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Abstract: Thermography has been employed broadly as a corresponding diagnostic instrument
in breast cancer diagnosis. Among thermographic techniques, deep neural networks show an
unequivocal potential to detect heterogeneous thermal patterns related to vasodilation in breast
cancer cases. Such methods are used to extract high-dimensional thermal features, known as deep
thermomics. In this study, we applied convex non-negative matrix factorization (convex NMF)
to extract three predominant bases of thermal sequences. Then, the data were fed into a sparse
autoencoder model, known as SPAER, to extract low-dimensional deep thermomics, which were
then used to assist the clinical breast exam (CBE) in breast cancer screening. The application of
convex NMF-SPAER, combining clinical and demographic covariates, yielded a result of 79.3%
(73.5%, 86.9%); the highest result belonged to NMF-SPAER at 84.9% (79.3%, 88.7%). The proposed
approach preserved thermal heterogeneity and led to early detection of breast cancer. It can be used
as a noninvasive tool aiding CBE.

Keywords: deep learning thermography; convex non-negative matrix factorization; thermal hetero-
geneity; deep thermomics; breast cancer

1. Introduction

Breast cancer shows high survival rates due to the current progresses in imaging
modalities and treatment planning, but it still categorized as the most fatal cancer among
women [1]. Here, a deep learning model is applied for dynamic thermography to aid
the process of screening prior to mammography and in a clinical breast exam (CBE) to
expedite diagnosis at an early stage. Several studies have confirmed the value of infrared
thermography in detecting hypervascularity and hyperthermia in non-palpable breast
cancer [2–4]. This study applies a convex matrix approximation and a deep learning model
to extract the most predominant thermal patterns, called latent space thermomics. The model
was trained and used alongside CBE for early detection of breast cancer and showed high
accuracy in detecting symptomatic patients.

2. Materials and Methods

Thermal heterogeneity can be detected by using different matrix factorizations
(MF) [5–20]. Thermal variance can be used to evaluate the thermal heterogeneity of differ-
ent components. Low-rank matrix approximation, using semi- and convex NMF, provides
more freedom to bases when compared to NMF, while being controlled by non-negative
coefficients. This means that despite the presence of potentially negative bases, they do not
overlap. This property causes these algorithms to perform the grouping of bases, driven by
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their thermal variability on input thermal data. Figure 1 shows the low-rank representa-
tion of thermal images in the breast area for healthy and symptomatic participants, using
convex NMF.
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Figure 1. Twelve examples of convex NMF-driven low-rank thermal matrix approximation for six 
healthy cases and six symptomatic or cancer cases. Some otherwise healthy cases reported pain and 
changes in the breast area that are clearly projected in the thermal images. 

Classification Outcome 
The extracted deep thermomics produced by the SPAER model were employed to 

train a random forest model that was used to make preliminary diagnostic decisions for 
both symptomatic and healthy participants. The model’s accuracy was assessed by com-
paring the model’s predictions with the ground truth, using mammography and breast 
biopsy. We evaluated the system’s accuracy using 16 convex deep thermomics bi-
omarkers, along with clinical and demographic covariates (i.e., age, marital status, and 
family history), with leave-one-out cross-validation. The accuracy yielded by the maximal 
multivariate model was 84.9% (79.3%, 88.7%) for NMF deep thermomics, which was chal-
lenged by NMF-SPAER+Clinical, convex NMF-SPAER+Clinical, and PCT-SPAER+Clini-
cal, with clinical information yielding accuracies of 83.02% (79.2%, 86.8%), 79.3% (73.5%, 
86.9%), and 81.1% (75.5%, 84.9%), respectively. IPCT-SPAER+Clinical, sparse PCT-SPAER 
+ Clinical, sparse NMF-SPAER + Clinical, and convex NMF-SPAER + Clinical showed con-
siderably similar accuracy of diagnosis, yielding median accuracies of 79.2% with differ-
ent variation ranges. The lowest accuracy of these methods belonged to PCT-SPAER, 
which showed diagnostic accuracy of 75.5 (67.9, 81.1). The minimal full multivariate 
model belonged to sparse NMF-SPAER+Clinical, with an accuracy of 79.2 (73.6, 83.02%), 
demonstrating higher restriction in the domain of the solution due to two-fold sparsity 
and non-negativity in the NMF and SPAER models (see Table 1). 

