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Abstract: In this research, an innovative state space-based Transformer model is proposed to address
the challenges of complex system prediction tasks. By integrating state space theory, the model
aims to enhance the capability to capture dynamic changes in complex data, thereby improving the
accuracy and robustness of prediction tasks. Extensive experimental validations were conducted
on three representative tasks, including legal case judgment, legal case translation, and financial
data analysis to assess the performance and application potential of the model. The experimental
results demonstrate significant performance improvements of the proposed model over traditional
Transformer models and other advanced variants such as Bidirectional Encoder Representation from
Transformers (BERT) and Finsformer across all evaluated tasks. Specifically, in the task of legal case
judgment, the proposed model exhibited a precision of 0.93, a recall of 0.90, and an accuracy of
0.91, significantly surpassing the traditional Transformer model (with precision of 0.78, recall of 0.73,
accuracy of 0.76) and performances of other comparative models. In the task of legal case translation,
the precision of the proposed model reached 0.95, with a recall of 0.91 and an accuracy of 0.93, also
outperforming other models. Likewise, in the task of financial data analysis, the proposed model
also demonstrated excellent performance, with a precision of 0.94, recall of 0.90, and accuracy of
0.92. The state space-based Transformer model proposed not only theoretically expands the research
boundaries of deep learning models in complex system prediction but also validates its efficiency
and broad application prospects through experiments. These achievements provide new insights and
directions for future research and development of deep learning models, especially in tasks requiring
the understanding and prediction of complex system dynamics.

Keywords: state-space models; transformer architecture; complex system; big-data driven; deep
learning; loss function optimization

1. Introduction

In today’s data-driven world, the prediction and analysis of complex systems have
emerged as hotspots in interdisciplinary research, spanning significant domains such as
law [1], finance [2], and healthcare [3]. The complexity of these systems often stems from
their highly nonlinear internal structures, dynamic changes, and intricate interactions with
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external environments. With the advent of the big data era [4], text-based big data analysis
has provided new perspectives and methods for the prediction and decision-making of
these complex systems. This paper focuses on the exploration of complex system prediction
models based on text big data, utilizing a combination of state space models and the
Transformer, aiming to offer more accurate and dynamic support for decision-making in
complex systems.

As the internet and digital technology rapidly evolve, the volume of text data grows
exponentially [5]. These text data contain rich information and knowledge, vital for un-
derstanding and predicting the behaviors of complex systems. However, the unstructured
nature of text data and the inherent complexity of these systems pose challenges in ef-
fectively extracting useful information from text big data [6] and constructing accurate
prediction models. Experiments by Wahba Yasmen [7] and others applying Support Vector
Machine (SVM) to text data classification have shown that traditional SVM indeed offers
cheaper and superior performance compared to pre-trained language models (PLM), yet
SVM underperforms in handling the unstructured features of text.

Recent advancements in deep learning technologies have provided new tools and meth-
ods for addressing this issue. Notably, the success of RNN (Recurrent Neural Networks) [8]
and LSTM (Long Short-Term Memory networks) [9] in sequence data processing, along
with the breakthroughs of the Transformer model [10] in handling long-distance depen-
dencies and parallel computing, have significantly advanced text-based data analysis
technologies. However, these models still face limitations in predicting complex systems,
such as capturing the dynamic changes in system states and computational efficiency issues
with large-scale text data.

Sharaff Aakanksha et al. [11] introduced a novel method for text data quality assess-
ment using a Deep Learning Convolutional Recurrent Neural Network (C-RNN) model,
combining CNN and RNN for SMS data quality assessment; Kumar Anuj [12] employed
RNN, CNN, LSTM, and Bidirectional Encoder Representation from Transformers (BERT)
models to detect hate speech and aggressive language in text data. Moreover, they explored
the impact of weighted and unweighted methods on the learning model system, with
experiments showing that the pre-trained BERT model outperforms other models in both
unweighted and weighted classifications, yet its performance is significantly hindered in
scalar instances; Lee Hyejin et al. [13] used an LSTM model for text classification of Flickr
data to address the issues in covering features of tourist activities, demonstrating how to
identify tourism categories and analyzing the Return on Attention (ROA) preferences of
tourists in detail. However, richer analyses are anticipated if image and text analyses are
combined. Hasib Khan Md et al. [14] proposed a Multiclass Convolutional Neural Network
(MCNN)-LSTM approach, combining CNN and LSTM deep learning techniques for text
classification in news data, with results showing their method significantly outperforms
machine learning approaches, achieving a 99.7% accuracy rate, yet challenges remain in
handling highly imbalanced and noisy data sets.

