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1. Introduction

The inactivation of prostaglandin (PG) and prostaglandin analogs (PGs) is realized
with enzyme oxidation of the 15α-OH to the 15-keto group via the 15-PGDH pathway. To
slow down this oxidation, some structural modifications were made: the introduction of a
15-methyl group, a 16-OH,16-methyl group, two methyl groups at C16, cyclopentyl and
cyclohexyl scaffolds, etc [1]. In this direction, we previously introduced bicyclo[3.3.0]octene
or bicylo[3.3.0]octane fragments in β-ketophosphonates [2,3] to obtain the PG analogs I
and II (Figure 1), knowing that these fragments are encountered in natural products, some
of them with anticancer activity.
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1. Introduction 
The inactivation of prostaglandin (PG) and prostaglandin analogs (PGs) is realized 

with enzyme oxidation of the 15α-OH to the 15-keto group via the 15-PGDH pathway. To 
slow down this oxidation, some structural modifications were made: the introduction of 
a 15-methyl group, a 16-OH,16-methyl group, two methyl groups at C16, cyclopentyl and 
cyclohexyl scaffolds, etc [1]. In this direction, we previously introduced bicyclo[3.3.0]oc-
tene or bicylo[3.3.0]octane fragments in β-ketophosphonates [2,3] to obtain the PG analogs 
I and II (Figure 1), knowing that these fragments are encountered in natural products, 
some of them with anticancer activity. 
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Figure 1. Prostaglandin analogues with a bicyclo[3.3.0]octene and bicyclo[3.3.0]octane fragments in 
the ω-side chain, of types I and II. 

 In the first compound, I, the bicyclo[3.3.0]octene fragment is linked to the C16 carbon 
atom, which is a small but significant hindrance of the 15-PGDH enzyme to inactivate the 
PG analogue via the oxidation of 15α-OH to the 15-keto group [2]. 
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Figure 1. Prostaglandin analogues with a bicyclo[3.3.0]octene and bicyclo[3.3.0]octane fragments in
theω-side chain, of types I and II.

In the first compound, I, the bicyclo[3.3.0]octene fragment is linked to the C16 carbon
atom, which is a small but significant hindrance of the 15-PGDH enzyme to inactivate the
PG analogue via the oxidation of 15α-OH to the 15-keto group [2].

In the second compound, II, the bicyclo[3.3.0]octene and bicyclo[3.3.0]octane frag-
ments linked to the C15 carbon atom are expected to slow down the inactivation of the
PG analog [3].
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Now, we present the synthesis of new key β-ketophosphonates 5, with a more bulky
pentalenofurane scaffold linked to the keto group to build type III PG analogues (Figure 2):
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Figure 2. β-Ketophosphonates 5 with a pentalenofurane fragment in the molecule to obtain new 
type III prostaglandin analogues . 

2. Materials and Methods 
Syntheses of the compounds were realized in three high-yield reactions, starting 

from the pentalenofurane alcohols 2. The alcohols were oxidated with Johns reagent to 
the acids 3, which were esterified to the methyl esters 4. In the last step, the esters 4 were 
reacted with lithium salt of dimethyl methanephosphonate at a low temperature to give 
the β-ketophosphonates 5 (Scheme 1). The secondary compounds 6b and 6c were formed 
in small amounts in the Johns oxidation of 2b and 2c, and the NMR spectroscopy showed 
that their structure is that of an ester of the acid with the starting alcohol.  
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Scheme 1. Synthesis of pentalenofurane β-ketophosphonates 5a - 5c. 1) Jones reagent (2.4 M), ace-
tone, −15 to 0 °C, 2a, 81.8% 3a; with 2b, 85.15% 3b; with 2c, 73.7% 3c, 2) MeOH, TsOH, rt, overnight, 
86.4% 4a; 92.4% 4b; 81.0% 4c, 3) dimethyl methanephosphonate, n-BuLi, −75 °C to −65 °C, 88.0% 5a; 
78.6% 5b; 83.3 % 5c. 

Their molecular structures were confirmed using the single crystal X-ray determina-
tion method for 6c and the XRPD powder method for 6b (Figure 3): 

Figure 2. β-Ketophosphonates 5 with a pentalenofurane fragment in the molecule to obtain new type
III prostaglandin analogues.

