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Abstract: This study explores the synergistic impact of zero flux and convective boundary conditions
on the magnetohydrodynamic (MHD) boundary-layer slip flow of nanofluid over a moving surface,
utilizing Buongiorno’s model. In a landscape of expanding nanofluid applications, understand-
ing boundary condition interactions is crucial. Employing a systematic approach, we varied key
parameters, including surface velocity, thermophoresis, Brownian motion, Eckert number, Prandtl
number, and Lewis number, systematically investigating their effects on flow and heat transfer.
Numerical simulations focused on critical metrics such as skin friction coefficients; Nusselt and
Sherwood numbers; and temperature, concentration, and velocity profiles. Noteworthy findings
include the amplifying effect of a magnetic field and viscous dissipation on temperature profiles and
the dual impact of heightened velocity slip on temperature and velocity profiles, which result in a
thicker concentration boundary layer. Beyond academia, we envision our research having practical
applications in optimizing high-temperature processes, bio-sensors, paints, pharmaceuticals, coatings,
cosmetics, and space technology.

Keywords: Buongiorno’s model; MHD; zero flux condition; convective boundary condition; finite
element method

1. Introduction

In recent decades, the exploration of nanofluids has evolved into a dynamic field
of study, driven by the pursuit of enhanced heat transfer performance. Buongiorno’s
groundbreaking model in 2006 [1] has been pivotal in unraveling the intricate dynamics
of nanofluids, providing a foundational framework for subsequent investigations. This
literature review navigates through key studies, all grounded in Buongiorno’s model, to
elucidate the multifaceted nature of nanofluid behavior and its implications across diverse
applications. Buongiorno’s seminal work in 2006 laid the groundwork for nanofluid
exploration, dissecting the mechanisms behind heightened thermal conductivity and heat
transfer coefficients. Brownian diffusion and thermophoresis were identified as critical slip
mechanisms, not only demystifying fundamental nanofluid behavior but also setting the
stage for subsequent inquiries into convective heat transfer augmentation.

Extending the scope, studies such as [2], in which an investigation into natural con-
vection over a vertical plate was carried out, illuminated the nuanced impact of Brown-
ian motion and thermophoresis. Ref. [3], simulations within a square cavity optimized
nanoparticle volume fractions for maximal heat transfer efficiency. In 2015, ref. [4] explored
lid-driven cavity flow, highlighting the influence of volume fraction and nanoparticle
diameter on heat transfer dynamics.

Venturing into magnetohydrodynamic realms, ref. [5] examined nanofluid behavior
over a porous stretching sheet with MHD effects, contributing insights into velocity and
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temperature profiles, nanoparticle concentration, and local Nusselt and Sherwood numbers.
The use of the Optimal Homotopy Analysis Method in [6] unveiled the complexities of
MHD nanofluid flow over a stretching permeable surface. Ref. [7] explored thermal and
velocity slips and delved into the nuanced effects of various parameters on nanofluid
characteristics. Refs. [8,9] modified the Buongiorno nanoliquid model, offering a fresh
perspective on nanofluid behavior near a stretching/shrinking sheet and expanding the
applications of nanofluids in science and technology.

In recent years, studies like [10] have propelled us into the future, focusing on the
mixed convective flow of a hybrid nanofluid over a heated stretching disk with zero-mass
flux. Employing the modified Buongiorno model, this research delved into the impacts
of mass suction and viscous dissipation, providing comprehensive insights into diverse
aspects of heat and mass transfer.

This comprehensive literature review encapsulates the trajectory of nanofluid research,
all anchored in the foundational insights provided by Buongiorno’s model. Each study
acts as a vital building block in the collective edifice of knowledge, propelling us toward
advanced thermal management and innovative engineering solutions.

