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Abstract: Variational Bayesian Approximation (VBA) is a fast technique for approximating Bayesian
computation. The main idea is to assess the joint posterior distribution of all the unknown variables
with a simple expression. Mean–Field Variational Bayesian Approximation (MFVBA) is a particular
case developed for large–scale problems where the approximated probability law is separable in
all variables. A well–known drawback of MFVBA is that it tends to underestimate the variances in
the variables, even though it estimates the means well. It can lead to poor inference results. We can
obtain a fixed point algorithm to evaluate the means in exponential families for the approximating
distribution. However, this does not solve the problem of underestimating the variances. In this
paper, we propose a modified method of VBA with exponential families to first estimate the posterior
mean and then improve the estimation of the posterior covariance. We demonstrate the performance
of the procedure with an example.

Keywords: Variational Bayesian Approximation (VBA); Kullback–Leibler divergence; Mean–Field
Variational Bayesian Approximation (MFVBA); Linear Response Variational Bayes (LRVB)

1. Introduction

Bayesian computation uses Bayes’ theorem to revise the probabilities of unknowns
based on prior knowledge and data. When the likelihood expressions and prior are avail-
able, we can get the expression of the posterior law. However, this expression needs the
denominator integral computation of the Bayes formula, called evidence. Approximate
Bayesian Computation (ABC) are a class of algorithms used to perform Bayesian compu-
tation without exactly computing the evidence. The first class of these methods generate
samples from the posterior law. We can mention all of the Monte Carlo sampling methods,
such as slice sampling, nested sampling, and Markov chain Monte Carlo (MCMC) methods.
The second category of these methods includes those that directly compute the means and
variances, such as the Variational Bayesian Approximation (VBA) methods.

MCMC is a class of algorithms for sampling from a probability distribution and
estimating the posterior distribution. Metropolis et al. (1953) [1] introduced the first MCMC
algorithm called the Metropolis algorithm. Hastings (1970) [2] brought it closer to applied
statistics, generalizing the Metropolis algorithm for asymmetric proposal distributions.

VBA methods were introduced by Jordan et al. (1998) [3]. They were motivated by
the demand to improve the Bayesian inference for large and complex models intractable
by conventional methods such as MCMC. VBA is a fast and robust scheme to perform
Bayesian computations in high–dimensional problems. The main idea is to approximate the
high–complexity posterior probability law with a simple and lower–complexity probability
law using the Kullback–Leibler divergence as the approximation criterion.
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In many cases, the VBA methods are faster than the MCMC methods. VBA can release
two types of posterior approximations. The first is the free–form product of distributions
such as the conjugated exponential family known as the Mean–Field Approximation
(MFA). The second one is the fixed–form for posterior distributions like multivariate
Gaussian with a proper parametrization for the model, Sarkka and Nummenmaa (2009)
[4]. MFA is a general approach in the graphical models, particularly for the hierarchical
Bayesian models.

The foundation of VBA is minimizing the Kullback–Leibler divergence (KL) between
the approximated probability distribution and the exact posterior distribution. Rohde and
Wand (2016) [5] worked on semi–parametric Mean–Field Variational Bayesian Approxi-
mation (MFVBA) as a combination of the KL measure and MFA. A significant drawback
of MFVBA is that it underestimates the variable uncertainties and is uninformed con-
cerning the variable covariance of models. Giordano et al. (2015, 2018) [6,7] rectified the
MFVBA and named Linear Response Variational Bayes (LRVB) as being able to provide
proper uncertainties.

MFVBA is a valuable approximation method for estimating the posterior mean in the
Bayesian framework. While using an exponential family for approximation, we get a fixed
point algorithm for reckoning the means. In this paper, we show how to use VBA with
exponential families to approximate the posterior means and simultaneously evaluate the
posterior covariance more precisely. Via an example, we also compare the MFVBA and
MCMC posterior distributions.

