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Abstract: Yeast, crucial in beer production, holds great potential owing to its ability to transform into
a valuable by-product resource, known as brewer’s spent yeast (BSY), with potentially beneficial
physiological effects. This study aimed to compare the composition and soluble polysaccharide con-
tent of Brewer’s spent yeast with those of cultured yeast strains, namely Saccharomyces cerevisiae (SC)
and S. boulardii (SB), to facilitate the utilization of BSY as an alternative source of functional polysac-
charides. BSY exhibited significantly higher carbohydrate content and lower crude protein content
than SC and SB cells. The residues recovered through autolysis were 53.11%, 43.83%, and 44.99% for
BSY, SC, and SB, respectively. Notably, the polysaccharide content of the BSY residue (641.90 µg/mg)
was higher than that of SC (553.52 µg/mg) and SB (591.56 µg/mg). The yields of alkali-extracted
water-soluble polysaccharides were 33.62%, 40.76%, and 42.97% for BSY, SC, and SB, respectively,
with BSY comprising a comparable proportion of water-soluble saccharides made with SC and SB,
including 49.31% mannan and 20.18% β-glucan. Furthermore, BSY demonstrated antioxidant activi-
ties, including superoxide dismutase (SOD), ABTS, and DPPH scavenging potential, suggesting its
ability to mitigate oxidative stress. BSY also exhibited a significantly higher total phenolic compound
content, indicating its potential to act as an effective functional food material.

Keywords: brewer’s spent yeast; cell residue; soluble polysaccharides; mannan; β-glucan; superoxide
dismutase

1. Introduction

Yeast, a single-celled microorganism belonging to the fungal kingdom, has long been
recognized for its pivotal role in various industrial processes, most notably in the production
of alcoholic beverages such as beer [1–3]. Beside its application in fermentation processes,
yeast has garnered scientific interest due to its rich composition, encompassing not only
proteins extracted in the form of yeast extract, but also valuable polysaccharides residing
within its cell wall [4,5].

Yeast cell walls are a source of useful polysaccharides with a range of biological
activities and uses in medicine [1,3,6–9]. Past research has clarified the complex structure
and composition of Saccharomyces cerevisiae cell walls, demonstrating that they make up
15–35% of the dry weight of the cell and are composed of up to 90% polysaccharides,
organized in layers within the cell wall system [10]. These layers are typically arranged
and consist of an inner rigid layer that is composed of chitin and alkali-insoluble glucans,
the middle layer of alkali-soluble glucan, and an outer amorphous layer that is composed
of phosphorylated mannoproteins [1]. Through (β1→3)- and (β1→6)-D-Glc connections
(Glc—glucose), the β-glucans are connected. These polysaccharides impart a range of
functional qualities to the cell, including immunomodulatory, antioxidative, and prebiotic
benefits, while also maintaining its structural integrity [7,11].
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The biomedical applications of yeast cell wall polysaccharides have been extensively
explored, with promising outcomes achieved in various fields. β-glucans, renowned for
their immunomodulatory properties, have shown potential in enhancing host defense
mechanisms and combating infectious diseases [12]. Mannans, on the other hand, have
garnered attention for their prebiotic effects and ability to promote gut health [13,14]. Addi-
tionally, chitin-derived compounds have exhibited wound healing properties and have been
utilized in biomedical applications, such as tissue engineering and drug delivery systems.

Despite the biomedical potential of yeast cell wall polysaccharides, their utilization
has primarily been restricted to niche applications, with yeast extract serving as the pre-
dominant source for industrial purposes. Brewer’s spent yeast (BSY), a by-product of beer
production, represents a vast untapped reservoir of yeast cell wall polysaccharides. It is the
second largest beer production by-product and significant quantities of BSY are disposed
of annually, with current utilization limited to animal feed applications [2,15].

Given the rich polysaccharide content of yeast cell walls, BSY presents a promising,
cost-effective alternative source of functional polysaccharides. This study investigates the
composition and water-soluble cell wall polysaccharides extracted from BSY, comparing
them with those taken from pure yeast cell cultures. By employing autolysis, a widely
adopted and cost-effective technique, the yeast cells undergo disintegration. This yields
yeast extract, a cytoplasmic component abundant in proteins, and autolysate residue
primarily, comprising cell walls rich in polysaccharides [16,17]. Then, by elucidating
the polysaccharide profiles of the cell wall, we aim to assess the feasibility of utilizing
BSY-derived polysaccharides for various applications, including functional foods and
nutraceuticals. Furthermore, we highlight the economic advantages of using BSY over
preparing pure yeast cell cultures for polysaccharide extraction, emphasizing its viability,
sustainability, and associated economic and environmental benefits.