The research landscape has witnessed significant endeavors to unravel the complex-
ities of convective boundary conditions in fluid dynamics and heat transfer. Crucial for
applications across industries such as thermal management systems, energy conversion
technologies, and heat exchangers, understanding fluid behavior under convective condi-
tions has been a persistent focus. Notable contributions include [9], in which early insights
into the effects of convective boundary conditions on the flow and heat transfer charac-
teristics of a stretching sheet were presented. Subsequent studies by [11–13] expanded
our understanding by exploring convective boundary-layer flow over vertical plates and
stretching sheets. Ref. [14] delved into the influence of convective conditions on mixed-
convection boundary-layer flows, while [15] examined convective boundary conditions in
the context of a cylinder with zero flux [16] provided insights into convective heat transfer
characteristics on rotating surfaces. The research horizon extended to 2023 with [17], in
which a comprehensive analysis of dusty fluid flow in a resistive porous medium under
magnetohydrodynamic conditions was carried out, considering the impact of convective
boundary conditions on heat transfer. This collective body of work forms the foundation
for our current exploration of the combined effect of zero flux and convective boundary
conditions in the MHD boundary-layer flow of nanofluids over a moving surface, aiming
to contribute to the evolving understanding of fluid dynamics and heat transfer.

The study of boundary-layer flow over a moving plate has been of significant research
interest in the field of fluid mechanics and thermal sciences. Several studies have inves-
tigated the behavior of fluid flow over moving surfaces, considering various influencing
factors such as magnetic fields, slip conditions, viscous dissipation, radiation, chemical
reactions, and nanofluids. Refs. [18,19] presented a mathematical model of boundary-layer
flow over a moving plate in a nanofluid with viscous dissipation. Ref. [19] conducted
a numerical simulation of boundary-layer flow over a moving plate in the presence of
a magnetic field and slip conditions. Ref. [20] investigated the influence of a transverse
magnetic field, viscous dissipation, and slip conditions on a steady two-dimensional incom-
pressible laminar boundary-layer flow across a moving plate in a nanofluid. Additionally,
ref. [21] unveiled the behavior of MHD mixed-convective nanofluid slip flow over a moving
vertical plate with radiation, chemical reaction, and viscous dissipation, making significant
contributions to future research in this area.

Despite the extensive exploration of nanofluids and convective boundary conditions,
a notable research gap persists. The existing body of work has significantly advanced
our understanding of nanofluid behavior, particularly under the influence of convective
boundary conditions. However, a comprehensive investigation into the combined effect
of zero flux and convective boundary conditions in the MHD boundary-layer flow of
nanofluid over a moving surface remains limited. Existing studies have focused on specific
aspects such as thermal conductivity enhancement, heat transfer coefficients, and various
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slip mechanisms, yet a holistic understanding of the intricate interplay between zero flux
and convective conditions in the context of nanofluid dynamics is lacking.

This research aims to bridge this gap by delving into unexplored territory, offering
a nuanced perspective on the combined influence of zero flux and convective boundary
conditions. By employing Buongiorno’s model, this study seeks to provide a comprehensive
analysis of MHD boundary-layer flow, contributing essential insights to the evolving
landscape of fluid dynamics and heat transfer. The outcomes of this research endeavor
aspire to fill the existing void, offering valuable contributions to the scientific community
and paving the way for further advancements in the field.

2. Mathematical Formulation

A steady two-dimensional, incompressible, laminar boundary-layer flow over a mov-
ing plate immersed in a nanofluid with the impact of a traverse magnetic field, viscous
dissipation, and slip conditions is considered. It is assumed that at time t = 0, the plate
starts to move with the constant velocity uw (x) = ε U∞ in an external free stream of
uniform velocity U∞, where ε is a plate velocity parameter defined by Weidman [22]. The
flow takes place at y ≥ 0, where y is the coordinate measured normal to the moving surface.
The velocity components u and v are along the x and y axis, respectively. A traverse mag-
netic field B0 is applied in the direction of x. It is also assumed that T is the temperature
inside the boundary layer, T∞ is the ambient temperature, and Tw is the wall temperature.
Furthermore, C is the nanoparticle volume fraction, Cw is the nanoparticle volume fraction
at the surface, and C∞ is the ambient nanoparticle volume fraction. The physical geometry
of the problem is shown in Figure 1.
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{
v = εV0, u = U∞, T = T∞, C = C∞, DB

∂C
∂y + DT

T∞
∂T
∂y = 0, −K ∂T

∂y = h f

(
Tf − T

)
at y = 0

u→ U∞, T → T∞, C → C∞, at y→ ∞
(5)

where u and v are the velocity component along the x and y direction, respectively, µ is
the dynamic velocity, v

(
= m

r
)

is the kinematic viscosity, ρ is the density of fluid, k is the
thermal conductivity, and Cp is the specific heat capacity at constant pressure. Also, DB is
the Brownian diffusion coefficient, DT is the thermophoresis diffusion coefficient, and τ is
the ratio of the effective heat capacity of the nanoparticle material and the heat capacity of
the ordinary fluid. The lower surface of the plate is heated by convection from a hot fluid
at temperature Tf , which provides a heat transfer coefficient h f .

