6% 23.3%
CVar DRO 49.0% 40.1%
IRM 41.6% 5.8%
vREx 54.7% 12.2%
EIIL+IRM 57.0% 32.0%
EIIL+vREx 58.9% 38.2%
EIIL+GroupDRO 67.6% 57.0%

CE FEED+IRM 36.8% 3.7%
CE FEED+vREx 33.7% 3.2%
CE FEED+GroupDRO 35.6% 8.8%
FEED+IRM (ours) 69.8% 65.0%
FEED+vREx (ours) 69.2% 63.4%
FEED+GroupDRO (ours) 71.3% 65.0%

GroupDRO 70.5% 67.8%

5. Conclusions

In this work, we presented FEED, an algorithm to create environments for invariant
learning out of a biased training dataset. We provided a deep understanding of the
properties of environments for invariant learning and developed FEED based on that.
Specifically, we amplified the spurious attribute during training and partitioned the dataset
accordingly. Without access to environment labels, FEED can outperform the invariant
learning methods that require environment labels or group annotations.
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Appendix A. Loss Dynamics for CMNIST

Here, following Nam et al. [13], we study the dynamics of training loss for samples
where the shortcut exists and for samples where the association between the shortcut and
the label is reversed. For instance, in the CMNIST dataset, after combining, for 85% of
images in class y = 0 (i.e., digits [0,4]) the color is green and for 85% of images in class y = 1
(i.e., digits [5,9]) the color is red. However, for the remaining 15% of images, this spurious
association is reversed. As can be seen in Figure A1a, in this case, training loss trajectories
are different for samples with and without the shortcut, especially during the early steps
of training. For samples with the shortcut present, the loss quickly reduces to zero, while
the loss of other samples first increases and then starts decreasing. Also, the training loss
of samples where the shortcut is absent is higher, and this difference is more significant
during the early stages [13]. It can also be explained using the gradient starvation concept
[43], which arises when the cross-entropy loss is minimized by capturing only a subset
of features relevant to the task, despite the presence of other predictive features that fail
to be discovered. Neural networks have empirically been shown to prefer easy concepts
during training, e.g., making predictions based on spurious shortcuts that may exist in the
data [13]. Therefore, since the shortcut is often easier to learn compared to the original task
(i.e., predicting based on true invariant features), neural networks tend to memorize them
first. According to this observation, we developed the FEED algorithm which intentionally
reinforces the predictions from the early steps of training (using the GCE loss) to make the
model learn the intrinsic spurious attribute Ψ.
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Figure A1. (a) Training dynamics for the standard CMNIST benchmark. For bias-aligned samples, the
label y can be (easily) predicted based on the spurious associations that are prevalent in the training
dataset. For other samples, this spurious correlation is reversed. While the loss for bias-aligned
samples decreases quickly, for other samples the loss goes up at early epochs. (b) Training dynamics
for predicting the color in the CMNIST dataset. We used color as the training target and digit shapes
are considered as spurious attributes. Therefore, the original task is easier to learn and the loss
dynamics for all samples are similar (we used batch training).

In another experiment, we study the loss dynamics for a dataset where the main task
is much easier compared to the shortcut that may exist in the dataset. Specifically, we
trained a model to predict the color of digits while the digit number can be a shortcut.
Here, learning the original task is easy compared to the spurious attribute, and the loss

https://github.com/facebookresearch/InvariantRiskMinimization
https://nlp.stanford.edu/data/dro/waterbird_complete95_forest2water2.tar.gz
https://nlp.stanford.edu/data/dro/waterbird_complete95_forest2water2.tar.gz
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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behaves similarly for all samples, as can be seen in Figure A1b. This means that the model
is learning the true original task. Note that we use batch training in this experiment.

Appendix B. Using Accuracy as Difficulty Score

In this paper, we evaluate the difficulty of each sample and update the environment by
computing the cross-entropy loss for both models, M and 1 − M. While one may consider
using accuracy as a difficulty score and updating the environment assignments based on
correctly and incorrectly classified samples, this could lead to ambiguity. There may be
cases where both models predict the output correctly or incorrectly, and it would be difficult
to decide how to assign such samples. This issue is particularly prevalent during earlier
epochs when the models are still learning and producing random outputs. On the other
hand, using the cross-entropy loss function provides a continuous metric for measuring
difficulty. We can easily update the environment assignments by comparing the loss values
for each model. Thus, we choose to use the cross-entropy loss as our measure of difficulty
for each sample.

Appendix C. Group Sufficiency Gap

Creager et al. [6] defined the group sufficiency gap to quantify the degree to which
the EIC holds:

g =
∣∣E[Y|Ψ(x), e1]−E[Y|Ψ(x), e2]

∣∣
We can use this metric to evaluate how much a particular environment assignment

can create variations w.r.t the spurious attribute across the environments. A higher group
sufficiency gap is equivalent to higher variations and therefore, more variant and unstable
features can be eliminated by the invariant learning algorithms. The maximum possible
value for g is 1 [6]. In order to compute the group sufficiency gap, we assume the classifier
is making predictions based on the spurious attribute in each environment [6].