This paper’s organization is as follows: In Section 2, we demonstrate the main idea of
MFVBA with a particular case in exponential family (EF) distributions. In Section 3, we
modify the covariance matrix resulting from the MFVBA to get a better approximation.
In Section 4, we give details of the covariance matrix expression in EF. We show that the
covariance computation needs high–dimensional matrix inversion, which is very costly in
high–dimensional problems. In Section 5, we provide an example of how to compute the
posterior distribution and compare the computational costs of the proposed method and
the MCMC. In Section 6, we present the main conclusion on the paper content.

2. Mean–Field Variational Bayesian Approximation (MFVBA)

VBA approximates posterior distributions when the exact expression of the posterior
is too complex or costly. MFA simplifies the VBA by assuming that the final distribution is
factorized into independent margins, which means that each unknown parameter has its
distribution independent of the others.

Suppose that p is approximated by q∗ and θ is the unknown vector of parameters.
We define V = Covq∗(θ) and Σ = Covp(θ). We know that V < Σ. V is a poor estimate
(underestimate) of Σ even if m∗ = Eq∗{θ} = Ep{θ}. The question is how to find a better
estimate for Σ. One solution for Σ in the case of the exponential family, proposed by
Giordano et al. (2015) [6], is Σ = (I −V H)−1V via the LRVB method, where I and H are
an identity matrix and Hessian matrix of the log probability ln p, respectively. To show this,
let us go through the details step by step.

2.1. Main Idea

• General Bayesian framework: Given the likelihood p(D|θ) and the prior p(θ), the
expression of the posterior p(θ|D) is given by:

p(θ|D) = p(D|θ)p(θ)
p(D) . (1)

• MFVBA: Approximate p(θ|x) by a separable q(θ):

q(θ) = ∏
j

qj(θ j), (2)
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by minimizing:

KL[q : p] =
∫∫

q ln
q
p
= Eq{ln q} − Eq{ln p}. (3)

• Noting by L = Eq{ln p} the expected posterior likelihood and by S = −Eq{ln q} the
entropy of q, we can also write:

q∗ = arg min
q
{KL[q : p]} = arg max

q
{E = S + L}. (4)

• E is the evidence lower bound.

2.2. VBA and Exponential Family

• If q is chosen to be in an exponential family:

q(θ|η) = exp
[
η′θ− A(η)

]
, (5)

then it is entirely characterized by its mean m = Eq{θ} and so is:

q∗(θ|η∗) = exp
[
η∗′θ− A(η∗)

]
, (6)

then the same characterization by the mean m∗ = Eq∗{θ}.
• We can then define the objective E as a function of m, and the first–order condition of

the optimality is:
∂E
∂m

∣∣
m=m∗ = 0. (7)

2.3. MFVBA, Exponential Family (EF) and Fixed Point Algorithm

• VBA+exponential family with Eq{θ}:

∂E
∂m

∣∣
m=m∗ = 0→ ∂E

∂m

∣∣
m=m∗ +m = m→ M(m) = m. (8)

• Iterating on this fixed point algorithm:

M(m) = m(k−1) with M (m) :=
∂E
∂m

+m, (9)

converges to m∗ = Eq∗{θ}.

3. VBA, EF and Covariance Estimation

• Noting from V = Covq∗(θ) and Σ = Covp(θ), we know that V < Σ.
• V is a poor estimate (underestimate) of Σ even if m∗ = Eq∗{θ} = Ep{θ}.
• The question is now: How to find a better estimate for Σ.
• One solution proposed by Giordano et al. (2015) [6] is the LRVB.