Regarding the application of the Transformer model in text data, many researchers
have also conducted explorations. For instance, Kumar Varun et al. [15] studied various
models to provide a simple yet effective method for tuning pre-trained models for data
augmentation—using autoregressive models (GPT-2), autoencoder models (BERT), and
seq2seq models (BART) for conditional data augmentation. They also explored ways to
preserve class label information; Phan Long N et al. [16] proposed the SciFive model for
biomedical literature, comparing it with current State Of The Art (SOTA) methods (i.e.,
BERT, BioBERT, Base T5), showing that their method performs better in longer text output
tasks, albeit with lower efficiency; Acheampong Francisca Adoma et al. [17] designed an
Emotion Detection (ED) model based on the Transformer, assessing the effectiveness of
pre-trained (GPT) models, Transformer-XL, cross-language models (XLM), and BERT in the
task of text emotion detection, yet their contribution to resolving the polarity ambiguity in
emotional expression words remains limited.
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Addressing the challenges mentioned above, this paper proposes a novel complex
system prediction method based on the state space Transformer model. State space models,
effective tools for time series analysis, can describe the dynamic changes in system states
and associate system states with observational data through an observation model. Com-
bined with the powerful processing capabilities of the Transformer model, our method
not only efficiently handles large-scale text data but also accurately captures and pre-
dicts the dynamic changes in complex systems, offering robust support for data-driven
decision-making. The main innovations and contributions of this paper include:

1. Introducing a new state space-based Transformer model, as discussed in Section 3.3:
by integrating the state space model with the Transformer, a novel prediction model
has been designed, capable of effectively processing text big data and accurately
describing the dynamic changes in complex systems.

2. Developing a set of text preprocessing and feature extraction methods for complex
systems: considering the special requirements for predicting complex systems, a new
set of text preprocessing and feature extraction processes has been developed, ensur-
ing the model can extract the most useful information from text data for prediction, as
discussed in Sections 3.1 and 3.2.

3. Conducting empirical studies on multiple complex systems: empirical studies have
been conducted in various fields, including legal case judgment, legal case translation,
and financial data analysis, verifying the effectiveness and versatility of our model.

4. Performing extensive model comparisons and analyses, as shown in Section 4: by
comparing our model with existing Transformer models, BERT, and other baseline
models, the performance of our model has been comprehensively evaluated, and its
advantages and potential application values have been thoroughly analyzed.

In summary, this work offers a new perspective and method for processing and pre-
dicting complex systems, bearing significant theoretical implications and wide application
prospects. It is anticipated that the findings of this paper will provide new insights and
contributions to the research and application of complex systems.

2. Related Work
2.1. RNN and LSTM

An in-depth understanding of the applications of RNN [18] and their improved variant,
LSTM [19], in processing sequential data is deemed crucial, as shown in Figure 1. Through
sophisticated network structure design and mathematical formulations, these models
effectively address the challenges faced by traditional algorithms in handling time-series
data [20,21], providing robust tools for prediction and analysis in complex systems.
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Figure 1. Comparison of RNN and LSTM Network Structures. This diagram illustrates the intro-
duction of gate mechanisms, such as the forget gate, input gate, and output gate in LSTM networks
on top of the RNN base, which helps to handle long-term dependencies in time-series data. The
differences in the internal structures of each unit reflect the differences in information processing
between the two types of networks and how LSTMs finely control the flow of information with their
complex internal structure.

RNNs [22], designed to remember the impact of preceding information for application
in current computations, thereby outputting predictions at each point in a sequence, have
demonstrated commendable performance in areas such as text processing [23] and speech
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recognition [24]. Unlike traditional neural networks, RNNs incorporate a temporal dimen-
sion, allowing the network to store historical information for future state predictions. This
is particularly suited for tasks with variable sequence lengths, such as natural language
processing and time series analysis. The fundamental structure of RNNs can be represented
by the following equations [25,26]:

ht = σ(Wxhxt + Whhht−1 + bh) (1)

yt = Whyht + by (2)

where xt denotes the input at time t, ht the hidden state at time t, and yt the output at time t.
Wxh, Whh, and Why represent the weight matrices from input to hidden layer, hidden layer
to hidden layer, and hidden layer to output layer, respectively. bh and by are bias terms,
and σ denotes the activation function, typically a sigmoid or tanh function.

Despite RNNs’ potential for sequential data processing, they face challenges with gradi-
ent vanishing or exploding when dealing with long sequences in practical applications [27],
limiting their capability to learn long-term dependencies. To overcome this limitation,
LSTMs were introduced [28]. By incorporating a series of gate mechanisms, LSTMs effec-
tively control the storage, updating, and forgetting of information, significantly enhancing
the network’s capability to process long-sequence data. The core components of an LSTM
unit include the forget gate, input gate, output gate, and cell state, enabling LSTMs to
capture important information while disregarding the irrelevant in long sequences. The
core equations of LSTM are as follows [29–34]:

ft = σ(W f · [ht−1, xt] + b f ) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot ∗ tanh(Ct) (8)

here, ft, it, and ot represent the activation values of the forget gate, input gate, and out-
put gate, respectively; C̃t is the candidate cell state; Ct is the cell state; ht is the hidden
state; ∗ denotes element-wise multiplication; σ and tanh are the sigmoid function and
hyperbolic tangent function, respectively; W and b are weight matrices and bias terms.
Through these gate mechanisms, LSTMs efficiently manage the flow of information, solving
the gradient vanishing problem faced by traditional RNNs in long sequence processing,
thereby significantly enhancing model performance and reliability in complex system
prediction [35].