2. Materials and Methods
2.1. Materials

The Brewer’s spent yeast (BSY) utilized in this experiment was produced through
drum drying by Korea Yeast Co., Ltd., (Mungyeong, Republic of Korea). The strain
used was Saccharomyces cerevisiae. Pure strain cultures were prepared following the
method described by Lee et al. (2023) [18] using Saccharomyces cerevisiae D452-2 (SC) and
Saccharomyces var. boulardii ATCC MYA-796 (SB). Pre-cultures of the strains were grown
at 30 ◦C and 250 rpm overnight in a YP medium containing 20 g of L−1 glucose. The
pre-cultured cells were then harvested and inoculated into main cultures with an initial
optical density at of 1.0600 nm.

Fed-batch fermentation was conducted in a 2.5 L bioreactor (Kobiotech Co., Incheon,
Republic of Korea) containing 1 L of YP medium with 20 g L−1 glucose and an initial
OD 600 of 1.0. Upon the depletion of the initially added glucose, a feeding solution com-
prising 600 g L−1 glucose, 200 g L−1 yeast extract, and 100 g L−1 peptone was introduced at
a rate of 15 mL h−1. The medium’s pH, temperature, agitation speed, and air supply were
maintained at pH 5.5, 30 ◦C, 500 rpm, and 1.0 vvm, respectively. Following incubation,
60 to 70 g of cell dry matter was recovered and used for analysis. The yeast cells were
washed twice with distilled water and subjected to centrifugation (8000 rpm, 10 min). Sub-
sequently, the yeast cells were freeze-dried for further experimentation, and their weight
was measured to calculate the yield.

2.2. Autolysis of Yeast Cell

Autolysis was performed using the method outlined by Tanguler et al. [16] in order
to separate yeast into cell walls and extracts (Figure 1). Initially, 3% sodium chloride was
added to yeast cell slurry (15% (w/v), pH 5.0) as a self-decomposition promoter, and the
mixture was incubated for 24 h. Subsequently, the mixture was centrifuged at 5000 rpm,
and the resulting residue was freeze-dried to obtain the cell wall fraction.
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Figure 1. Schematic diagram of the fractionation of soluble polysaccharides from yeast cell.
F1—autolysate. This refers to the cytoplasmic components of the cell or yeast extract. F2—autolysate
residue. This refers to the insoluble component of yeast cells composed of mainly cell wall.
F3—soluble polysaccharides. This refers to alkali-soluble components extracted from autolysate
residue. F4—insoluble polysaccharides. This refers to the alkali-insoluble components of
autolysate residue.

2.3. Water-Soluble Polysaccharide Extraction from Autolysate Residue

The isolation of water-soluble polysaccharides from autolysate residue (cell wall fraction)
following autolysis was conducted based on the method described by [19] (Figure 1). Ini-
tially, 5 g of yeast cell wall was treated with 1% NaOH and extracted in a water bath
at 100 ◦C for 2 h. The alkali-treated suspension was then centrifuged at 4500 rpm for 10 min,
resulting in the separation of an insoluble polysaccharide pellet and a soluble polysaccha-
ride supernatant. The supernatant solution pH was neutralized with 2 mol/L HCl and
treated with cold ethanol at a ratio of 1:4. The mixture was subsequently precipitated at
−80 ◦C for more than 2 h and then centrifuged at 8000 rpm for 10 min at −10 ◦C to recover
the precipitate. This ethanol precipitation process was repeated two times to ensure thor-
ough purification. Finally, the obtained precipitate was freeze-dried to yield a water-soluble
polysaccharide fraction of yeast cells.

2.4. Characterization of Yeast Cell Components
2.4.1. Proximate Composition

The general compositions of BSY, SC, and SB cells and their respective autolysate
residue were determined using the AOAC method [20]. Briefly, the moisture content
was determined by oven drying method at 105 ◦C, the crude fat was assessed by the
Soxhlet extraction method, the nitrogen was determined by the micro-Kjeldahl method
and converted into crude protein via multiplication with the coefficient factor 6.25, and
the crude ash was measured by heating the sample at 550 ◦C in a furnace. The value
for carbohydrates was determined by adding the moisture content, crude fat, and crude
protein to obtain a subtotal. The subtotal was subtracted from 100, and the remaining value
represented the carbohydrate content.