Equation (1) is the well-known equation of continuity which signifies the principle of
mass conservation, while Equation (2) represents the Navier–Stokes equation based on the
law of conservation of momentum. The terms on the left-hand side (LHS) of Equation (2)
are known as the advective terms, whereas the second terms on the right-hand side (RHS)
are due to a magnetic field. The third term on the RHS of energy in Equation (3) adds the
impact of viscous dissipation.

The set of similarity for Equations (1)–(4) subjected to the boundary conditions (5)
are presented.

Similarity transformation is defined as follows:

η =
(

U∞
2νx

)1/2
y, ψ = (2U∞νx)1/2 f (η)

T = T∞ + (Tw − T∞)θ(η)
C = C∞ + (Cw − C∞)φ(η)

θ(η) = T−T∞
Tw−T∞

, φ(η) = C−C∞
Cw−C∞

(6)

where θ and φ are the dimensionless temperature and resealed nanoparticle volume frac-
tion of the fluid, respectively. The stream function ψ is defined by u = ∂ψ

∂y and v = − ∂ψ
∂x , so

that Equation (1) is satisfied identically, which results in

u = U∞ f ′(η) (7)

v = −
(

U∞ν

2x

) 1
2

f (η) +
U∞y
2x

f ′(η) (8)

By applying the similarity transforms on the remaining governing Equations (2)–(5),
the similarity equations are obtained as follows:

f ′′′ + f f ′′ −M f ′ = 0 (9)

1
Pr

θ′′ + f θ′ + Nbθ′φ′ + Ntθ
′2 + Ec f

′′2 = 0 (10)

φ′′ +
Nt

Nb
θ′′ + Le f φ′ = 0 (11)

where Pr =
vρCp

k is the Prandtl number, Nb = τDB(Cw −C∞)
v is the Brownian motion pa-

rameter, Nt =
τDT(Tw −T∞)

T∞v is the thermophoresis parameter, Ec = (U∞)2

Cp(Tw−T∞)
is the Eckert

number and Le = v
DB

is the Lewis number, M =
2xσB2

0
ρU∞

is the magnetic parameter, and
h f =

c√
x , where c is the constant.
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The corresponding boundary conditions are as follows:
f (η) = εV0, f ′(η) = 0, θ′(η) = −βi(1− θ(η)),

Nbφ′(η) + Ntθ
′(η) = 0, atη = 0

f ′(∞)→ 1, θ(∞)→ 0, φ(∞)→ 0, atη → ∞
(12)

Note that βi =
c
k

√
v
U is the Biot number. The physical quantities of interest, the skin

friction coefficient C f , the local Nusselt number Nux, and the local Sherwood number Shx,
are given by

C f =
τw

ρu2
e

, Nux =
xqw

k(Tw − T∞)
, Shx =

xjw
DB(Cw − C∞)

. (13)

The surface shear stress τw, the surface heat flux qw, and the surface mass flux jw are
given by

τw = µ

(
∂u
∂y

)
y=0

, qw = −k
(

∂T
∂y

)
y=0

, jw = −DB

(
∂C
∂y

)
y=0

(14)

with µ = ρv being the dynamic viscosity. Using the similarity variables in Equation (6), the
following relations are obtained:

C f (2Rex)
1/2 = f ′′ (0), Nux

(
Rex

2

)−1/2
= −θ′ (0), Shx

(
Rex

2

)−1/2
= −∅′(0) (15)

where Rex = U∞x
v is the local Reynolds number and (2Rex)

1/2, Nux

(
Rex

2

)− 1
2 ,

and Shx

(
Rex

2

)−1/2
are referred to as the reduced skin friction coefficient, the reduced Nusselt

number, and the reduced Sherwood number and can be denoted as C f r, Nur, and Shr, which
are represented by f ′′ (0),−θ′(0), and−∅′(0), respectively.