The main idea is to perturb p(θ|x) by some exponential family to obtain pt(θ|x):

pt(θ|x) = p(θ|x) exp
[
t′θ+ C(t)

]
(10)

such that:
ln pt(θ|x) = ln p(θ|x) + t′θ+ C(t) (11)

• C(t) is the cumulate generating function of pt(θ|x), so

Σ = Covp(θ) =
∂2C(t)
∂t′∂t

∣∣∣∣
t=0

=
∂Ept{θ}

∂t′

∣∣∣∣
t=0

=
∂m∗t
∂t′

∣∣∣∣
t=0

(12)
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4. Linear Perturbation Method for Better Covariance Estimation

To summarize this method:

• Perturb p(θ|x) by an exponential family term to obtain:

pt(θ|x) = p(θ|x) exp
[
t′θ+ C(t)

]
.

Thus, we have:

−KL[q : pt ] =−KL[q : p] + t′m −→ Et = E + t′m,
∂E
∂m

=0 −→m = Eq{m}, M(m) = m,

and finally:
Et = E + t′m −→ Mt(m) = M(m) + t. (13)

• Replacing these relations, we have:

∂m∗t
∂t′

=
∂Mt
∂m′

∣∣∣∣
m=m∗

t

∂m

∂t
+

∂Mt
∂t

=
∂Mt
∂m′

∣∣∣∣
m=m∗

t

∂m

∂t
+ I .

We obtain:

Σ =
∂m∗t
∂t′

=
∂M
∂m

Σ + I =

(
∂2E

∂m∂m′
+ I

)
+ I −→ Σ = −

(
∂2E

∂m∂m′

)
,

and finally:

E = L + S −→ Σ = −
(

∂2L
∂m∂m′

+
∂2S

∂m∂m′

)
. (14)

• Noting that the entropy of an exponential family is:

S = η′m+ A(η) −→ ∂S
∂m

= −η −→ ∂2S
∂m∂m′

= − ∂η

∂m
= V −1.

We get:

Σ = −
(

∂2L
∂m∂m′

+
∂2S

∂m∂m′

)−1

= −(H − V −1)−1.

• Finally, using a matrix inversion lemma, we hold:

Σ = (I − V H)−1V . (15)

4.1. Dealing with Nuisance Parameters

• If we are only interested in some of the variables α, i.e., θ = (α, z) where z are nuisance
parameters that we are not interested in, then we can write:

Σ =

[
Σα Σαz
Σzα Σz

]
.

• Looking for the partition of θ = (α, z), we obtain:

Σα = (Iα − VαHα − VαHαz(Iz − VzHz)
−1VzHzα)

−1Vα.

4.2. The Whole Algorithm

• Having chosen the prior p(θ) and the likelihood p(D|θ), find the expression of the
posterior law:

p(θ|D) ∝ p(D|θ)p(θ).
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• Choose an exponential family q(θ) and find the expressions of:

L = Eq{ln p}, S = Eq{ln q}, and E = L + S,

as a function of the expectation parameters m = Eq{θ}.
• Find the expression of M = ∇mE +m and write the following fix point update

M (m) = m(k−1) until convergence.
• When m? is obtained, then compute:

V =
∂2S

∂m∂m′
|m? and H =

∂2L
∂m∂m′

|m? .

• Compute Σ = (I − V H)−1V .

5. Numerical Experimentations of Normal–Poisson Distribution

The Normal–Poisson example is a non–conjugacy generalized mix model. The ob-
served data are from a Poisson distribution named yn and a design vector xn, for
n = 1, . . . , N. The considered model is in Figure 1:

yn|zn ∼ P(exp(zn)), (16)

where
zn|β, τ ∼ N

(
βxn, τ−1

)
, β ∼ N

(
0, σ2

β

)
, and τ ∼ Γ(ατ , βτ).

Figure 1. The Normal–Poisson hierarchical model pattern when N = 4 with sample size 100.

In the first step, we approximate the posterior joint distribution of β, τ and
z = (z1, · · · , zn) for n = 1, . . . , N via MFVBA:

q(β, τ, z) = qN+1(β) qN+2(τ)
N

∏
n=1

qn(zn).

