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Abstract: Live Fuel Moisture Content (LFMC) describes the amount of water present in any type of
vegetation and helps quantify the amount of fuel available in a wildfire. In this paper, a multivariate
linear regression model was built to estimate the LFMC of the weighted average of all shrub-type
species present, using the fraction of canopy cover (FCC) of each forest species as weights. Sample
training was conducted with field data obtained during the fire season of the years 2019, 2020 and 2021
in 15 plots of a Mediterranean area where vegetation composed of the shrub-type species dominates.
Different spectral indices extracted from Sentinel-2 together with the mean surface temperature, the
accumulated precipitation and the seasonal parameters were considered as predictors. The results
were compared with the extrapolation of another model trained with field data collected in the year
2019.

Keywords: live fuel moisture content; multivariate linear regression; spectral indices; wildfire;
meteorological parameters; fraction of canopy cover

1. Introduction

Live Fuel Moisture Content (LFMC) is the measure of the percentage of water that
a plant species contains in relation to its total dry mass and plays a fundamental role in
the dynamics that a wildfire can have at its start and development [1]. It is directly related
to the amount of energy required to evaporate the water before ignition. Therefore, a
high percentage of moisture contained in the vegetation reduces or completely prevents
flammability and the consequent spread of fire [2].

Through satellite images, a spatiotemporal monitoring of vegetation cover on the
Earth’s surface is possible. These images allow us to analyze the spectral response captured
in the portions of bands separated by the wavelength range of the electromagnetic spectrum,
which, depending on the type of sensor used, will offer a series of possibilities to describe
the LFMC [2].

In the work of Costa-Saura et al. [3], an LFMC estimation model was created using
data obtained in the fire season of 2019 in 15 shrub plots in the province of Valencia in Spain,
using as predictors a Sentinel-2 spectral index of 10 m of spatial resolution, smoothed by
the Savitzky–Golay filter, in addition to a mean surface temperature and a mean wind
speed. Later, Arcos et al. [4] proved that a higher accuracy was achieved in the models that
used unsmoothed spectral indices and considered an accumulated precipitation variable
when using data from two different years (2019 and 2020) in three plots belonging to the
study area of [3].

This paper shows an extension of the regression model described in [3] using data
obtained from the same 15 plots but in three fire seasons (in the years 2019, 2020 and 2021).
Our model uses unsmoothed Sentinel-2 spectral indices as in [4] and replaces the average
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temperature with a static variable that reflects the periodic behavior introduced together
with an accumulated precipitation variable to obtain a model for years with different
rainfall regimes.

2. Methods
2.1. Study Area

This research was carried out in the Province of Valencia located to the south-east
of the Iberian Peninsula on the Mediterranean coast. Fifteen plots described in [3] where
shrub type species dominate were considered. Each plot was defined in a circular area of
30 m in radius where the density and type of vegetation were homogeneous and where
samples of existing species were collected.

2.2. Field Data

Biweekly field samples for all species in each plot were collected between the months
of June and October of the years 2019, 2020 and 2021. The LFMC for each specie, date and
plot was calculated as the percentage of water contained in vegetation on a dry weight
basis following Equation (1):

LFMC =
Wf − Wd

Wd
·100 (1)

where Wf is the fresh weight and Wd is the dry weight. To have a single indicator by
date for all shrub species in each plot, LFMCWAS (LFMC weighted average in shrubs) was
calculated as the weighted average of the LFMC in all the shrub species existing in the plot,
using the fraction of canopy cover (FCC) of each one as weights according to Equation (2),
where j varies according to the shrub species present in the plot.

LFMCWAS(date, plot) =
Σj
(
LFMCj(date, plot)× FCCj

)
Σj
(
FCCj

) (2)

2.3. Spectral Indices, Meteorological Parameters and Static Variables

Three types of spectral indices were considered: first, indices that respond to the
photosynthetic activity of vegetation, e.g., Normalized Difference Vegetation (NDVI), Visi-
ble Atmospherically Resistant Index (VARI) and Soil Adjusted Vegetation Index (OSAVI);
second, indices related to soil and vegetation water content, e.g., Normalized Difference
Water Index (NDWI) and Normalized Difference Moisture Index (NDMI); and third, in-
dices related to the greenness of vegetation, e.g., Transformed Chlorophyll Absorption
Index (TCARI) and Vegetation Index-Green (VIGreen) [3]; and finally, TCARI_OSAVI =
TCARI/OSAVI [3]. Spectral indices were generated from Sentinel-2 satellite imagery, using
Google Earth Engine and a spatial resolution of 20 meters, and their value was defined from
the mean of the pixels that intersected with a circular buffer of a 30 meter radius centered
on each plot. In addition, the average and range of such indices for the period studied in
each plot were also calculated. The values registered at the meteorological observatories
were interpolated using the Meteoland R package to obtain the accumulated precipitation
in the previous 15, 30 and 60 days (p15, p30 and p60) and the mean surface temperature in
the 7, 15, 30 and 60 days (t7, t15, t30, t60) prior to each field sample from the years 2019,
2020 and 2021. Other computed indices were the average wind speed in Km/h for 600 s of
the maximum daily wind gusts in the previous 7 and 15 days [3]. Variables sin_DOY and
cos_DOY were calculated, respectively, as the sine and cosine for the day of the year [1].