3. Method of Solution

To solve Equations (9)–(11) along with the boundary conditions (12), we will transform
the third-order derivative into a second-order derivative by replacing f ′ = F.

Then, the above system of equations will become

f ′ = F (16)

F′′ + f F′ −MF = 0 (17)

θ′′ + Pr f θ′ + Pr Nbθ′φ′ + Pr Ntθ
′2 + PrEcF′2 = 0 (18)

φ′′ +
Nt

Nb
θ′′ + Le f φ′ = 0 (19)

The corresponding boundary conditions will be transformed to{
f (η) = V0, F(η) = c + F′(η), θ(η) = λθ′(η), φ(η) = λφ′(η), atη = 0

F(η)→ 1, θ(η)→ 0, φ(η)→ 0, at η → ∞
(20)

System (16) to (19) is a nonlinear one. To obtain the solution of this system, it is
firstly required to convert these equations into a system of linear differential equations.
This is performed by the Newton linearization method, which is mentioned in the
following sections.
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4. Linearization of Equations

Equation (16) is linear in variable f ; therefore, it is not necessary to make it linear. We
will make Equation (16) linear in variable F while taking all other variables as constants.
The same will be done for Equation (18). Equation (19), however, is linear in variable φ.

Equation (17) is written as follows:

F′′ = − f F′ + MF

Defining the right hand side as hF(η, F, F′), it is defined as follows:

hF
(
η, F, F′

)
= − f F′ + MF

Now,

(AF)n = −
(

∂hF
∂F′

)
n
= −[− fn] = fn

n in the above equation represents the solution at the previous iteration; An from the above
equation will become

(AF)n = fn

(BF)n = −
(

∂hF
∂F

)
n
= −[M] = −M

(BF)n = −M

(DF)n = hF
(
η, Fn, F′n

)
−
(

∂hF
∂F

)
n

Fn −
(

∂hF
∂F′n

)
n

F′n

(DF)n = hF
(
η, Fn, F′n

)
+ (BF)n Fn + (AF)nF′n

Hence, the linearized equation in variable F is given as

F′′n+1 + AnF′n+1 + BnFn+1 = hF
(
η, Fn, F′n

)
+ (BF)n Fn + (AF)nF′n (21)

F′′n+1 + (AF)n F′n+1 + (BF)n Fn+1 = (DF)n (22)

Similarly, Equations (18) and (19) are now linear and will be iteratively solved as
linear second-order differential equations. Thus, the system of equations to be solved is
as follows: 

f ′ = F
F′′n+1 + (AF)nF′n+1 + (BF)nFn+1 = (DF)n
θ
′′
n+1 + (Aθ)nθ′n+1 + (Bθ)nθn+1 = (Dθ)n

φ′′ + Nt
Nb

θ′′ + Le f φ′ = 0

(23)

Along with the following boundary conditions:{
f = V0, F(η) = c + F′(η), θ(η) = λ θ′(η), φ(η) = λ φ′(η), at η = 0

F → 0, θ → 0, φ→ 0, at η → ∞
(24)

The system of four linear equations in (23) is solved using the Finite Element Method in
MATLAB. Each equation undergoes discretization, numerical differentiation for coefficient
evaluation, and reformulation into a weak form. MATLAB is then employed to solve the
system, accounting for Dirichlet boundary conditions. This process is repeated for the
second, third, and fourth equations, with the first equation being directly integrated in the
weak form for a separate solution.
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5. Results and Discussion

In our comprehensive exploration of nanofluid behavior in boundary-layer flow over a
stretching surface, we scrutinize six pivotal parameters: Prandtl number (Pr), plate velocity
parameter (ε), Brownian motion parameter (Nb), thermophoresis parameter (Nt), Eckert
number (Ec), and Lewis number (Le). These parameters, consistent with the established
literature [18–22], form the basis of our analysis.