2.4.2. Sugar Composition

To quantify sugar constituents, hydrolysis was performed with sulfuric acid based on
the method in [21]. This acid hydrolysis released glucose from β-glucan, mannose from



Foods 2024, 13, 1567 4 of 14

mannans, and glucosamine from chitin (since the N-acetyl residue in N-acetyl-glucosamine
is acid-labile). We soaked 10 mg of samples in 75 µLof 72% (w/v) H2SO4 at room
temperature for 3 h. Then, the slurry was diluted to 2 N H2SO4 by the addition of
0.95 mL MilliQ water containing 1 mg/mL Sorbitol (used as an internal standard to con-
trol the recovery) and heated at 100 ◦C for 4 h. Sulfate ions were neutralized by the
drop-wise addition of NaOH until neutral pH values were reached. The volume was
adjusted to 20 mL. We collected 1 mL of sample and centrifuged it at 13,000 rpm for
5 min. Then, the supernatant was filtered with a 0.22 µm syringe filter and used for anal-
ysis. High-performance anion exchange chromatography (HPAEC) was used to separate
polysaccharides (as glucose, mannose, and N-acetyl-glucosamine). An ICS 5000 Dionex
chromatography system (ICS-5000+, Thermo Fisher Scientific Co., Waltham, MA, USA)
CarboPac PA100 column (250 × 4 mm, Dionex, Sunnyvale, CA, USA), a PEEK tube
(0.24 mm i.d.), a gradient mixer (2 mm), an ED amperometry cell with a 0.25 µL chan-
nel volume, a pH-Ag/AgCl reference electrode, and gold electrodes were included. We
used 100 mM sodium hydroxide and 1 M sodium acetate as analysis solvents, and samples
were separated and analyzed under gradient conditions set to increase from 0 to 20 mM for
10–15 min and from 20 to 500 mM for 15–20 min. The column temperature was maintained
at 40 ◦C, and the solvent flow rate was 1 mL/min.

2.4.3. Gel Permeation Chromatography (GPC)

GPC was conducted to analyze the molecular weight distribution of water-soluble
polysaccharides in each sample. First, the freeze-dried sample (10 mg/mL) was dissolved
in distilled water and filtered using a 0.22 µm syringe filter (13 mm, 0.22 µL, Thermo
Fisher Scientific Co.). The resulting filtered solution was utilized as the analysis sample.
TSKgel G3000PW columns (7.8 mm × 30 cm, Tosoh, Tokyo, Japan) were employed in an
HPLC system (Agilent Technologies, Inc., Santa Clara, CA, USA) for the analysis. Distilled
water served as the mobile phase, with the column temperature maintained at 40 ◦C. The
sample injection volume was 10 µL, and the solvent flow rate was set to 0.5 mL/min [22].

2.4.4. Glycosidic Linkage Analysis Using 1H-NMR

To analyze the α-1, 6 and α-1, 2 glycosidic bonds between sugar molecules of water-
soluble polymer samples, 1H-NMR spectroscopy (500 MHz FT-NMR, JEOL, Tokyo, Japan)
was performed recovered via the alkali extraction of autolysate residue and ethanol pre-
cipitation. A freeze-dried sample of soluble polysaccharides (20 mg/mL) was dissolved
in deuterium oxide (D2O) and reacted at 45 ◦C for 20 min. Then, 1H-NMR analysis
was performed [22].

2.4.5. FT-IR

FT-IR spectral analysis of soluble polysaccharides was carried out using the potassium
bromide (KBr) pellet method with a Spectrum 3 FT-IR spectrophotometer (PerkinElmer Inc.,
Billerica, MA, USA) in the range of 400–4000 cm−1 [23].

2.5. Antioxidant Enzyme Activity of Water-Soluble Polysaccharide
2.5.1. Superoxide Dismutase-like Activity (SOD)

We used the SOD assay kit and WST (Biomax, Seoul, Republic of Korea) for anal-
ysis, working according to the manufacturer’s instruction. The sample was dissolved
in double-distilled water (DDW) at a concentration of 100 µL/mL. Next, 20 µL of the
sample was added to the sample well and Blank 2 well on a 96-well plate. Additionally,
20 µL of DDW was added to the Blank 1 and Blank 3 wells. Following this, 200 µL of WST
working solution was added to each well. To the Blank 2 and Blank 3 wells, 20 µL of
dilution buffer was added, while to Blank 1 and the sample well, 20 µL of enzyme working
solution was added. The reaction was then carried out at 37 ◦C for 20 min.
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Subsequently, the absorbance was measured at 450 nm using a microplate reader
(Multiskan Sky, Thermo Scientific Co., Waltham, MA, USA).

SOD activity (inhibition rate) (%) =
(B1 − B3)− (S − B2)

(B1 − B3)
× 100

where
B1: Blank 1/maximum absorbance.
B2: refers to blank 2/sample’s background absorbance.
B3: Blank 3/background absorbance of the rest of the solution except sample.
Sample: sample absorbance.