Table 1. Classification results for symptomatic versus heathy cases, with leave-one-out cross-vali-
dation. 

Accuracy of Multivariate Models for Breast Cancer Diagnosis 
Methods Accuracy 2 (%) t-Test 3 

IPCT-SPAER 79.2 (73.6, 84.9) 0.06, 0.95 
PCT-SPAER 75.5 (67.9, 81.1) 2.1, 0.04 
NMF-SPAER 84.9 (79.3, 88.7) 2.9, 0.004 

Sparse PCT-SPAER 79.2 (73.6,84.9) 1.2, 0.23 
Sparse NMF-SPAER 79.3 (73.5,83.02) 1.08, 0.28 

Figure 1. Twelve examples of convex NMF-driven low-rank thermal matrix approximation for six
healthy cases and six symptomatic or cancer cases. Some otherwise healthy cases reported pain and
changes in the breast area that are clearly projected in the thermal images.

Thermal imaging throughputs extracted from thermal images, called thermomics [14–17],
are used extensively to deliver diagnostic solutions, such as radiomics, for early-stage breast
cancers [18–20]. The efficiency of thermomics is known to have been accompanied by clinical
variables. Similarly, the abundance of thermomics impedes the system’s performance by
overfitting problems, which is known as the curse of dimensionality [2,14].

Deep learning has influenced thermomics and automated diagnosis through thermo-
graphic imaging. A sparse deep convolutional autoencoder model (SPAER) is used to
extract low-dimensional features from thermographic images [14].

Three low-ranked representative bases, using convex NMF, were extracted and used
as three channels of input data that were fed into the trained SPAER model. Then, SPAER
extracted 16 deep thermomics from the input images, while encoding heterogeneous
thermal patterns within this output vector. These 16 deep thermomics were then used to
train a random forest model in making diagnostic decisions.

Study Cohort

We used 55 breast cancer screening participants belong to the mastology research
database (DMR) to evaluate the strength of this proposed method. This cohort of patients
obtained from the Hospital Universitário Antônio Pedro (HUAP) of the Federal University
Fluminense [20]. Ethical Committee of the HUAP, under registration number CAAE:
01042812.0.0000.5243 supported by the Brazilian Ministry of Health approved to use this
data. This data contains healthy/symptomatic patients, median age: 60 (20,120), multiple
race (15 Africans (27.3%), 28 Caucasians (51%), 11 Parda (20%), and one Mulatto (1.8%)),
and 18 had diabetes in their family history while 9 women went undergoing hormone
replacement [20].
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3. Results

The presented approach was tested on 55 breast cancer screening participants to
investigate the capability of the model in diagnosing abnormality. The obtained results
were compared to ground truth (the gold standard) to determine the system’s accuracy.
Three predominant low-rank matrices were calculated for 23 baseline thermal images
utilizing matrix factorization. The results followed our proposed hypothesis, and ther-
mal heterogeneity was intensified in the breast area for the symptomatic cases that had
potential angiogenesis (blood vessel formation) and vasodilation, as more heterogeneity
was exhibited in the ROI of symptomatic cases (“healthy with symptoms” or “cancerous”
cases) than in the ROI of “healthy” cases (Figure 1). Some otherwise healthy cases were
categorized as symptomatic participants, if they reported nipple changes and pain but the
results of mammography and biopsy showed no signs of cancer.

Our trained SPAER model [14] extracted 16 deep thermomics from the three channels’
embedded convex low-ranked thermal matrix approximation, with dimensionality of
512 × 512 × 3. The model was trained using an Adam optimizer for 200 epochs for a batch
size of 8, with a sparsity l1 regularization value of 10−5 in dense layers.