In data-driven decision-making for complex systems, RNNs and LSTMs offer powerful
tools [36,37], enabling researchers and decision-makers to learn patterns from historical
data and predict the future behaviors of systems. For instance, LSTMs have been used
to accurately predict stock price dynamics in financial data analysis [38]; in the realm
of natural language processing, RNNs and LSTMs facilitate machine translation, text
summarization, and sentiment analysis tasks [39,40], enhancing the capability to process
complex language structures. Moreover, in meteorology, energy management, and public
health, these models demonstrate substantial potential in addressing time series prediction
problems [41,42]. Thus, the application of RNNs and LSTMs in solving sequence data
processing and prediction issues within complex systems not only showcases the advanced
and flexible technology but also provides reliable support for data-driven decision-making.
The continuous optimization and improvement of these models are expected to yield
deeper and more extensive outcomes in understanding and predicting complex systems.
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2.2. Transformer

Since its introduction by Vaswani et al. in 2017 [43], the Transformer model has
revolutionized the field of Natural Language Processing (NLP). Its core mechanisms—Self-
Attention and Positional Encoding—endow the Transformer model with unique advantages
in handling sequential data, particularly in capturing long-distance dependencies and in
parallel data processing, as shown in Figure 2. These features have led to exceptional
performance in language modeling, machine translation, text summarization, and other
tasks [44,45], while also fostering the development of Transformer-based models (such as
BERT, GPT, etc.), further advancing breakthroughs in NLP technology.

Multi-Head
Attention

Add & Norm Position-wise
FFN

Token 
Embedding

Add & Norm

Positional Encodings ×𝑳

Figure 2. Flowchart of the Transformer network structure. The diagram explicates the process from
token embedding to positional encoding and onto the multi-head attention mechanism. The process
also includes addition and normalization operations, as well as position-wise feedforward neural
networks (Position-wise FFN), and another round of addition and normalization. The entire process
demonstrates how the Transformer model processes input tokens and achieves sequence-to-sequence
transformation through a series of operations.

The Transformer is built entirely on self-attention mechanisms, eliminating the recur-
rent mechanism present in traditional RNNs and LSTMs, thus enabling efficient parallel
processing of data. It comprises encoders and decoders, each made up of several identical
layers, including self-attention mechanisms and position-wise fully connected feed-forward
networks. The self-attention mechanism, the heart of the Transformer model, allows the
model to consider all elements within a sequence when processing each sequence element,
thereby capturing long-distance dependency information. The self-attention calculation is
described by the following formula [46]:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (9)

here, Q, K, and V represent Query, Key, and Value, respectively, with dk being the dimension
of the key. This formula enables the model to compute a weight for each key, which is then
used to perform a weighted sum of values to calculate the output at each position. Given
the Transformer model’s parallel structure, it inherently lacks the ability to capture the
positional information of sequence elements. To address this issue, Positional Encoding
is introduced to imbue each sequence element with positional information. Positional
encoding is computed through the following formula [47,48]:

PE(pos,2i) = sin(pos/100002i/dmodel) (10)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (11)

where pos is the position and i is the dimension. Through this method, each position’s
encoding is unique and distinguishable from others. The advantage of the Transformer
model in processing sequential data plays a significant role in the research of complex
systems within data-driven decision-making. Learning patterns from historical data and
making future predictions in complex systems, especially those involving long-distance
dependencies, presents a challenging task. The Transformer model’s ability to effectively
capture these dependencies provides accurate data support for decision-making. For
example, in financial data analysis, the Transformer can predict stock price movements by
analyzing long-term dependencies in historical price sequences to forecast future trends [49].
In supply chain management, the Transformer model aids in predicting product demand
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by analyzing past order data to optimize inventory management [50]. In public health,
it can be used to forecast pandemic trends by examining the history of the epidemic to
predict future spread patterns [51]. With continuous development and optimization of the
Transformer model and its derivatives, it is reasonable to believe that they will play an
even more significant role in solving complex system problems in the future.