Understanding the interplay between these parameters is crucial. Figure 2 unveils the
temperature profiles, θ(η), under varying Nt conditions. As Nt escalates, a discernible up-
ward trend emerges in the temperature profile. Physically, this aligns with the heightened
Brownian motion of the nanoparticles, resulting in an expanded thermal boundary-layer
thickness and an elevated overall temperature, as corroborated by the increased nanopar-
ticle volume fraction. This trend continues in Figure 3, where concentration profiles ∅(η)
under various Nt conditions exhibit a notable decline with increasing Nt. The heightened
Brownian motion expands the thermal boundary layer, influencing the concentration of
nanoparticles near the surface through the stronger impact of thermophoresis.
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Expanding our understanding, Figure 4 delves into concentration profiles, φ(η), for
varying Nb values. As Nb increases, the concentration near the surface decreases due to
enhanced Brownian motion, aligning seamlessly with prior studies on Nb’s influence on
nanofluid concentration profiles. Figure 5 introduces magnetic field strength (M) into the
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discussion. As M increases, temperature profiles, θ(η), rise, indicating an expanded thermal
boundary layer and intensified heat transfer. This effect is attributed to the heightened
magnetic field, influencing the Lorentz force, fluid velocity, and heat transfer coefficient.
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Figure 5. Temperature profiles, θ(η), with different values of M.

In Figure 6, temperature profiles, θ(η), vary with different Eckert numbers (Ec). Ele-
vated Ec leads to increased temperature profiles, pointing to an expanded thermal boundary
layer and heightened heat transfer. This aligns with the expected rise in fluid kinetic energy,
influencing the heat transfer coefficient and resulting in an increased temperature. Shifting
our focus to the concentration profiles in Figure 7 under varying Eckert numbers Ec, we
observe a decrease as Ec increases. This reveals reduced nanoparticle density near the
surface due to intensified Brownian motion and heightened kinetic energy, aligning with
previous studies on Ec’s impact on nanofluid concentration profiles.

In Figure 8, temperature profiles, θ(η), at different Prandtl numbers Pr are explored.
As Pr increases, the temperature profile decreases, indicating a reduction in thermal
boundary-layer thickness due to diminished heat transfer. Elevated Pr results in heightened
fluid viscosity, limiting heat transfer capability and consequently lowering the temperature.
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Figure 9 illustrates temperature profiles, θ(η), under varying values of the moving plate
parameter (ε). An increase in ε correlates with a decrease in temperature profiles, indicative
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of a thinner thermal boundary layer resulting from reduced heat transfer between the
surface and the fluid. Elevated ε leads to greater plate velocity, reducing the fluid residence
time near the surface and subsequently lowering the temperature. Figure 10, depicting
the concentration profile, φ(η), with different values of ε, illustrates that as the ε increases,
the concentration profile (φ) decreases. This indicates that higher plate velocities lead
to improved fluid convection, enhancing the removal of nanoparticles from the surface
vicinity. Consequently, the concentration of nanoparticles near the surface decreases,
aligning with expected fluid dynamics behavior, where elevated flow velocities result in
reduced concentrations of suspended particles near the surface.

Eng. Proc. 2023, 59, 245 10 of 12 
 

 

Figure 8. Temperature profiles, 휃(휂), with different values of Pr. 

Figure 9 illustrates temperature profiles, 휃(휂), under varying values of the moving 
plate parameter (휖). An increase in ϵ correlates with a decrease in temperature profiles, 
indicative of a thinner thermal boundary layer resulting from reduced heat transfer be-
tween the surface and the fluid. Elevated 휖 leads to greater plate velocity, reducing the 
fluid residence time near the surface and subsequently lowering the temperature. Figure 
10, depicting the concentration profile, ϕ(휂), with different values of 휖, illustrates that as 
the 휖 increases, the concentration profile (ϕ) decreases. This indicates that higher plate 
velocities lead to improved fluid convection, enhancing the removal of nanoparticles from 
the surface vicinity. Consequently, the concentration of nanoparticles near the surface de-
creases, aligning with expected fluid dynamics behavior, where elevated flow velocities 
result in reduced concentrations of suspended particles near the surface. 

 
Figure 9. Temperature profiles, 휃(휂), with different values of ε. 

 
Figure 10. Concentration profile, ϕ(휂), with different values of ε. 