2. Materials and Methods

Syntheses of the compounds were realized in three high-yield reactions, starting from
the pentalenofurane alcohols 2. The alcohols were oxidated with Johns reagent to the
acids 3, which were esterified to the methyl esters 4. In the last step, the esters 4 were
reacted with lithium salt of dimethyl methanephosphonate at a low temperature to give
the β-ketophosphonates 5 (Scheme 1). The secondary compounds 6b and 6c were formed
in small amounts in the Johns oxidation of 2b and 2c, and the NMR spectroscopy showed
that their structure is that of an ester of the acid with the starting alcohol.
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Scheme 1. Synthesis of pentalenofurane β-ketophosphonates 5a - 5c. 1) Jones reagent (2.4 M), ace-
tone, −15 to 0 °C, 2a, 81.8% 3a; with 2b, 85.15% 3b; with 2c, 73.7% 3c, 2) MeOH, TsOH, rt, overnight, 
86.4% 4a; 92.4% 4b; 81.0% 4c, 3) dimethyl methanephosphonate, n-BuLi, −75 °C to −65 °C, 88.0% 5a; 
78.6% 5b; 83.3 % 5c. 

Their molecular structures were confirmed using the single crystal X-ray determina-
tion method for 6c and the XRPD powder method for 6b (Figure 3): 

Scheme 1. Synthesis of pentalenofurane β-ketophosphonates 5a–5c. (1) Jones reagent (2.4 M), acetone,
−15 to 0 ◦C, 2a, 81.8% 3a; with 2b, 85.15% 3b; with 2c, 73.7% 3c, (2) MeOH, TsOH, rt, overnight,
86.4% 4a; 92.4% 4b; 81.0% 4c, (3) dimethyl methanephosphonate, n-BuLi, −75 ◦C to −65 ◦C, 88.0%
5a; 78.6% 5b; 83.3 % 5c.

Their molecular structures were confirmed using the single crystal X-ray determination
method for 6c and the XRPD powder method for 6b (Figure 3):
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Scheme 2. Synthesis of F1 PG analogs 8, 9 and 10 with a pentalenofurane fragment in the -side 
chain. 

The reduction of the enone group to the desired allylic alcohol 9 with the selective 
but bulky reducing reagent aluminum diisobornyloxyisopropoxide, usually used in the 
PG field, did not proceeded as in the case of the PG analog II (R1,R2 = O) (Figure 1), as 
expected. The Luche reduction of enone 8 with NaBH4 and CeCl3 gave the allylic alcohol 
9 together with its 15-epimer, 10, in a ratio of 1:1. As in the reduction, the bulky, con-
strained pentalenofurane scaffold in the -side chain was used to slow down the inacti-
vation of the PGs analogs via the enzyme 15-PGDH pathway. 
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linked to the keto group was realized in a sequence of three high-yield reactions. Two by-
products formed in the oxidation of alcohols 2 were characterized using NMR and con-
firmed using single crystal X-ray crystallography for 6c and the XRPD powder method 
for 6b. For the first time, the key intermediates 5 were used to obtain the PGF1 analogs 8–
10 with a pentalenofurane scaffold in the -side chain.  

Figure 3. X-ray molecular configuration of the asymmetric unit of the secondary compounds 6c
and 6b.

3. Results

Three key intermediate β-ketophosphonates 5 were synthesized in a high-yield, short-
sequence synthesis, as presented in Scheme 1, and fully characterized. β-Ketophosphonate
5 was used to obtain type III PG analogs in the E-HEW selective olefination of the aldehyde
7, with the hydrogenated α-side chain, to the ketoprostaglandin analog 8 (Scheme 2):
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Scheme 2. Synthesis of F1 PG analogs 8, 9 and 10 with a pentalenofurane fragment in theω-side chain.

The reduction of the enone group to the desired allylic alcohol 9 with the selective
but bulky reducing reagent aluminum diisobornyloxyisopropoxide, usually used in the
PG field, did not proceeded as in the case of the PG analog II (R1,R2 = O) (Figure 1), as
expected. The Luche reduction of enone 8 with NaBH4 and CeCl3 gave the allylic alcohol 9
together with its 15-epimer, 10, in a ratio of 1:1. As in the reduction, the bulky, constrained
pentalenofurane scaffold in theω-side chain was used to slow down the inactivation of the
PGs analogs via the enzyme 15-PGDH pathway.

4. Conclusions

The synthesis of key β-ketophosphonates 5a–5c with a pentalenofurane scaffold linked
to the keto group was realized in a sequence of three high-yield reactions. Two by-products
formed in the oxidation of alcohols 2 were characterized using NMR and confirmed using
single crystal X-ray crystallography for 6c and the XRPD powder method for 6b. For
the first time, the key intermediates 5 were used to obtain the PGF1 analogs 8–10 with a
pentalenofurane scaffold in theω-side chain.
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