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Abstract: Deformation processes, both natural (e.g., subsidence, landslides, active tectonics) and
induced (e.g., associated with mining, construction. groundwater exploitation), result in significant
socioeconomic losses worldwide. Accurate detection and classification of these processes are crucial
for effective risk management. In this study, we present a novel approach for the automatic classifi-
cation of deformation processes using Interferometric Synthetic Aperture Radar (InSAR) data and
machine learning techniques. Specifically, we use a decision tree-based classification algorithm to
train a model capable of recognizing and distinguishing different types of deformation processes
using time series of displacements, grouped into Active Deformation Areas (ADAs). We test this
methodology in a large area in SE Spain. Our results demonstrate promising performance, with
an Area Under the Curve (AUC) > 0.95, identifying several covariates of morphometric, geological,
hydrogeological, and geotechnical nature as key factors. This automatic classification of INSAR data
holds significant implications for risk management associated with ground deformation, providing a
potentially valuable tool for decision makers in urban planning and land management officials.

Keywords: geohazards; Displacement Time Series; SAR; ADAs; Time Series Clustering; machine
learning; SE Spain

1. Introduction

The detection and classification of active deformation areas is a novel approach that
allows non-expert users of InNSAR to integrate SAR-based products into risk management.
Boni et al. [1] and Barra et al. [2] established the initial methodologies for the automatic
detection of Active Deformation Areas (ADAs) using GIS tools. Boni et al. [3] implemented
their methodology using ArcGIS, while Navarro et al. [4] implemented Barra’s methodology
in a software package with a graphical user interface called ADAfinder (V2.0.9 is the
last version and it’s available free on request), using the C++ programming language.
ADAfinder determines active Deformational Time Series (DTS) through standard deviation
thresholds, isolation distance, and average velocity. Subsequently, it groups them into
polygonal clusters (ADAs), whose dimensions depend on parameters such as the defined
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influence radius and the minimum number of DTS required to form an ADA. Additionally,
ADAfinder calculates a quality index for each ADA.

Tomas et al. [5] developed ADAclassifier (V2.0.9 is the last version and it’s available
free on request), a software package that determines whether the deformation of an ADA
is related, potentially related, or unrelated to a sliding, sinkhole, subsidence, or settle-
ment process. The classification is determined using a heuristic decision tree based on
intersection thresholds with inventories of processes (landslides, subsidence, and sink-
holes), infrastructure, and geological variables (Quaternary deposits and saline-carbonate
soils/rocks), as well as thresholds for the horizontal velocity, slope, and coefficient-of-fit
correlation of the DTS to a negative exponential function.

Recently, Festa et al. [6] proposed a machine learning-based methodology to classify
DTS (instead of ADAs) into three processes: subsidence, landslide, and deformation related
to mining. In this methodology, random forest is trained with morphometric variables
(slope, aspect, elevation, Topographic Wetness Index (TWI), profile curvature, general
curvature, and plan curvature), variables related to inventories (distance to landslides
and mining sites), a geological variable (lithology), and a variable that describes the ratio
between horizontal (E-W) and vertical velocity, called KVH, useful for distinguishing
landslides from subsidence.

In this study, we combined the inherent advantages of each approach to achieve the
automatic classification of deformation processes using machine learning in a large area of
approximately 17,500 km? in southeastern Spain. This region encompasses a significant
part of the Region of Murcia, as well as the provinces of Alicante and Almeria (Figure 1).
The study area exhibits a wide range of geological materials, including predominantly
metamorphic hard rocks (HR) and unconsolidated sedimentary deposits (USD) (Figure 2).
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Figure 1. Localization of the study area. Four events are identifying in this zone: L_M: mining
landslide; L: landslide; Su_Du: dump subsidence; Su_Gw: groundwater subsidence.
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Figure 2. Geological context of the study area.

2. Methodology
Figure 3 provides an overview of the methodology employed in this research.
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Figure 3. Methodology flowchart. (1) Extraction and labeling of DTS. (2) Clustering and filtering of

DTS. (3) Creation of database. (4) Generation of classification model of deformation process using
ML. Nc: Noise cluster; Sc: Stable cluster; Oc: Other clusters not related to the main process.

Identify DTS Identify DTS

Nc = Mean Abs Deviation MAD > average deviation clusters
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We utilized ground deformation measurements obtained from the processing of de-
scending Sentinel-1 SAR data for the Region of Murcia and its surroundings, covering
the period from 2015 to 2021. The selection and labeling process of each measurement
point or persistent scatterer (PS hereafter), which corresponds DTS related to deformation
processes, involved intersecting the DTS with national process inventories/catalogs and
polygons resulting from previous SAR-based analysis and interpretation. For each labeled
PS, we applied the elbow method to determine the optimal number of clusters (k) for both
K-means and K-shape algorithms. The Soft_ DTW algorithm served as the distance metric
in both cluster analyses. We then identified and eliminated noisy and stable clusters that
were not associated with deformation processes by using thresholds.

Subsequently, we constructed a database by associating the values of each of the
26 variables (Table 1) with their respective DTS. We combined the temporal information
from the displacement and hydrological time series into a single aggregated variable using
statistical techniques. The thematic and continuous maps were included in the database
as either categorical or numerical variables. To address the issue of numerous lithological
classes and prevent redundancy, we reclassified the GEODE into eight classes (Figure 2)
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based on their geotechnical characteristics. Finally, we trained ML algorithms based on
decision trees to generate an optimal model capable of classifying DTS according to their
deformation process.