2.5.2. ABTS Radical Scavenging

Following the method outlined by [24], ABTS and potassium persulfate were dissolved
in distilled water to achieve final concentrations of 7.4 mM and 2.6 mM, respectively. This
mixture was then stored in a dark place at room temperature for 18 h. Prior to use, it was
diluted with phosphate-buffered saline (pH 7.4) to attain an absorbance of approximately
0.70 at 732 nm. Subsequently, 50 µL of the sample was combined with 1.0 mL of the diluted
ABTS mixture and allowed to stand in darkness for 30 min. Following incubation, the
absorbance was measured at 732 nm. Trolox, a standard antioxidant, was employed for
calibration purposes, and the results were expressed as milligrams of Trolox equivalent per
gram (mg Trolox equivalent/g) of the sample. Furthermore, the sample concentration (IC50),
corresponding to a 50% scavenging rate, was calculated by establishing the relationship
between concentration and scavenging rate.

ABTS inhibition (%) =
(C − S)

C
× 100

where C refers to OD of control/black and S refers to OD of sample.

2.5.3. DPPH Radical Inhibition

The DPPH radical’s scavenging ability, often employed as a representative indicator
of antioxidant activity, was assessed following the method outlined by [25]. Initially,
the sample was diluted to various concentrations, with each aliquot measuring 200 µL.
Subsequently, 800 µL of a 0.4 mM DPPH solution was added to each sample, and the
mixture was then incubated at 37 ◦C for 30 min. Following the incubation period, the
absorbance was measured at 525 nm. The DPPH radical scavenging rate was determined
by calculating the ratio of the decrease in absorbance observed in the sample treatment
group in comparison to the absorbance of the control group (without sample).

DPPH inhibition (%) =
(C − S)

C
× 100

where C refers to OD of control/black and S refers to OD of sample.

2.5.4. Total Phenolic Content

Using the method outlined by Horn [3] with minor modifications, the total phenol
content was measured at 760 nm. This was achieved by adding 0.08 N Folin–Ciocalteu
reagent to the sample and allowing it to stand at room temperature for 6 min. Subsequently,
3% Na2CO3 solution was added and left for 90 min. A standard curve was prepared using
gallic acid as a standard reagent, and the total phenol content was expressed in mM gallic
acid equivalent.

2.6. Statistical Analysis

The experimental results were presented as the average value and standard deviation
(means ± SD) based on triplicate analyses. Significance testing between experimental
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groups was conducted using the SPSS statistical program (Ver. 23, Statistical Package for
Social Sciences, SPSS Inc., Chicago, IL, USA), with the significance level set to p < 0.05.

3. Results and Discussion
3.1. Proximate Composition

The general protein, carbohydrate, and ash contents per dry weight of whole cell
were ranged from 52.0 to 57.4%, 28.8 to 38.9%, and 6.4 to 8.5%, respectively (Table 1). Our
findings align with previous studies [4,26–28], which reported similar parameters for yeast
cells. Despite being rich in nutrients compared to plant-based food sources, BSY exhibited
the lower protein, carbohydrate, and mineral contents than pure-cultured SC and SB. This
disparity was attributed to SC and SB being cultured in YPD medium under constant
conditions and recovered at the end of the stationary phase, at which point organelles are
well-developed, resulting in higher nutrient content [29].

Table 1. Proximate composition of whole and autolyzed cell residue from BSY, S. cerevisiae
and S. boulardii.

Components (%)
BSY S. cerevisiae S. boulardii

WC AR WC AR WC AR

Crude protein 52.04 ± 1.98 c 30.50 ± 0.21 a 53.46 ± 2.43 b 18.64 ± 0.06 c 57.43 ± 2.71 a 19.57 ± 0.38 b

Carbohydrate 28.80 ± 0.54 c 53.13 ± 0.23 c 38.87 ± 1.25 a 67.17 ± 0.09 a 33.65 ± 0.95 b 64.65 ± 0.41 b

Ash 6.43 ± 0.04 c 10.39 ± 0.06 a 7.35 ± 0.04 b 7.77 ± 0.01 c 8.47 ± 0.07 a 8.39 ± 0.04 b

AR: autolysate residue, WC: whole cell. Values are means ± SD (n = 3). Mean comparisons were made between
WC and AR and different superscript letters in the same row indicates the significant difference at p < 0.05.

Unlike pure-cultured yeast, BSY is obtained after approximately 1 week of fermenta-
tion, during which it is composed of active and inactive yeast cells [3]. Additionally, BSY is
mixed with wort and hop juice during fermentation. These factors likely contribute to the
differences in composition observed between BSY and SC or SB. These comparative results
provide valuable insights for the future utilization of cell debris residue as a food ingredient,
particularly considering the lack of reports demonstrating the general composition of each
strain of SC and SB when cultured at high concentrations.