2.3. State Space Models and Mamba

State space models offer a powerful mathematical framework for time series analy-
sis [52], introducing hidden states to describe the dynamic changes in systems across time.
Particularly suited for analyzing and predicting complex systems whose internal states
are not directly observable but can be inferred from indirect measurements, Mamba, as
a modern computational framework designed for state space models, provides flexible
and efficient solutions, supporting rapid development and accurate estimation of complex
models [53], significantly advancing research on complex system prediction based on text
big data. State space models typically consist of two main equations: the state equation
and the observation equation, describing the time evolution of system states and how
observational data are generated from these internal states, respectively [54,55].

xt = Ftxt−1 + Gtwt (12)

yt = Htxt + vt (13)

here, xt represents the system state at time t, and yt denotes the observational data at
time t. Ft, Gt, and Ht are the state transition matrix, system noise influence matrix, and
observation matrix, respectively, controlling the evolution of system states, the impact of
system noise on the states, and how observational data are generated from the states. wt
and vt represent system noise and observation noise, respectively, typically assumed to
follow a Gaussian distribution. The design of the Mamba framework thoroughly considers
the flexibility and computational efficiency of state space models. It not only supports
the construction of linear and nonlinear models but also offers efficient algorithms for
parameter estimation and state inference. Through Mamba, researchers can easily model,
analyze, and predict complex time series data, especially in handling large datasets, where
Mamba’s high-performance computing capabilities become particularly significant [56].

Combining state space models with deep learning technologies (such as LSTM and Trans-
former) provides new perspectives for the analysis and prediction of complex systems [57].
This combination not only leverages deep learning models’ strengths in processing un-
structured text data but also captures the dynamic evolution of system states through
state space models, thereby enhancing the predictive and interpretative capabilities of the
models on multiple levels. For instance, the outputs of LSTM or Transformer models can
be incorporated as part of the state equation in state space models to simulate the dynamic
characteristics of complex systems. Such composite models can capture long-term depen-
dencies in sequence data while dynamically modeling and inferring system states through
the state space model framework. In fields such as financial data analysis, environmental
monitoring, and public health, state space models based on Mamba have demonstrated
strong application potential [58]. By accurately modeling the dynamic changes in time
series data, these models provide decision-makers with important information about the fu-
ture states of systems, supporting the data-driven decision-making process. In the financial
sector, models built with Mamba can analyze and predict the dynamics of financial time se-
ries, such as stock prices and exchange rates, aiding investors in making more scientifically
informed investment decisions. In environmental monitoring, modeling meteorological
data can predict weather changes, supporting disaster early warning systems [59]. In
public health, state space models can be used for predicting trends in infectious diseases,
providing a basis for the formulation of disease control and prevention strategies [60].

In summary, the Mamba framework offers robust computational support for the ap-
plication of state space models in the analysis and prediction of complex systems. By



Systems 2024, 12, 171 7 of 30

integrating these models with deep learning technologies, the capability to handle unstruc-
tured text big data is further enhanced, providing more accurate and in-depth support for
data-driven decision-making. With ongoing advancements in computational technology,
state space models based on Mamba are expected to exhibit an even broader range of
applications in future research on complex systems.

3. Materials and Methods
3.1. Dataset Collection

In conducting research on complex system prediction models driven by large-scale text
data, the collection and annotation of datasets are foundational and critical. To construct
a high-quality dataset, we utilized web crawler technology for automatic data collection
and manual annotation to ensure data accuracy and consistency. Our study focused on
three areas: legal case judgment texts, legal case translation datasets, and financial data
analysis. Legal case judgment texts have a certain structure, such as case ID, case type, text
content, case facts, and judgment outcomes, as shown in Figure 3a. They are relatively
structured, facilitating data extraction. These texts involve legal terminology and complex
legal logic, requiring models that can understand and process professional terms and logical
relationships. Legal texts are often lengthy and information-dense, necessitating strong
information extraction and induction capabilities. The diversity of case types, each with its
specific characteristics and terminology, increases the complexity of model training. These
features contribute to the high difficulty of the task, necessitating an understanding of deep
legal terms and complex logical relations, while also dealing with the challenge of lengthy
texts. The legal case translation dataset contains pairs of original texts and translations,
involves multiple languages, and requires the model to handle multilingualism, as shown
in Figure 3b. The quality of translation depends on the accuracy of the text and the correct
expression of the context, demanding high standards for the translation model. Cultural
and expressive differences between languages must be considered during translation to
ensure the naturalness and accuracy of the translations. Beyond accuracy, the fluency of
the translation is also a crucial criterion for assessing translation quality. The characteristics
of these tasks make them moderately to highly challenging. The diversity of the texts
and the complexity of the languages make the translation task challenging, especially in
maintaining the original meaning and fluency. Financial data analysis not only contains
numerical market data such as prices and trading volumes but may also include textual
information like news headlines, as shown in Figure 3c. Financial data analysis is highly
dynamic, updated in real-time, and requires high processing speed and timeliness. The
factors influencing the market are complex and variable, making market trend predictions
highly uncertain and challenging. Market data are often affected by unpredictable factors,
featuring noise and outliers. The task is highly challenging, requiring the processing of
large volumes of dynamically updated data, with a need for high prediction accuracy.
Complex data preprocessing methods such as noise filtering and anomaly detection, as
well as efficient real-time data processing technologies are necessary.