We need to write L = ln p(β, τ, z, y):

ln p(β, τ, z, y) =− β2

2σ2
β

+ (ατ +
N
2
− 1) ln(τ)− βττ − τ

2

N

∑
n=1

z2
n −

τβ2

2

N

∑
n=1

x2
n (17)

+ τβ
N

∑
n=1

znxn +
N

∑
n=1

znyn −
N

∑
n=1

exp(zn)−
N

∑
n=1

ln(yn!) + C,

where C is a constant and does not depend on unknown variables. We start with computing
the distributions of zn for n = 1, . . . , N. For the simplicity of notations, we assume that n
is a natural number in the interval [1, N], and qN+2\n means all N + 2 distribution items
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except the nth one, and 〈·〉q means the expectation over density q. Thus, qn(zn), the density
of zn, is equivalent to the following:

〈ln p(β, τ, z, y)〉qN+2\n ∝ −
〈τ〉qN+2

2
z2

n + (〈τ〉qN+2〈β〉qN+1 xn + yn)zn − exp(zn).

Since this expression does not follow a specific distribution because of the existence
of exp(zn), we omit this part according to its expectation, which is a function of 〈zn〉qn

and 〈z2
n〉qn . We can calculate the expectations using the Normal moment–generating

distribution function. The logical reason is that its expectation depends only on 〈zn〉qn and
〈z2

n〉qn . Moreover, we have 〈τ〉qN+2 = ατ
βτ

and 〈β〉qN+1 = 0. Thus,

〈ln p(β, τ, z, y)〉qN+2\n ∝ − ατ

2βτ

(
z2

n −
2βτyn

ατ
zn

)
,

which means a Normal distribution for zn, N (
βτyn

ατ
, βτ

ατ
) for n = 1, . . . , N. The process is

quite similar for qN+2(τ) and qN+1(β). The corresponding equivalents of distributions for
qN+2 and qN+1 are shown below, respectively:

〈ln p(β, τ, z, y)〉q1,...,N+1 ∝ (ατ +
N
2
− 1) ln(τ)

− τ

2

(
2βτ +

N

∑
n=1

(〈z2
n〉qn + 〈β2〉qN+1 x2

n − 2〈β〉qN+1 xn〈zn〉qn)

)
,

and

〈ln p(β, τ, z, y)〉q1,...,N,N+2 ∝ − β2

2σ2
β

−
〈τ〉qN+2 β2

2

N

∑
n=1

x2
n + 〈τ〉qN+2 β

N

∑
n=1
〈zn〉qn xn.

Thus, we have:

τ ∼ Γ

(
ατ +

N
2

,
1
2

(
2βτ +

βτ

ατ
N +

β2
τ

α2
τ

N

∑
n=1

y2
n + σ2

β

N

∑
n=1

x2
n

))
,

and

β ∼ N

 σ2
β(2ατ + N) βτ

ατ
∑N

n=1 ynxn

2βτ +
βτ
ατ

N + β2
τ

α2
τ

∑N
n=1 y2

n + σ2
β(2ατ + N + 1)∑N

n=1 x2
n

,

σ2
β

(
2βτ +

βτ
ατ

N + β2
τ

α2
τ

∑N
n=1 y2

n + σ2
β ∑N

n=1 x2
n

)
2βτ +

βτ
ατ

N + β2
τ

α2
τ

∑N
n=1 y2

n + σ2
β(2ατ + N + 1)∑N

n=1 x2
n

.

In the second step, we calculate the variance diagonal matrix V :

V =

 Σβ 0 0
0 Στ 0
0 0 Σz

,
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where

Σβ =
σ2

β

(
2βτ +

βτ
ατ

N + β2
τ

α2
τ

∑N
n=1 y2

n + σ2
β ∑N

n=1 x2
n

)
2βτ +

βτ
ατ

N + β2
τ

α2
τ

∑N
n=1 y2

n + σ2
β(2ατ + N + 1)∑N

n=1 x2
n

,

Στ =
2(2ατ + N)(

2βτ +
βτ
ατ

N + β2
τ

α2
τ

∑N
n=1 y2

n + σ2
β ∑N

n=1 x2
n

)2 ,

and

Σzn =
βτ

ατ
, n = 1, . . . , N.

