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Abstract: The diagnosis, thermography, aerial photogrammetry, and conservation treatment with
nanomaterials (CHAp) for some samples from Sacidava Fortress, Romania, are analyzed and the
results are discussed accordingly in this paper.
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1. Introduction

Sacidava Citadel is a Geto-Dacian settlement and a Roman castrum, from the Roman
era (Trajan era), located on the right bank of the Danube, on the plateau of the Musait hill,
between the towns of Ras, ova and Dunăreni, dating back to the II-VII centuries AD [1].

Currently, the fortress is in an advanced state of deterioration, with only a few walls
excavated through partial archaeological works, which led to a significant loss for this
monument of cultural heritage. Physico-chemical environmental factors and biological
factors participate synergistically or antagonistically in the process of deterioration of the
remaining walls of this monument [2–4]. The degree of stone deterioration depends on the
physico-chemical environmental factors, the composition and nature of the stone material
itself, and biological factors. These latter factors are responsible for biodeterioration, which
is defined as “any undesirable change in the properties of a material caused by the vital
activities of associated organisms” [5]. The European standard EN15898 defines the main
general terms used in the field of conservation of cultural goods (2011) [6].

In this paper, several samples from the Sacidava Fortress are analyzed, in order to
identify the origin of the raw materials and the deterioration processes that took place at
this monument. Many nanomaterials have been used up to date for chemical consolidation
and antimicrobial restoration of different surfaces from everywhere in the world [7–13]. In
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this paper, a conservation nanomaterial such as carbonate hydroxyapatite (CHAp) will be
tested, and the results are discussed accordingly, together with some planned-flight aerial
photogrammetry scans for systematic mapping correlated with thermogrammetry.

2. Materials and Methods
2.1. Locations and Collection of Archaeological Evidence

This study was conducted on a number of samples collected from 10 collection points
in October 2022 from this archaeological area using non-invasive methods. Four samples
were taken from the south-western sector, positioned at distances of approximately 1.5–2 m,
being collected from areas with visible structural damage (Figure 1). Sector walls built of
large stone blocks, at the base of marble pieces, were 4 m in height.
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Figure 1. Collection area and their location (blue and red frames indicate the places where the
samples have been collected).

2.2. Methods and Equipments

Some advanced analytical techniques such as X-ray diffraction (XRD) (Rigaku Cor-
poration, Tokyo, Japan), X-ray fluorescence wavelength dispersed (WDXRF) (Rigaku ZSX
Primus II spectrometer (Rigaku, The Woodlands, TX, USA), Fourier-transformed infrared
spectroscopy (FTIR) (Vertex 80 spectrometer (Bruker Optik GMBH, Ettlingen, Germany),
with the attenuated total reflectance mode, ATR), Raman spectroscopy (Raman wavelength
portable analyzer (Rigaku, USA)), scanning electron microscopy (SEM) (FEI Quanta Inspect
FEG Scanning Electron Microscope (FEI, Hillsboro, OR, USA), optical microscopy (OM)
(Video Microscope EdmundOptics - magnifications: 2×, 8×, 12×, 14×), equipped with
a digital video camera AmScope 3.2MP MT9T001 CMOS C-Mount camera), and stereo-
microscopy (SM), (magnification of 20× or 40×) (both microscopes and accessories from
EUROMEX Microscopen B.V., Papenkamp 20, BD Arnhem, The Netherlands).

For microbiological analysis, harvesting was carried out from the surfaces of the
stones using a sterile swab (4 cm2). Twelve samples were taken from flat surfaces and with
different porosities. The samples were transported to sterile enclosures and inoculated
directly into Sabouraud Dextrose Agar culture media (selective medium for fungi) and
Nutrient Agar (selective medium for bacteria), solids located in Petri dishes. The plates were
placed in the incubator at 350 ◦C. Colonies were analyzed 24 h and 48 h after inoculation.
The morphological characters were examined under stereomicroscope (OPTIKA) and
epifluorescence microscope (Optika B350).

For thermography, a Catepillar 61 thermal serial camera with FLIR system was used,
and for the photogrammetry, a professional drone type Mavic 2 Enterprise was used for
the acquisition of aerial images and on a series of application programs designed to analyze
and process images captured from archaeological sites.

Carbonated hydroxyapatite (CHAp), used in this paper as a consolidant, has been
synthesized as reported in our previous paper [7].
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3. Results and Discussion

The microclimate analysis was carried out via thermographic evaluation of the main
analyzed pieces [14,15]. This method allows for the identification in situ of temperature and
humidity variations, physico-chemical parameters that allow us to understand the specific
distribution and variation of biota [16]. The temperature identified on the investigated
samples indicates good connection between the type of material and the temperature values
recorded (Figure 2).
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Figure 2. Variations in temperatures recorded at the surface of the analyzed stones (minimum,
maximum and average values).

It can be found that, on the same stone component, there can be differences of about
10–15 ◦C, which give the organisms associated with these surfaces’ adequate ecological
adaptations and allow them to survive in this type of microhabitat. Meanwhile, the ther-
mography allowed us to highlight the fact that the presence of crusty lichens makes the
covered surfaces register much higher temperature values than the support stone, without
lichens, at the measured humidity of about 50%. Except the visible surface cracks, ther-
mographic inspection put into evidence further cracking, difficult to be detected through
visual testing (Figure 3).
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Figure 3. The thermogramms of Sacidava sample.