2.4. Multivariate Linear Regression Models

A multivariate linear regression model (MLR_19_20_21) was calculated using three
years of data and by following the steps described in Figure 1. First, a stepwise forward
linear regression was applied using variables described in Section 2.3 as predictors. Second,
the selection of a maximum of six predictors was carried out using the Akaike information
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criterion. And finally, the Variance Inflation Factor (VIF) of predictors in general linear
models was calculated to analyze the quality of contribution that the independent variables
present to the model. Moreover, the best model (R2

adj = 0.70) in Costa-Saura et al. [3] of
the year 2019 was replicated with our 2019 data to later extrapolate and compare their
adjustability in the years 2020 and 2021.
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Figure 1. Multivariate linear regression process used to estimate the LFMC.

3. Results and Discussion

Table 1 shows selected variables and fitted coefficients in MLR_19_20_21 and MLR_19
models. The spectral indices used in the first regression model were VARI and TCARI_OSAVI
together with two statistics of spectral indices in each plot (mean_VARI and range_NDVI)
calculated using all spectral data in the fire season of the three years. A static seasonal
parameter (sin_DOY) and an accumulated precipitation variable (p60) helped to describe
the LFMCWAS. Furthermore, in the replicated model, the fit and coefficients achieved
were very similar to the original [3]. All predictors were statistically significant with VIF
parameters below 5, indicative of non-multicollinearity. The adjusted R2 was smaller in the
model using the data from all three years due to the inter-annual variability of LFMCWAS.
This causes the RMSE and MAE to be higher in the MLR_19_20_21 model, but their values
are below 12.

Table 1. Multivariate linear regression models for LFMCWAS defined by (2) in shrubs. The columns
represent the name of model and variables, coefficients, p-value of each coefficient, variance inflation
factor (VIF), adjusted R2 (R2

adj), root mean square error (RMSE) and mean absolute error (MAE).

Model Variable Coefficient p-Values VIF R2
adj RMSE MAE

MLR_19_20_21

Intercept 124.222

0.519 11.13 8.54

sin_DOY −12.3636 <0.00 1.18564
p60 0.066198 <0.00 1.34219

TCARI_OSAVI −93.5614 <0.00 1.70399
VARI 110.723 <0.00 3.24571

Mean_VARI −120.596 <0.00 2.97184
Range_NDVI −44.4529 <0.00 1.08075

MLR_19 *

Intercept 191.091

0.658 * 8.83 * 6.52 *
t60 −2.55324 <0.00 1.35301

NDMI 153.357 <0.00 3.39691
Mean_NDMI −91.9045 0.0001 3.31885

W7 −4.72606 <0.00 1.16423

* Only data from the year 2019 was used to replicate the model and its consequent statistics.

Figure 2 shows LFMCWAS values obtained in plot number 2 described in [3], which
coincides with plot G5 given in [4]. Model MLR_19 achieved higher accuracy for the
year 2019, but when it was extrapolated to the other years, it lost accuracy due to annual
differences, especially in the rainfall regime according to that described by Arcos et al. [4].
The MLR_19_20_21 model estimated values closer to the field values for the years 2020
and 2021 where the minimum values were reached. In addition, the values estimated by
MLR_19 at the beginning and at the end of the fire season during the years 2020 and 2021
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were higher than those obtained in the field. Figure 2 shows the p60 values obtained in field
dates, which indicated the importance of the precipitation variable in the MLR_19_20_21
model, since it fitted better with the minimum and maximum values and more effectively
followed the trend of the field LFMCWAS.
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Figure 2. LFMCWAS values estimated on the dates of sampling in the field in plot number 2,
described in [3] (G5 in [4]), using MLR_19_20_21 and MLR_19 models, the coefficients of which are
given in Table 1. Field LFMC corresponds to the measured data used to calibrate regression models
and p60 corresponds to the accumulated precipitation in the last 60 days.

4. Conclusions

This paper allowed us to verify that the changes in the precipitation pattern caused
LFMCWAS forecast errors when using a regression model obtained with data from previous
years. The model obtained with data collected in the fire season for three consecutive
years selected as its predictors an accumulated precipitation variable, together with a
seasonal parameter that depends on the day of the year, instead of other meteorological
variables obtained such as the average temperature or the wind speed. To describe the
spatial differences of LFMCWAS between plots, temporal averages of the spectral indices
obtained in each plot had to be used together with the range (the difference between the
maximum and minimum), calculated using all possible dates in our study period, so they
only varied at the spatial level. In addition, vegetation indices predominate over water
content spectral indices.
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