Thus, Σz = diag(Σz1 , · · · , ΣzN ). The third step is to compute the Hessian matrix H :

H =


∂2L
∂β2

∂2L
∂β∂τ

∂2L
∂β∂z

∂2L
∂τ∂β

∂2L
∂τ2

∂2L
∂τ∂z

∂2L
∂z∂β

∂2L
∂z∂τ

∂2L
∂z2

.

Since H is symmetric in our case study, we need to calculate the main diagonal and
the upper triangle. This covariance matrix depends on the values of m:

m =
(

Eq(β), Eq(β2), Eq(τ), Eq(ln(τ)), Eq(z1), Eq(z2
1), . . . , Eq(zN), Eq(z2

N)
)T

.

Thus, the diagonal of H as a function of m is shown below:

∂2L
∂β2 =− 1

σ2
β

− Eq(τ)
N

∑
n=1

x2
n,

∂2L
∂τ2 =− (ατ +

N
2
− 1)Eq

(
1
τ2

)
,

∂2L
∂z2

n
=− Eq(τ)− Eq(exp(zn)), n = 1, . . . , N,

where L is defined in Equation (17). The upper triangle is:

∂2L
∂β∂τ

=− Eq(β)
N

∑
n=1

x2
n +

N

∑
n=1

Eq(zn)xn,

∂2L
∂β∂zn

=Eq(τ)xn, n = 1, . . . , N,

∂2L
∂τ∂zn

=− Eq(zn) + Eq(β)xn, n = 1, . . . , N.

The last step is to compute Σ using (15). For numerical experimentation, we generate
data from the Normal–Poisson model with these descriptions:

σ2
β = 10, ατ = 1, βτ = 1, N = 4.

We generate xn for n = 1, . . . , N from the Normal distribution N (2, 1). The number of the
reputation for vector yn is 100, so yn is a matrix N × 100. The only data we use are the
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observation matrix yn and vector xn. The covariance matrix V from MFVBA is a diagonal
matrix:

V =

 1.48927 0 0T

0 0.00071 0T

0 0 I

,

where 0 and I are the zero vector with N dimensions and the identity matrix with N × N
dimensions, respectively. The Hessian matrix H and matrix I − V H are:

H =



−0.67147 0.09617 0.05557 0.03031 0.13360 0.07026
0.09617 −1639.9471 −0.21738 −0.02130 0.02651 0.06653
0.05557 −0.21738 −2.20665 0 0 0
0.03031 −0.02130 0 −1.78014 0 0
0.13360 0.02651 0 0 −1.86901 0
0.07026 0.06653 0 0 0 −1.69561

,

and

I − V H =



2 −0.14322 −0.08276 −0.04514 −0.19897 −0.10464
−6.8318× 10−5 2.16501 0.00015 1.5130× 10−5 −1.8832× 10−5 −4.7264× 10−5

−0.05557 0.21738 3.20665 0 0 0
−0.03031 0.02130 0 2.78014 0 0
−0.13360 −0.02651 0 0 2.86901 0
−0.07026 −0.06653 0 0 0 2.69561

.

The covariance matrix via LRVBA is:

Σ =



0.74986 2.3409× 10−5 0.01299 0.00818 0.03492 0.01955
2.3408× 10−5 0.00033 −2.1838× 10−5 −2.2586× 10−6 4.1220× 10−6 8.7090× 10−6

0.01299 −2.1838× 10−5 0.31208 0.00014 0.00060 0.00034
0.00817 −2.2586× 10−6 0.00014 0.35978 0.00038 0.00021
0.03492 4.1220× 10−6 0.00060 0.00038 0.35018 0.00091
0.01955 8.7090× 10−6 0.00034 0.00021 0.00091 0.37148

. (18)

The sparsity patterns for the V , H and I − V H matrixes are shown in Figure 2.