The proximate composition of autolysate residue from BSY and pure-cultured cells
(SC and SB) was determined to assess the effect of autolysis. Upon autolysis, the protein
content of all samples decreased due to the removal of yeast cell internal components,
which are protein-rich, such as yeast extract. Conversely, carbohydrate and mineral content
increased, as the autolysate residue was primarily composed of cell wall. These results
for BSY were consistent with the reported composition and shredded residue content of
BSY. Contrary to the results observed for whole cells, the protein and ash contents of BSY
autolysate residue were higher than those of cultured cells, while the carbohydrate content
was lower. This difference in protein and ash content may be attributed to increases in cell
wall mannoprotein and phosphate [30], as well as the adsorption of nutrients, originating
from malt and hops, onto the cell wall during the brewing process [16].

3.2. Yield Components of Yeast Cell Fractionations

Yeast cell walls account for 15–30% of the yeast cell dry weight, of which up to 90% is
composed of polysaccharides [1,31,32]. Table 2 shows the yield of 4 fractions of autolysis
and extraction, including cell walls for BSY, SC, SB, and their polysaccharide content.
Upon autolysis, BSY yielded lower autolysate, which refers to yeast extract/cytoplasmic
components, and higher residue (constitute the cell wall) than SC and SB culture cells. This
is mainly due to the nutrient-depleted beer manufacturing environment used for BSY as
compared to that used to grow SC and SB in the fermenter. The findings of these autolysate
fractions are consistent with a previous study [16] and suggest that the autolysate residue
contains more than just cell wall components, as evidenced by a total polysaccharide
content of approximately 600 µg/mg.
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Table 2. Yields of yeast cell autolysis fractions and their polysaccharide composition.

Components BSY S. cerevisiae S. boulardii

Autolysate (%) (F1) 39.67 ± 0.03 c 55.06 ± 0.08 a 50.82 ± 0.04 b

Autolysate residue (%) (F2) 53.11 ± 0.07 a 43.83 ± 0.07 c 44.99 ± 0.05 b

β-glucan (µg/mg) 346.21 ± 15.12 a 284.58 ± 10.03 b 268.53 ± 11.85 c

Mannan (µg/mg) 291.73 ± 5.75 a 255.26 ± 4.76 b 297.40 ± 10.91 a

Chitin (µg/mg) 3.96 ± 0.04 c 13.68 ± 0.54 b 25.63 ± 1.25 a

Total (µg/mg) 641.90 ± 6.28 a 553.52 ± 4.66 c 591.56 ± 2.32 b

Cell wall % (on cell dry mass) 34.09 ± 0.12 a 24.25 ± 0.03 c 26.61 ± 0.09 b

Soluble polysaccharides (F3) 33.62 ± 0.09 c 40.76 ± 0.14 b 42.97 ± 0.21 a

Insoluble polysaccharides (F4) 44.14 ± 0.18 a 31.17 ± 0.26 c 33.76 ± 0.23 b

Values in italics were polysaccharides determined from autolysis insoluble residue (F2). Data in the same row
with different letters represent significant differences at p < 0.05.

To estimate the proportion of yeast cell wall, the composition of insoluble residue
polysaccharides resulting from autolysis was determined. BSY exhibited the highest cell
wall component content (34.09%), followed by SB (26.61%) and SC (24.25%), respectively.
This disparity can be attributed to the higher concentration of β-glucan in the cell wall,
likely resulting from modifications in cell wall polysaccharides prompted by the ethanol
and osmotic stresses encountered during the brewing process [30].

The total carbohydrate, β-glucan, and mannan composition of the autolysate residue
results align with previous studies on probiotic and brewer’s yeast cell wall composi-
tion under different growth conditions [29,33]. The values in this study indicated that
β-glucans constituted 50–60% of the autolysate residue, while mannoproteins accounted
for 35–40% [34]. Among the cell wall composition results, SB exhibited the highest man-
nan content (297.40 µg/mg), consistent with reports that SB, a lactic acid yeast, pos-
sesses a distinctive cell wall architecture with a thick mannan layer, resulting in higher
mannan content [29].

These results suggest that BSY has comparable cell wall polysaccharide content to
cultured SC and SB and serves as a rich source of functional cell wall polysaccharides,
such as β-glucan and mannan. However, through alkali extraction, BSY yielded lower
soluble polysaccharide sugar and higher insoluble residue compared to SC and SB, as
described in detail in Section 3.3. According to Bastos et al. [30], the increase in insoluble
polysaccharides, primarily comprising 1- 4 β-glucan, is linked to brewing-induced glycogen
accumulation, thereby contributing significantly to the observed variance.