Table 1. Covariates of the proposed national database, classified according to their research domain.

. Mean 1, Range 2, Copernicus e
Displacement Desv 3, KVH 4 IGME Vector C
. 5 6
Geological Lithology ,7Age ! IGME Vector >0 NC7
Fault
Slope 8, Aspect 9,
Morphometric TPI 10, TWI 11, IGN 25 m 891011 CN 112
Curvature 12
Hydrological Water Mass 13 MITECO 13 Vector 13 N 13
Clay % ", 14,15,16 14,15,16
Geotechnical Sand % 15, Bulk 9};]5511\61(35?(1;;1{]73 308]:212) 17 ! ¢ 17 ! b
79 m
Density ¢, V530 17 ’
Subsidence 18, IGME 18, 18 19
Hazard Landslide 19 ELSUS 19 Llan ™% 200 m ©
CLC 20, Dump 21, OPENGEOHUB 30 m 20,21,22,23
Land Cover/ Quarry 2, 20212223 Vector 2425 ! N2 C
Land Use Mining 23 Build %4, Catastro 2, ector 20,21,22,23,25,26

100 m 2>26
Road %, Vol Build ¢ IGN %, GSHL 2

Each covariate is associated with a superscript number that serves to indicate features such as resolution and
variable type in the table. N: nominal categorical; O: ordinal categorical; C: continue numerical; D: discrete
numerical.

3. Results

During the conducted analysis, we identified a total of 58 deformation processes,
with 39 corresponding to mining slides (L_M), 12 to landslides (L), 5 to dump subsidence
(Su_Du), and 2 to groundwater subsidence (Su_Dw) (Figure 1a). By intersecting the data
from the descending PS with the deformation processes, we successfully extracted and
labeled 20,499 DTS. The vast majority of these series (97%) corresponded to subsidence
caused by groundwater extraction (Su_Dw). We carried out the identification of noisy
and stable time series for each deformation process through clustering of the time series.
Figure 4a displays the clustering results obtained for Su_Dw. By utilizing the elbow
technique, we identified six clusters. Applying thresholds related to the mean absolute
deviation and mean velocity, we determined that cluster ID3 was the only one related to
the deformation process. Therefore, we eliminated 5456 time series from the other clusters
located at the valley edges (Figure 4b).

After filtering, we obtained 15,043 DTS related to deformation processes, which formed
the database. We applied the synthetic minority over-sampling technique (SMOTE) to
generate samples from minority classes and balance the data, as the majority of them
belonged to the Su_DW class. We used the random forest algorithm for classification. The
model achieved a perfect classification with an AUC of 1.0 in the test set, as observed in the
confusion matrix of Figure 5a. Hydrological, geological, morphometric, and geotechnical
variables proved to be the most relevant for the classification model (Figure 5b). Specifically,
the presence of groundwater masses, distance to faults, slope, percentage of sand and clay,
lithology, soil bulk density, Vs30, and geological age were the most determining variables,
while variables related to displacement, hazards, and land cover had less importance.
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Figure 4. Results of DTS filtering. Groundwater subsidence in Lorca, SE Spain. (a) Centroids of
clusters generated with Kshape algorithm and statistic associated with the threshold of filtering
(mean absolute deviation and mean velocity). ID 3 is the unique cluster that exceeds the filtered
threshold. (b) Spatial representation of the clustering. The comparison between the pink geometries
of the corners maps allows us to identify the DTS to be removed (green points corresponding to
clusters other than ID 3): noisy DTS in red (circle), stable DTS in yellow (rectangle), and DTS with

inverse trends in blue (rectangle).
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Figure 5. Test results of classification model. (a) Confusion matrix. L_M: mining landslide; L:
landslide; Su_Du: dump subsidence; Su_Gw: groundwater subsidence. (b) Feature importance.
DB = Bulk Density.



Environ. Sci. Proc. 2023, 28, 15

60of 7

References

4. Discussion and Conclusions

The methodology based on statistical thresholds of DTS clusters has demonstrated
its capability to identify and eliminate stable and/or noisy DTS within the same ADA.
Additionally, the utilization of random forest algorithms has yielded excellent results in
the classification of deformation processes when trained with displacement variables and
environmental variables from the filtered DTS. Furthermore, the analysis of the database
reveals that environmental variables, with the exception of land cover and hazard, exert the
greatest influence on the classification of deformation processes. These variables, ranked in
descending order of importance, include the presence of groundwater masses, distance to
faults, slope, and percentage of sand at a 30 cm depth and lithology.

While we have obtained promising results, it is important to acknowledge that there
may be an overestimation of the significance of determining variables in the classification,
such as distance to faults, due to the limited spatial variability of the training data. Moreover,
it is crucial to consider that the proposed methodology may yield inadequate results in
identifying and classifying other types of deformation processes, such as uplift, diapirism,
seismic, volcanic, and/or karstic processes. Considering these limitations, our future
research will focus on further exploring the filtering methodology, variable selection, and
machine learning algorithms to enable the automatic classification of various deformation
processes on a national scale. We will achieve this objective by leveraging open data sources
such as the European Ground Motion Service (EGMS).
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