The physicochemical analysis, absolutely necessary in such experiments [17], was
performed in this paper using WDXRF, XRD and FTIR. WDXRF allowed to see the elemental
composition of mortar samples taken from the bricks existing in the fortress, revealing the
presence of CaO, SiO2, Al2O3, and Fe2O3 (Table 1). XRD correlated with WDXRF analysis
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of mortars evidenced some minerals such as quartz, calcite, small amounts of feldspars,
berlinite, brucite, the last one being responsible for the reinforced resistance structure inside
the walls of this fortress (Figure 4).

Table 1. The composition of the samples via WDXRF.

Oxide P6 P7 P8 P9 P10

MgO 2.4011 1.6644 1.0592 1.4296 0.8489

Al2O3 11.9456 5.287 3.232 4.1713 5.3351

SiO2 36.5953 19.6787 16.1793 34.2572 27.5152

P2O5 0.1737 0.3992 0.2756 0.1994 0.2019

SO3 4.2702 4.5216 0.768 1.6915 0.8456

K2O 1.7329 1.0856 0.6601 0.8146 1.3518

CaO 37.5752 64.415 76.1097 55.5546 61.45
TiO2 0.4807 0.4936 - - -
MnO 0.2462 - 0.0944 0.1327 0.1156
Fe2O3 4.5125 2.2019 1.5603 1.6012 2.2787

SrO 0.031 0.1949 0.0614 0.073 0.0571
ZrO2 0.0246 0.0171 - - -

Cl - 0.041 - 0.074 -
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Figure 4. XRD distribution of the main components.

XRD technique (Figure 4) correlated with XRF analysis of mortars identified several
crystalline phases: quartz (SiO 2-28 (2q)) and calcite/dolomite (carbonate Ca and Mg-30,
38(2q)), small amounts of feldspaths (cations containing alkali metal aluminosilicate and
alkaline earth metals), as well as mica and berlinite [18].

FTIR spectra Figure 5, put into evidence the bands assigned to the carbonate phases
(1800 cm−1, 1406–1440 cm−1, 873 cm−1 and 711 cm−1), bound water (bands at 3370 and
1630–1640 cm−1), most probably linked to silicate and aluminate hydrates (strong silicate
bands (Si–O) at 1011–1022 cm−1) and Al–O bands around 1000 cm−1. Similar results have
been reported in the literature [19,20].
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Macroscopically, crusty, folious lichens and mosses are distinguished; Figure 6. Lichens
with crusty thallus form compact elements on the surface of the stone substrate [21,22].
All species are tolerant to environmental pollutants. The degree of microcolony coverage
is high on intensely uneven calcareous structures. The identificated species were Physcia
tenella (a,b), Caloplaca saxicola (Hoffm.) Norden (c), Rhizoplaca chrysoleuca (Sm.) Zopf sin
Lecanora chrysoleuca (d), Aspicilia calcarea (L.) Mudd (Circinaria calcarea (L.) A. Nordin Savić &
Tibell) (e), Xanthoria parietina (f); Figure 6.
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Figure 6. The lichens identified on Sacidava samples Physcia tenella (a,b), Caloplaca saxicola (Hoffm.)
Norden (c), Rhizoplaca chrysoleuca (Sm.) Zopf sin Lecanora chrysoleuca (d), Aspicilia calcarea (L.) Mudd
(Circinaria calcarea (L.) A. Nordin Savić & Tibell) (e), Xanthoria parietina (f).

Treated with carbonated hydroxyapatite, the samples collected from Sacidava fortress
became homogeneously covered. The acicular formations of the initial samples, most
probably due to gypsum, mica or cuartz, became completely covered by carbonated hydrox-
yapatite through an homogeneous layer, as could be seen in Figure 7, in good agreement
with other literature reports [23].
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Figure 7. Sacidava samples non-treated (left) and treated (right) with (CHAp).

As far as 3D technologies are concerned, preliminary studies have shown that the
software processing technique and procedures used are feasible [24,25]. Aerial scans were
performed, and precise locations were made of the places from which the samples subjected
to investigations were taken. Aerial photogrammetry scans will be extended with planned
flights for systematic mapping of the area of interest. For this archaeological objective, the
drone was tested in manually controlled flight to capture images with size 4000 × 3000
pixels. The local weather conditions were wind speed 3.5 m/s with gusts up to 5 m/s,
air temperature 11 ◦C, air humidity 56%, very good visibility, and sunny. The areas with
visible ruins were scanned, and panoramic video sequences of larger areas of the fortress
perimeter were captured, including photo and video with the areas of recent archaeological
excavations (Figure 8).
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4. Conclusions

The samples from Sacidava Fortress, Romania, are analyzed for the diagnosis, aerial
photogrammetry, thermography and conservation treatment with nanomaterials (CHAp),
and the results are discussed accordingly in this paper. Non-invasive techniques, such
as WDXRF, XRD and FTIR, allowed to see the elemental composition of mortar samples
taken from the bricks existing in the fortress. Also, some imagistic techniques such as SEM
and thermographic inspection put into evidence further cracking, difficult to be detected
through visual testing. Lastly, the identification of different lichens has been put into
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evidence, and the conservation technique with carbonated hydroxyapatite nanomaterials
have been promoted in this paper.
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