3.3. Characterization of Soluble Cell Wall Polysaccharides
3.3.1. Soluble Cell Wall Polysaccharides Composition

Water-soluble polysaccharides (SP) were extracted from the autolysate residue us-
ing an alkaline solution, and their constituent saccharides, including β-glucan, mannan
(mannoprotein), and chitin, were analyzed (see Table 3). SP contents were found to be
higher in BSY (700.90 µg/mg), followed by SC (688.84 µg/mg) and SB (634.70 µg/mg), re-
spectively. Upon detailed examination, a notably high mannan–glucan ratio was observed,
consistent with previous studies on the probiotic makeup and cell wall composition of
brewer’s yeast under glycerol cultivation conditions [29].

Table 3. Saccharides composition of soluble polysaccharide derived from autolyzed yeast cell residue
in (µg/mg).

Polysaccharides BSY S. cerevisiae S. boulardii

β-glucan 201.80 ± 5.41 a 87.89 ± 2.42 b 56.21 ± 2.70 c

Mannan 493.11 ± 7.45 c 596.25 ± 10.25 a 573.75 ± 7.45 b

Chitin 5.99 ± 0.13 a 4.70 ± 0.01 c 4.74 ± 0.01 b

Total 700.90 ± 1.50 a 688.84 ± 4.07 b 634.70 ± 4.43 c

Mannan: β-glucan 70:30 86:14 90:10
Data in the same row with different letters represent significant difference (p < 0.05).
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Research by Bastos et al. [30] demonstrated an increase in soluble β-glucan with the use
of β-1,3 and β-1,6-D-Glc bonds derived from wort during brewing. This finding explains
the higher proportion of water-soluble β-glucan in BSY (70:30) compared to SC (84:14)
and SB (90:10). Additionally, alkaline-extracted fractions exhibited notably high levels of
mannan, known for its water solubility compared to other yeast cell wall components,
such as β-glucan and chitin [6,35,36]. Given mannan’s immune-enhancing properties, this
mannan-rich soluble polysaccharide (mannan: β-glucan 70:30) holds significant potential
in the nutraceutical industries. Furthermore, the alkali-insoluble fraction predominantly
comprises β-glucan, as reported by [29] (see Supplementary Table S1).

3.3.2. Molecular Weight Determination

The molecular weight size distribution of soluble polysaccharides (SP) obtained from
each yeast autolysate residue was assessed via gel permeation chromatography (GPC), as
illustrated in Figure 2. Previous research indicates that SPs extracted from yeast cell walls
typically exhibit molecular weights ranging from 166 to 700 kDa [22]. Notably, the total
weight of the average molecular weight (Mw) of SPs derived from spent yeast (185.8 kDa)
was significantly lower than that of the cultured SC and SB strains, measuring 302.9 kDa
and 261.7 kDa, respectively (Table 4). Further analysis revealed the molecular weight of the
height peak (Mp) for SC-SP and SB-SP to be 452.5 kDa and 405.3 kDa, respectively, while
BSY-SP exhibited a notably lower Mp of 19.3 kDa. The subsequent confirmation of the
degree of polymerization (DP) at Mp unveiled values of 2793.2 for SC-SP, 2502.1 for SB-SP,
and 118.9 for BSY-SP, indicating a higher degree of polymerization in SC-SP.
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Figure 2. Gel permeation chromatography analysis of yeast cell water-soluble polysaccharide.
BSY-SP, Brewer’s spent yeast-soluble polysaccharide; SC-SP, S. cerevisiae-soluble polysaccharide;
SB-SP, S. boulardii-soluble polysaccharide.

Table 4. Molecular weight distributions of water-soluble polysaccharide.

Sample Mw 1 Mp 2 DP 3

BSY 185.8 19.3 118.9
S. cerevisiae 302.9 452.5 2793.2
S. boulardii 261.7 405.3 2502.1

1 Mw; total weight average molecular weight (kDa); 2 Mp; molecular weight of highest peak (kDa); 3 DP; degree
of polymerization. DP was determined by dividing the Mp value by the molecular weight of one glucose
molecule (162 Da).
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The presence of a large quantity of water-soluble glucose in BSY-SP likely influences
its molecular weight, contributing to its lower size compared to other polysaccharides.
Numerous studies have highlighted that polysaccharides with smaller molecular weights
tend to possess simpler structures and display enhanced water solubility, thus exhibiting
heightened biological activity [37,38].