CMNIST Standard Environments: For the standard environment assignment in the
CMNIST benchmark, in environment e1, 90% of digits [5,9] (y = 1) are red (a = 1) and
90% of digits [0,4] (y = 0) are green (a = 0), while in environment e2, this correlation is
80%. Table A1 shows this distribution more formally. In this case, we can compute the gap
as follows:

g = E
∣∣E[Y|Ψ(x), e1]−E[Y|Ψ(x), e2]

∣∣ = E
∣∣E[Y|a, e1]−E[Y|a, e2]

∣∣
=

1
2

∣∣E[Y|a = 0, e1]−E[Y|a = 0, e2]
∣∣+ 1

2

∣∣E[Y|a = 1, e1]−E[Y|a = 1, e2]
∣∣

=
1
2
(∣∣0.9(0)− 0.8(0)

∣∣+ ∣∣0.1(1)− 0.2(1)
∣∣)+ 1

2
(∣∣0.1(0)− 0.2(0)

∣∣+ ∣∣0.9(1)− 0.8(1)
∣∣) = 0.1

Therefore, the given environment splits are suboptimal w.r.t. group sufficiency gap [6],
which motivates the discovery of environments with a higher group sufficiency gap.

Table A1. Distribution of each class in created environments. a = 0 and a = 1 corresponds to green
and red. The numbers show the composition of samples for each class within the environments. Note
that this table is different from Table 2.

Standard CMNIST CMNIST FEED CMNIST EIIL SMNIST FEED SMNIST EIIL

e1 e2 e1 e2 e1 e2 e1 e2 e1 e2

(a = 0, y = 0) 90.0 80.0 100.0 0.0 93.0 7.0 99.93 4.95 85.16 9.68
(a = 1, y = 0) 10.0 20.0 0.0 100.0 7.0 93.0 0.07 95.05 14.84 90.32

(a = 0, y = 1) 10.0 20.0 0.0 100.0 6.0 89.0 0.31 98.64 15.15 89.63
(a = 1, y = 1) 90.0 80.0 100.0 0.0 94.0 11.0 99.69 1.36 84.85 10.37
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FEED for CMNIST: As shown in Tables 2 and A1, FEED can split the CMNIST dataset
based on the spurious attribute. It discovers an environment assignment based on the
agreement between the label y and spurious attribute a. Therefore, the group sufficiency
gap would be:

g = E
∣∣E[Y|Ψ(x), e1]−E[Y|Ψ(x), e2]

∣∣ = E
∣∣E[Y|a, e1]−E[Y|a, e2]

∣∣
=

1
2

∣∣E[Y|a = 0, e1]−E[Y|a = 0, e2]
∣∣+ 1

2

∣∣E[Y|a = 1, e1]−E[Y|a = 1, e2]
∣∣

=
1
2
(∣∣1(0)− 0(0)

∣∣+ ∣∣0(1)− 1(1)
∣∣)+ 1

2
(∣∣0(0)− 1(0)

∣∣+ ∣∣1(1)− 0(1)
∣∣) = 1

This shows that our discovered environment can achieve the maximum group suf-
ficiency gap. We note that there can be other splitting strategies that can maximize the
gap g, however, we found the proposed strategy straightforward and effective. For the
INVERSE-CMNIST experiment, FEED can achieve exactly the same environment assign-
ment. Therefore, we do not list that, separately.

EIIL for CMNIST: The distribution of each class in the environments that EIIL [6]
creates, is shown in Table A1. We can find the group sufficiency gap as follows:

g = E
∣∣E[Y|Ψ(x), e1]−E[Y|Ψ(x), e2]

∣∣ = E
∣∣E[Y|a, e1]−E[Y|a, e2]

∣∣
=

1
2

∣∣E[Y|a = 0, e1]−E[Y|a = 0, e2]
∣∣+ 1

2

∣∣E[Y|a = 1, e1]−E[Y|a = 1, e2]
∣∣

=
1
2
(∣∣0.93(0)− 0.07(0)

∣∣+ ∣∣0.06(1)− 0.89(1)
∣∣)+ 1

2
(∣∣0.07(0)− 0.93(0)

∣∣+ ∣∣0.94(1)− 0.11(1)
∣∣) = 0.83

FEED for SquareMNIST: We repeated this experiment 10 times and then took the
average of the environment assignments. This is to make sure our results are stable and
reproducible. The distribution for each environment is given in Table 2. In this case, the
group sufficiency gap would be:

g = E
∣∣E[Y|Ψ(x), e1]−E[Y|Ψ(x), e2]

∣∣ = E
∣∣E[Y|a, e1]−E[Y|a, e2]

∣∣
=

1
2

∣∣E[Y|a = 0, e1]−E[Y|a = 0, e2]
∣∣+ 1

2

∣∣E[Y|a = 1, e1]−E[Y|a = 1, e2]
∣∣

=
1
2
(∣∣0.9993(0)− 0.0495(0)

∣∣+ ∣∣0.0031(1)− 0.9864(1)
∣∣)+ 1

2
(∣∣0.0007(0)− 0.9505(0)

∣∣+ ∣∣0.9969(1)− 0.0136(1)
∣∣) = 0.98

EIIL for SquareMNIST: According to Table A1, the group sufficiency gap can be
computed as follows:

g = E
∣∣E[Y|Ψ(x), e1]−E[Y|Ψ(x), e2]

∣∣ = E
∣∣E[Y|a, e1]−E[Y|a, e2]

∣∣
=

1
2

∣∣E[Y|a = 0, e1]−E[Y|a = 0, e2]
∣∣+ 1

2

∣∣E[Y|a = 1, e1]−E[Y|a = 1, e2]
∣∣

=
1
2
(∣∣0.8516(0)− 0.0968(0)

∣∣+ ∣∣0.1515(1)− 0.8963(1)
∣∣)+ 1

2
(∣∣0.1484(0)− 0.9032(0)

∣∣+ ∣∣0.8485(1)− 0.1037(1)
∣∣) = 0.74
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