In practical tasks, processing legal texts not only requires language processing technol-
ogy but also the introduction of legal expertise. The difficulty lies in understanding and
applying complex legal terms and structures. Legal texts require advanced text analysis
techniques, such as case fact correlation analysis and result reasoning, which may involve
complex natural language processing technologies and the construction of knowledge
graphs. Legal case translation needs to focus on the accuracy of language conversion and
cultural adaptability. The challenge lies in how to accurately express the intent and emotion
of the source language. Legal case translation emphasizes the application of statistical
machine translation or neural machine translation technologies, requiring a large amount
of bilingual corpora to train models, as well as excellent model architecture to ensure the
naturalness and fluency of the translations. The difficulty in processing financial data lies in
the fast dynamics of the data and the high demands for real-time processing and prediction
accuracy, requiring fast-response data processing and high-accuracy prediction models. To



Systems 2024, 12, 171 8 of 30

acquire textual data from these fields, we designed and implemented a multi-stage web
crawler program. Initially, by analyzing the structure and content of the target websites,
we determined specific paths and strategies for data extraction, as shown in Table 1.

Legal Case Judgment 

Ø “Case ID”:  “2024001”,
Ø “Case Type”:  “Commercial Litigation”,
Ø “Textual Content”: “The defendant company 

suffered significant financial losses as a result of the 
defendant's failure to fulfill the terms of the contract. 
The plaintiff sought damages and requested 
termination of the contract. ”,

Ø “Facts of The Case”: “The plaintiff company and 
the defendant company signed a sales contract 
stipulating that the defendant would supply raw 
materials. The defendant delayed delivery, resulting 
in a loss of sales for the plaintiff. ”,

Ø “Judgment Result”: “Support the plaintiff's request 
and order the defendant company to compensate the 
plaintiff for economic losses and bear legal costs. ”

a

Legal Case Translation 

Ø “Document ID”: “T2024002”,
Ø “Original”: “Innovative solutions 

are required to tackle the growing 
energy needs of the urban 
landscape.”,

Ø “Translation”: “Innovative 
solutions are a necessity to address 
the growing energy needs of urban 
landscapes. ”

b

Financial Data Analysis

Ø “Date”: “2024-04-26”,
Ø “Ticker Symbol”: “600519”,
Ø “Open”: 1498.00,
Ø “Close”: 1506.00,
Ø “High”: 1510.00,
Ø “Low”: 1495.00,
Ø “Volume”: 500000,
Ø “News Headline”: “Moutai 

Group plans to expand 
international market share”,

Ø “News Impact”: “Positive”

c
Figure 3. Samples of datasets collected in this study. (a) is Legal Case Judgment; (b) is Legal Case
Translation; (c) is Financial Data Analysis.

Table 1. Dataset information.