(a) (b) (c)
Figure 2. Sparsity patterns for the matrices using model (16). (a) VBA covariance matrix V ; (b) Hes-
sian matrix H ; (c) I −V H matrix.

In addition, we simulate the posterior distribution via MCMC. This simulation has
five chains and one divergence. The estimated marginal distribution for each unknown
variable is shown in Figures 3 and 4 via MFVBA and MCMC, respectively. More details
are in Table 1. The joint distribution of unknown variables is approximated via MFVBA
and MCMC. The MFVBA distribution is the marginal density factorial of the unknown
variables. Therefore, the variables are independent in MFVBA, and the covariance matrix
is diagonal. LRVBA is a correction method on the covariance matrix. Thus, the matrix
is no longer diagonal as presented in (18). Also, we add more details about the MCMC
results in Table 1. The Monte Carlo Standard Error (MCSE) is a chain–accurate measure
and provides a quantitative suggestion of how big the estimation noise is. The noises are
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small based on the mean and sd of the MCSE. The ess–bulk column delivers an evaluated
bulk influential sample size using rank–normalised draws. The ess–tail column creates an
approximated tail practical sample size by computing the effective minimum sample sizes
between the 5% and 95% quantiles. The last column is the r–hat convergence diagnostic,
which compares the between and within–chain estimation for model variables and other
univariate quantities.

Table 1. Summary of the margin densities for unknown variables.

Unknown
MFVBA Method LRVBA

Method MCMC Method

mean sd sd mean sd hdi–3% hdi–
97% MCSE–mean MCSE–sd ess–

bulk ess–tail r–hat

β 0.044 1.220 0.866 −1.616 1.769 −5.175 1.620 0.148 0.194 186.0 43.0 1.11
τ 0.047 0.027 0.018 0.361 0.188 0.057 0.685 0.024 0.017 38.0 51.0 1.11
z0 0.270 1 0.559 −1.316 0.177 −1.664 −1.028 0.008 0.006 468.0 316.0 1.02
z1 0.050 1 0.600 −3.051 0.410 −3.783 −2.252 0.021 0.015 382.0 372.0 1.00
z2 0.100 1 0.592 −2.375 0.332 −3.029 −1.790 0.015 0.011 476.0 415.0 1.02
z3 0 1 0.610 −7.334 4.641 −14.366 −3.311 0.868 0.620 45.0 55.0 1.13

Figure 3. The final estimations of margin densities for each variable via MFVBA method.

Figure 4. The final margins via MCMC method.

6. Conclusions

Bayesian computations are used to infer unknown parameters from data. ABC meth-
ods are applied to perform approximate computation, particularly in high–dimensional
problems. Two classes of approximate computational methods are MCMC and VBA.
MCMC generates samples from the probability function to approximate the posterior dis-
tribution. It generates a sequence of samples that converges to the target distribution. The
VBA approximates the expression of the joint posterior distribution of unknown parameters
in a complex model using a simple expression. VBA has some advantages over MCMC,
such as being faster, more scalable and versatile. It also guarantees convergence to a local
minimum of KL divergence.

VBA’s drawback is that it underestimates the covariance matrix of the unknowns. For
this aim, we use LRVB to approximate the covariance more precisely. However, the LRVB
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computations still need the inversion of some matrixes, which is costly when the unknown
parameters’ dimensions are high. We work on a numerical example to show the whole
process of VBA and LRVB as well as the performance and ability of the proposed method
and compare it with the classical MCMC results. As a result of the numerical example, the
VBA implementation was much shorter than the MCMC, and we had an explicit form of
joint distribution with a modified covariance matrix with the LRVB aid.
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