Classification Outcome

The extracted deep thermomics produced by the SPAER model were employed to train
a random forest model that was used to make preliminary diagnostic decisions for both
symptomatic and healthy participants. The model’s accuracy was assessed by comparing
the model’s predictions with the ground truth, using mammography and breast biopsy.
We evaluated the system’s accuracy using 16 convex deep thermomics biomarkers, along
with clinical and demographic covariates (i.e., age, marital status, and family history), with
leave-one-out cross-validation. The accuracy yielded by the maximal multivariate model
was 84.9% (79.3%, 88.7%) for NMF deep thermomics, which was challenged by NMF-
SPAER+Clinical, convex NMF-SPAER+Clinical, and PCT-SPAER+Clinical, with clinical
information yielding accuracies of 83.02% (79.2%, 86.8%), 79.3% (73.5%, 86.9%), and 81.1%
(75.5%, 84.9%), respectively. IPCT-SPAER+Clinical, sparse PCT-SPAER + Clinical, sparse
NMF-SPAER + Clinical, and convex NMF-SPAER + Clinical showed considerably similar
accuracy of diagnosis, yielding median accuracies of 79.2% with different variation ranges.
The lowest accuracy of these methods belonged to PCT-SPAER, which showed diagnostic
accuracy of 75.5% (67.9%, 81.1%). The minimal full multivariate model belonged to sparse
NMF-SPAER+Clinical, with an accuracy of 79.2% (73.6%, 83.02%), demonstrating higher
restriction in the domain of the solution due to two-fold sparsity and non-negativity in the
NMF and SPAER models (see Table 1).

Table 1. Classification results for symptomatic versus heathy cases, with leave-one-out cross-validation.

Accuracy of Multivariate Models for Breast Cancer Diagnosis

Methods Accuracy 2 (%) t-Test 3

IPCT-SPAER 79.2 (73.6, 84.9) 0.06, 0.95
PCT-SPAER 75.5 (67.9, 81.1) 2.1, 0.04
NMF-SPAER 84.9 (79.3, 88.7) 2.9, 0.004

Sparse PCT-SPAER 79.2 (73.6,84.9) 1.2, 0.23
Sparse NMF-SPAER 79.3 (73.5,83.02) 1.08, 0.28
Convex NMF-SPAER 75.5 (69.8, 81.1) -

Clinical 1 71.7 (66.04, 79.3) 1.4, 0.17
IPCT-SPAER + Clinical 79.3 (73.1, 81.2) 0.85, 0.39
PCT-SPAER + Clinical 81.1 (75.5, 84.9) 1.7, 0.08
NMF-SPAER + Clinical 83.02 (79.2, 86.8) 2.4, 0.01

Sparse PCT-SPAER + Clinical 79.3 (69.8,84.9) 0.9, 0.3
Sparse NMF-SPAER + Clinical 79.2 (73.6, 83.02) 1.5, 0.15
Convex NMF-SPAER + Clinical 79.3 (73.5, 86.9) 1.39, 0.16

1 Clinical and demographic covariates are family history, age, and marital status. 2 Classification accuracy
reported by median (±IQR). 3 t-test calculated for each method versus maximal accuracy (t-statistic, p-value).
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The model with clinical variables yielded an accuracy of 71.7% (66.04%, 79.3%). More-
over, we measured the statistical significance cross-validated convex NMF-SPAER + Clin-
ical versus other approaches using t-test (see Table 1). Convex NMF-SPAER + Clinical
manifested difference to NMF-SPAER+Clinical (t-statistic = 2.9, p-value = 0.004) and NMF-
SPAER+Clinical (t-statistic = 2.4, p-value = 0.01). Nevertheless, other methods exhibit
statistical similarity to the cross-validated results of convex-NMF-SPAER+Clinical. This
study was conducted using Python programming language and the TensorFlow and Keras
Python libraries [21,22].

4. Conclusions

This study challenged the thermal diagnostic system with a thermomics approach
generated by a sparse deep convolutional autoencoder, known as the SPAER model,
while using convex low-rank thermal matrix approximation. This approach integrated
convexity and sparsity to generate low-dimensional thermomics, while simultaneously
preserving thermal patterns that are vital in determining angiogenesis and vasodilation
in symptomatic patients. Convex non-negative matrix factorization (convex NMF) was
used to reduce 23 thermal images to three channels. Then, the SPAER model reduced the
dimensionality of the input data from 786,432 to 16 imaging biomarkers. The method
was compared to five state-of-the-art matrix factorizations in thermography, and tested
on 55 breast cancer screening cases that underwent dynamic thermography. The best
accuracy reported in this study belonged to NMF-SPAER, without demographics and
clinical information preserving heterogeneous thermal patterns, which had a result of 84.9%
(79.3%, 88.7%). In future work, we can analyze the effect of aggregation of other available
clinical factors or imaging modalities to enhance the diagnostic power of the system.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by Ethics Committee of HAUP (under registration number
CAAE: 01042812.0.0000.5243 provided by the Brazilian Ministry of Health).
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