Dataset Quantity Collection
Method

Source Time Period

Legal Case Judgment
—English

3987 Web Crawling,
Open Source
Download

US Courts Website,
UK Courts and
Tribunals Website

2018.5–2023.5

Legal Case Judgment
—Chinese

3712 Web Crawling,
Open Source
Download

China
Judgments Online

2010.7–2023.7

Legal Case Translation
—English

15,980 Open Source
Download

European
Parliament Proceedings,
OpenSubtitles,
Tatoeba

2020.8–2023.8

Legal Case Translation
—Chinese

21,746 Web Crawling Tatoeba 2020.9–2023.9

Financial Analysis
—English

142,764 Web Crawling Yahoo Finance 2003.11–2023.1

Financial Analysis
—Chinese

187,156 Web Crawling Flush Finance 2003.12–2023.1

For example, for legal case judgment texts, we primarily targeted public legal databases,
which usually provide a wealth of case judgment documentation. We wrote specific crawler
scripts to automatically extract case texts and related information from these databases.
During the implementation of the crawler program, we adopted appropriate strategies
to avoid unnecessary burdens on the target websites, such as setting reasonable request
intervals and using proxy servers. Simultaneously, to enhance the efficiency and coverage
of the crawler, we employed dynamic crawling techniques to handle content generated by
JavaScript and distributed crawler technologies to accelerate the data collection process.
After the dataset collection was completed, the next step was accurate data annotation.
Given the diversity of our research fields and the complexity of the tasks, the data annota-
tion process involved meticulous manual review and classification. To ensure the quality
of the annotations, we first established a detailed annotation guide, which specified the
annotation standards and procedures for various data types. For example, during the anno-
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tation process of legal case judgment texts, annotators needed to classify texts based on the
nature of the cases and judgment outcomes; in the annotation of the legal case translation
dataset, the quality and accuracy of the original and translated texts had to be assessed.
To ensure consistency and accuracy in annotation, we adopted a dual-annotation strategy,
where each document was independently annotated by at least two annotators, followed
by verification and arbitration by a third senior annotator. During the annotation process,
annotators regularly conducted cross-checks and discussions to resolve complex issues that
arose during annotation and to standardize the annotation standards. Additionally, we
utilized some automation tools to assist in the annotation process. For example, natural
language processing technologies were used to pre-analyze text content, and automatically
identify and mark key information to alleviate the burden of manual annotation. However,
considering the potential errors of automation tools, all automatically annotated results
were manually reviewed and corrected to ensure the accuracy of data annotation. To
further ensure the quality of data annotation, we established a comprehensive quality
control mechanism. This included regular training for annotators to familiarize them
with the annotation guidelines and standards, enhancing the accuracy and consistency of
annotations; regular inspections of annotated data to assess the quality of annotations and
adjust the annotation guidelines and procedures based on inspection results; establishing a
feedback mechanism to encourage annotators to raise questions and suggestions during
the annotation process, continuously optimizing the annotation workflow.

3.2. Dataset Preprocessing
3.2.1. Standard Preprocessing Methods

In the processing of text big data and the construction of knowledge graphs, text
preprocessing is a critical step, as shown in Figure 4. The quality of preprocessing directly
impacts the effectiveness of subsequent tasks, such as information extraction, knowledge
integration, entity disambiguation, and co-reference resolution. Text preprocessing refers
to a series of steps that transform raw text data into a format usable for machine learning
models.

Figure 4. Text Data Preprocessing Workflow. This process starts with raw data, which first undergoes
segmentation, followed by data cleaning, then data normalization, and finally feature extraction for
model construction. This process emphasizes the importance of thorough preprocessing steps before
model building to ensure the quality and applicability of the input data.

In NLP, raw text often contains noise and redundant information, potentially affecting
the learning efficiency and performance of models. The task of preprocessing is to clean and
format data to enhance the accuracy and efficiency of subsequent tasks. Text preprocessing
typically involves several core steps: Segmentation, Cleaning, and Normalization, as well
as Stemming and Lemmatization. Segmentation is the process of dividing text into words
or symbols. For English texts, segmentation is relatively straightforward, usually delimited
by spaces and punctuation. For languages without clear word boundaries, such as Chinese,
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segmentation is more complex and relies on specific segmentation algorithms to identify
word boundaries. Segmentation can be represented by the following formula [61]:

W = Segment(T) (14)

where T represents the original text, W represents the segmentation result, and Segment(·)
is the segmentation function. Cleaning involves removing noise and unnecessary informa-
tion from the text, such as HTML tags, special characters, and incorrect formatting. The
cleaned text is more standardized and conducive to model processing [62].

T′ = Clean(T) (15)

Here, T′ is the cleaned text, and Clean(·) is the cleaning function. Normalization is
the process of converting words in the text to a standard form, for example, converting all
characters to lowercase or converting numbers to words [63].

T′′ = Normalize(T′) (16)

T′′ is the normalized text, and Normalize(·) is the normalization function. Stemming
and Lemmatization aim to reduce a word to its stem or root form to decrease redundancy
caused by morphological variation. Stemming usually relies on simple heuristic rules,
while lemmatization requires a complete set of morphological variation rules [64].

W ′ = Stem/Lemmatize(W) (17)

W′ represents the set of words after stemming or lemmatization, and Stem/Lemmatize(·)
is the corresponding processing function.

TF-IDF (Term Frequency-Inverse Document Frequency) [65] and WordVec [66] are two
widely used feature extraction methods in the field of text processing, each with its unique
advantages and applications. TF-IDF assesses the importance of a word by multiplying its
term frequency (TF) with its inverse document frequency (IDF) [67], thereby reducing the
influence of common words in documents and emphasizing the significance of rare words.
Term frequency TF is the number of times a word appears in a document divided by the total
number of words in that document, while inverse document frequency IDF is the logarithm
of the total number of documents divided by the number of documents containing the
word. This method helps identify keywords suitable for filtering information from large
volumes of text. WordVec transforms words into vector forms through training, capturing
contextual relationships between words [68]. It is primarily implemented through two
models: the Skip-gram model predicts the context, and the CBOW model predicts the
current word from the context. These vectors can express the semantic content of words,
particularly effective for understanding deeper textual semantics.