A comparison between strains (SC and SB) revealed distinct characteristics in their
polysaccharide fractions. SC exhibited a greater proportion of polymeric fractions with a
size of around 400 kDa, whereas SB displayed a slightly higher content of polysaccharides
with sizes of approximately 22 kDa and above. This aligns with previous findings, indicat-
ing that SB strains typically feature a thicker mannan layer, a characteristic component of
the outer membrane.

3.3.3. 1H-NMR Spectroscopic Identification

The results illustrating the confirmation of the intermolecular binding form of
water-soluble polysaccharide (SPs) extracted from the cell wall are depicted in Figure 3.
Anomeric H atoms, crucial for identification, resonate within the range of 4.9–5.5 ppm,
while the remaining H atoms fall within 3.5–4.5 ppm, as per a previous study
Kath and Kulicke [22]. However, due to numerous overlapping signals in this range, precise
assignment is unfeasible. The assignment of anomeric H atoms relied upon published
data for higher mannan oligosaccharides, which were further corroborated by methylation
analyses and other findings [39]. Notably, the signal observed at 5.1–5.2 ppm (positions A)
signifies the presence of α-1,6-mannans in the basic chain, to which the mannose side
groups are attached. Additionally, a signal corresponding to an anomeric H atom of a
terminal α-1,3-linked mannose is discernible in this region (position D). Another distinctive
signal at 5.3 ppm is indicative of the presence of mannose in α-1,2-linked side chains com-
posed of two or more sub-units (position C). Furthermore, the signal at 5.04 ppm denotes
terminal α-1,2-linked mannose and α-1,2-linked mannose with a mannose substituent
in the 3-position (position B, D). Occasionally, a band appears at 5.41 ppm (positions E),
attributed to mannose bonding to the mannan complex via a phosphodiester bridge [22].
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BSY-SP exhibited a characteristic peak at a chemical shift of 5.41 ppm, likely arising
from the formation of complexes due to interactions with residual substances present in
the wort during beer fermentation. Furthermore, the intensity of this peak tended to be
relatively lower compared to that of SC-SP and SB-SP. This difference is believed to stem
from the mixture of various components during the brewing process and the lower purity
inherent in yeast cells cultured in a non-controlled environment.

Tamano et al. [40] reported that the soluble form of beta-glucan typically manifests a
peak at a chemical shift of 4.5 ppm, attributable to beta-1,6-linked glucose bonds. Addition-
ally, Chen et al. [41] noted in a structural determination study involving the hydrolysis of
barley that the peak corresponding to 5.3 ppm in the spectral results of 1–3- or 1–4-linked
beta-glucan, assessed via 1H-NMR, could be attributed to residual anomeric protons of the
1,4-glucoside bond within beta-glucan.

3.3.4. FT-IR Spectroscopic Identification

The FT-IR spectrum results of cell wall-soluble polysaccharides (Figure 4) exhibit typical
cell wall polysaccharide patterns, consistent with findings from various studies [6,31,42–44].
A broad peak spanning 3650–3200 cm−1 corresponds to O-H stretching bonds, indicative
of changes in bond length with hydroxyl groups, while a weaker bend observed between
3000 and 2800 cm−1 is associated with C-H stretching bonds in carbonyl groups [45,46].
Takallo et al. [17] suggested that the wavelength range of 3650–3200 cm−1, represent-
ing hydroxyl groups, may influence the formation or alteration of intramolecular and
intermolecular hydrogen bonds, or cause variations in the polymerization of cell wall
polysaccharides or yeast cell wall polysaccharides, affecting their helical structure.
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Moreover, a peak observed between 2985 and 3015 cm−1 is attributed to the presence
of lipid residues within the cell wall [47]. The regions spanning 1700–1500 cm−1 are associ-
ated with C=O asymmetric and symmetric stretching bonds, while a peak at 1374 cm−1

corresponds to C-H bending bonds, where changes in bond angles occur [48]. Addition-
ally, a peak between 1155 and 1080 cm−1 signifies a C-O bending bond, while the presence
of a C-O stretching bond is indicated by a peak at 1024 cm−1 [27]. Oscillations between
520 and 1100 cm−1 are linked to various polysaccharides (α-glucan, β-glucan, α-mannan, etc.)
and can be subdivided into the sugar region (950–1200 cm−1) and the anomeric region
(750–950 cm−1) [49].