The observed trends collectively highlight the intricate interplay between Brownian 
motion, thermophoresis, magnetic fields, fluid kinetic energy, and plate velocity. These 
findings not only consolidate existing knowledge but also pave the way for future ad-
vancements in optimizing nanofluid applications, particularly in thermal management 
systems, energy conversion technologies, and heat exchangers. 

 (
)

 (
)

Figure 9. Temperature profiles, θ(η), with different values of ε.

Eng. Proc. 2023, 59, 245 10 of 12 
 

 

Figure 8. Temperature profiles, 휃(휂), with different values of Pr. 

Figure 9 illustrates temperature profiles, 휃(휂), under varying values of the moving 
plate parameter (휖). An increase in ϵ correlates with a decrease in temperature profiles, 
indicative of a thinner thermal boundary layer resulting from reduced heat transfer be-
tween the surface and the fluid. Elevated 휖 leads to greater plate velocity, reducing the 
fluid residence time near the surface and subsequently lowering the temperature. Figure 
10, depicting the concentration profile, ϕ(휂), with different values of 휖, illustrates that as 
the 휖 increases, the concentration profile (ϕ) decreases. This indicates that higher plate 
velocities lead to improved fluid convection, enhancing the removal of nanoparticles from 
the surface vicinity. Consequently, the concentration of nanoparticles near the surface de-
creases, aligning with expected fluid dynamics behavior, where elevated flow velocities 
result in reduced concentrations of suspended particles near the surface. 

 
Figure 9. Temperature profiles, 휃(휂), with different values of ε. 

 
Figure 10. Concentration profile, ϕ(휂), with different values of ε. 

The observed trends collectively highlight the intricate interplay between Brownian 
motion, thermophoresis, magnetic fields, fluid kinetic energy, and plate velocity. These 
findings not only consolidate existing knowledge but also pave the way for future ad-
vancements in optimizing nanofluid applications, particularly in thermal management 
systems, energy conversion technologies, and heat exchangers. 

 (
)

 (
)

Figure 10. Concentration profile, φ(η), with different values of ε.

The observed trends collectively highlight the intricate interplay between Brownian
motion, thermophoresis, magnetic fields, fluid kinetic energy, and plate velocity. These
findings not only consolidate existing knowledge but also pave the way for future advance-
ments in optimizing nanofluid applications, particularly in thermal management systems,
energy conversion technologies, and heat exchangers.

6. Conclusions

In this comprehensive analysis of nanofluid behavior in boundary-layer flow over a
stretching surface, the examination of key parameters provides valuable insights, shed-
ding light on the complex interplay between these factors and their influence on ther-
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mal and concentration profiles. The nuanced understanding contributes significantly to
optimizing the design of heat transfer systems and enhancing the efficiency of energy
conversion technologies.

In the context of our research topic, which focuses on the combined effect of zero flux
and convective boundary conditions on the MHD boundary-layer flow of nanofluid over a
moving surface using Buongiorno’s model, the observed interplays present crucial insights.
The specifics are as follows:

• The Prandtl number (Pr) demonstrates a clear inverse relationship with temperature
profiles, emphasizing the role of fluid viscosity in heat transfer.

• The plate velocity parameter (ε) reveals that higher plate velocities lead to thinner
thermal boundary layers, impacting heat transfer efficiency.

• The Brownian motion parameter ((Nb) findings showcase a decrease in concentration
near the surface with increasing (Nb), indicating enhanced Brownian motion effects
on nanoparticle diffusion.

• The thermophoresis parameter (Nt) highlights an upward trend in temperature pro-
files, showcasing the impact of heightened Brownian motion and expanded thermal
boundary layers.

• The Eckert number (Ec) demonstrates increased temperature profiles with elevated
values, emphasizing the role of fluid kinetic energy in heat transfer.

• The Lewis number (Le) is not explicitly addressed in the provided text. If specific
findings are available, they can be included in the comprehensive analysis.

These collective findings underscore the intricate relationships governing nanofluid
behavior. The comprehensive understanding lays a foundation for future advancements
in thermal management systems, energy conversion technologies, and heat exchangers,
driven by the interconnected nature of these parameters. Further exploration and research
are imperative to unlock the full potential of nanofluids in various engineering applications,
reinforcing the significance of our study’s outcomes.
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