Applying TF-IDF and WordVec to the construction of knowledge graphs can signif-
icantly enhance the information retrieval capabilities and semantic parsing efficiency of
knowledge graphs [69,70]. Using TF-IDF effectively identifies keywords or phrases that
often carry crucial information linking different entities and attributes [71]. For exam-
ple, when building a knowledge graph of legal documents, TF-IDF can help extract key
legal terms and related definitions, which are fundamental to constructing entities and
relationships. The application of WordVec further deepens this process; by analyzing the
similarities between word vectors, we can explore and identify words with similar seman-
tics, which is particularly important for building semantic links in knowledge graphs. For
instance, through WordVec, we can recognize the semantic similarities between “contract”
and “agreement” in the legal field and then connect these two entities in the knowledge
graph through the corresponding semantic relationships. Additionally, the combined use
of these two techniques can achieve more accurate and dynamic information updates and
expansions in knowledge graphs, making the knowledge graphs not just static repositories
of information, but dynamic systems capable of evolving and adapting to new knowledge.
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Through such methods, we can not only improve the quality of information retrieval but
also enhance the predictive and decision-making capabilities of the model on multiple
levels, providing robust support for handling large-scale text data in complex systems such
as legal, financial, and medical fields.

3.2.2. Building Knowledge Graphs

Building knowledge graphs is a process that transforms scattered data information
into interconnected, structured knowledge, as shown in Figure 5. It involves multiple steps,
including data acquisition, information extraction, knowledge integration and reasoning, as
well as the final graph generation and quality assessment. The construction of knowledge
graphs begins with the acquisition of information from structured, semi-structured, and
unstructured data. Structured data typically refer to tabular data in databases, semi-
structured data can be XML or JSON format data, and unstructured data are free text, such
as news articles and social media posts.

Figure 5. Flowchart of the knowledge graph construction/update process. The process begins with
the acquisition of structured, semi-structured, and unstructured data, followed by the information
extraction stage, which includes attribute extraction, relation extraction, and entity extraction. It
proceeds to the knowledge fusion stage, involving the integration and disambiguation of third-
party knowledge bases and coreference resolution. Subsequently, knowledge inference and quality
evaluation are performed, culminating in ontology extraction and the construction or updating of the
knowledge graph.

These data, after preprocessing steps like Segmentation, Cleaning, and Normaliza-
tion, are transformed into a form that can be efficiently processed by computer programs.
Subsequently, the information extraction step involves identifying and extracting entities,
attributes, and relations from the preprocessed data, which is central to building knowledge
graphs. Entity extraction identifies named entities in the text, such as names of people,
places, and organizations; relation extraction determines semantic connections between en-
tities; attribute extraction focuses on descriptive information about entities. Mathematically,
the extraction of entities and relations can be represented as follows [72]:

Entities, Relations = Extraction(Standardized Tokens) (18)
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Knowledge fusion merges information extracted from various sources, resolves con-
flicts between them, and unifies different representations of the same entity. Fusion can be
represented by the following formula [73]:

Unified Knowledge = Knowledge Fusion(Extracted Information) (19)

During fusion, co-reference resolution and entity disambiguation are also involved,
addressing referential issues and entity ambiguities in the text. Knowledge reasoning is
the process of deriving new knowledge based on existing knowledge. This step often
includes inferring new relations or attributes from existing facts to enrich the content of
the knowledge graph. Quality assessment involves checking and evaluating the accu-
racy, completeness, and consistency of the knowledge graph to ensure the constructed
knowledge graph reliably supports various applications. Ultimately, the output of these
steps is a structured knowledge graph, containing rich entities, attributes, relations, and
inferred knowledge, usable for numerous intelligent applications, such as search engines,
recommendation systems, and automated question-answering.

3.3. Proposed Method

In this study, a novel state space-based Transformer model is introduced, aimed at
enhancing performance in complex system prediction tasks, particularly for predictions
based on text big data, as shown in Figure 6.
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Figure 6. The overall workflow diagram of the state space-based Transformer model proposed in this
paper. The process begins with data preprocessing, including segmentation, cleaning, normalization,
and feature extraction. The model then proceeds to the knowledge graph construction phase,
involving knowledge fusion and knowledge processing. Finally, the model is applied and evaluated
across three main tasks: legal case judgment, legal case translation, and financial data analysis,
demonstrating the comprehensive performance and application potential of the model.

This method, by integrating the advantages of state space models and the Transformer
model, captures the dynamic changes in time series data and processes and understands
large-scale text data. The proposed method framework consists of three core components:
the state space transition equation, the state space-based Transformer model, and the state
space loss function, as shown in Figure 7.

This framework initially describes and captures the dynamic changes in complex
systems in time series data through the state space model; then utilizes the powerful text
processing capability of the Transformer model to understand and analyze text big data;
finally, the designed state space loss function is employed to optimize the model, achieving
higher accuracy and stability in predicting complex systems.
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Figure 7. Overview of the method workflow in This Paper. The diagram shows the complete process
from the input text, through flattening and linear projection, to the state space encoder, including
forward and backward convolutions and the state space model (SSM), followed by the activation
function, resulting in normalized embedded patches, and ultimately the multi-layer perceptron (MLP)
and prediction.