Notably, in SB-SP, the hydroxyl groups at the 3650–3200 cm−1 peak appear prominent,
suggesting the predominance of O-H stretching bonds, which is likely due to the thick
mannoprotein layer characteristic of SB strains [50]. C-O bond stretching, indicated by the
1024 cm−1 peak, is more pronounced in SC-SP and SB-SP compared to BSY-SP. Within the
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range of 700–1500 cm−1, large peaks corresponding to C=O asymmetric and symmetric
stretching bonds, as well as C-H bending bonds at 1374 cm−1, are observed in BSY-SP,
indicative of β-glucan presence. Additionally, the intense absorption of the C=O stretching
peak was attributed to the presence of double-bonded substances such as hop acids, derived
from the wort and hop juice mixtures used in the brewing process [51]. Moreover, the
strong absorption peak at 810 cm−1 suggests the presence of α-anomeric configurations in
the polysaccharides [45]. The comparison of the 810 cm−1 peak areas reveals that SC-SP
and SB-SP exhibit more α-anomeric configurations and a higher percentage of mannose
compared to BSY-SP.

3.3.5. Antioxidant Enzyme Activity of Water-Soluble Polysaccharide

The water-soluble polysaccharide components of yeast cells exhibited antioxidant
activity against superoxide, ABTS, and DPPH radicals (Table 5). The results indicate that
brewers’ spent yeast polysaccharides displayed significantly higher antioxidant activity
compared to the soluble polysaccharides taken from cultured yeast cells. This disparity
may be attributed to the presence of phenolic compounds, such as hop acids, derived from
the beer manufacturing process. Previous studies have shown that hop acids from beer
bind to yeast cells and only become soluble at higher pH levels [16]. There is substantial
evidence suggesting that hop acids possess antioxidant properties [51]. Further analy-
sis of total phenolic acid (TPA) content supports this finding, revealing that the soluble
polysaccharide fraction of brewers’ spent yeast contains three times more TPA content.
Additionally, Figure 5 also indicates that BSY polysaccharides exhibited significantly lower
IC50 values than pure-cultured polysaccharides.

Table 5. Antioxidant enzyme activity of soluble polysaccharide.

Samples SOD Activity
(%)

ABTS Scavenging
µgTE/mg

DPPH Inhibition
µgTE/mg

TPA
mgGAE/g

BSY-SP 76.35 ± 1.75 a 192.38 ± 2.77 a 535.01 ± 4.20 a 81.19 ± 1.56 a

SC-SP 63.81 ± 1.25 b 86.70± 4.93 b 359.79 ± 2.26 b 43.08 ± 1.69 b

SB-SP 62.55 ± 2.32 b 78.99± 1.52 c 306.54 ± 2.74 c 49.63 ± 0.64 c

SC-SP, S. cerevisiae-soluble polysaccharides; SB-SP, S. boulardii-soluble polysaccharides; BSY-SP, Brewer’s spent
yeast-soluble polysaccharides., TPA: total phenolic acid presented as mg of gallic acid equivalent per gram of
sample. ABTS and DPPH activity were presented as micrograms of Trolox equivalent per mg of polysaccharide
samples. Values are means ± SD (n = 3). Means with different letters in the same column are significantly different
at p < 0.05.
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Previous research on the antioxidant activity of yeast polysaccharides has indicated that
the insoluble β-glucan exhibits lower antioxidative activity compared to the alkali-soluble
mannan and β-glucan [52]. The authors of this study concluded that the protein residue
present on the mannan contributes significantly to its antioxidative properties. However, it is
noteworthy that β-glucan derived from malt also possesses considerable radical scavenging
potential [53]. This finding might contribute to explaining the higher antioxidant activities
observed in brewers’ spent yeast compared to the pure-cultured yeast strains SC and SB,
which also contain higher β-glucan contents.

4. Conclusions

Based on the findings, it is evident that BSY represents a promising alternative to
cultured yeast cells due to its enriched nutrient profile and functional polysaccharide
composition. Its autolysis residue, predominantly composed of the cell wall, demon-
strates higher polysaccharide content, particularly β-glucan and mannan, than that of
pure-cultured SC and SB. Furthermore, although it is mannan-rich in all yeasts, the soluble
polysaccharide composition of BSY reveals elevated levels of β-glucan and reduced man-
nan concentration compared to SC and SB. Moreover, these soluble extracts exhibit superior
antioxidant activity, as evidenced by their higher scavenging potential against SOD, ABTS,
and DPPH radicals compared to cultured SC and SB yeast cells, attributable in part to the
presence of hop acid residue, which offers an additional advantage. Overall, BSY emerges
as a cost-effective and sustainable source of functional soluble polysaccharides, offering a
viable alternative to cultured yeast cells as a food ingredient. This also contributes to waste
reduction in beer production processes. These findings underscore the potential of BSY
to enhancing the nutritional and functional aspects of food products, warranting further
exploration and utilization in various food formulations and applications.
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