3.3.1. State Space-Based Transformer Model

A novel approach that combines state space models with the Transformer is proposed,
aiming to enhance the accuracy of complex system prediction tasks. The detailed design of
our model is illustrated in Figure 8.
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Figure 8. The network structure of the state space transformer (SST). The diagram details the
interaction between input token embedding, the state space model, learned context identifiers, cross-
attention, and linear KVQ, as well as the final block output token embeddings. It explains how the
state space transformer processes and updates context states in each block and how they contribute
to the output of the entire network.

The model takes text data as input, first transforming the text into dense vector
representations through an embedding layer, known as Input Token Embeddings. These
embeddings aim to capture the semantic information of each word or character in the text.
The core of the model is a Transformer structure that integrates a State Space Model, not only
processing sequential data to capture long-distance dependencies but also understanding
and predicting the dynamic changes in complex systems through the state space model.
Within each Block, “Learned Context IDs” are introduced to identify and learn different
context states, allowing the model to distinguish and process information from various
contexts. Each Block contains linear layers (for generating Key, Value, and Query, referred
to as KVQ) and a cross-attention mechanism, enabling effective integration of information
based on current input and previously learned context states. After processing through a
series of Blocks, the model outputs Token Embeddings, which are subsequently used for
predicting future states of complex systems. The entire process not only involves the deep
processing of text data but also integrates state space theory to enhance the understanding
of system dynamics. Key mathematical representations in the model include:

1. Token Embedding Transformation [74]:

E = Embed(X) (20)



Systems 2024, 12, 171 14 of 30

where X is the input text data, and E is the token embeddings.
2. Cross-attention Mechanism [75]:

A = Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (21)

where Q, K, V represent the query, key, and value vectors, respectively, dk is the
dimension of the key vectors, and A is the output of the attention mechanism.

3. State Space Model Integration [76]:

St+1 = F · St + G · A + H (22)

where St and St+1 represent the current and next time step system states, respectively,
and F, G, and H are state-space model parameters, with A being the output of the
cross-attention.

We propose a model based on an extension of the standard Transformer architecture,
incorporating the Mamba state-space model to enhance its ability to model dynamic
changes in sequence data. Specifically, our model includes the following main components:

Blocks: Our model consists of multiple blocks, each a variant of a Transformer layer
that integrates features of the state-space model. Each block contains a self-attention mech-
anism and a feed-forward neural network and also embeds a state-space representation
layer to simulate the temporal evolution characteristics of the input data. Inter-block
Connections: Blocks are connected through residual connections and layer normalization.
Residual connections allow information to flow directly from one block to another, while
layer normalization helps maintain stability during training. Specific Parameters: Number
of Blocks: The standard version of our model includes 12 blocks, each corresponding to a
layer in a Transformer. Size of Each Block: Each block has 12 heads in the self-attention
mechanism, with each head having a dimension of 64, giving a total dimension of 768 for
each self-attention layer. The intermediate dimension of the feed-forward networks is 3072.
State Space Representation Layer: Each block’s state space representation layer is designed
to track and update state variables that change over time, typically set to match the input
dimension, i.e., 768. Total Number of Parameters: Our model has a total of approximately
110 million parameters, including those for the self-attention layers, feed-forward networks,
state space representation layers, and other components within the model.

3.3.2. State Space Transition Equation

In this study, the state space transition equation is introduced to enhance the prediction
capability for complex systems. The state space transition equation, a core concept in
dynamic system theory, describes the evolution of system states over time, as shown in
Figure 9.
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Figure 9. State transition process flowchart. The diagram displays the transition process from input
text to state variables, including text embedding, linear transformations, and iterative updates of
state variables. The mathematical operations depicted in the diagram represent the evolution of state
variables over time, revealing the gradual abstraction from raw inputs to state representations that
capture the implicit characteristics of the data.
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The design of the state transition equation in this research is based on the following
mathematical representation [77–79]:

Â = exp(∆A), ∆B (23)

ht = Âht−1 + ∆Bxt (24)

yt = Cht + Dxt (25)

where ht represents the hidden state at time t, xt represents the input at time t, and yt is
the output of the model. Matrices Â and ∆B are updates for the state transition matrix and
the input control matrix, respectively, while C and D represent the output matrix and the
direct transfer matrix. The learning and updating of these matrices correspond to linear
layers in the model. The linear assumption of the state space model allows for the use of an
exponential map to update the state transition matrix, capturing the continuous changes in
system dynamics [80]:

Â = exp(∆A) (26)

This exponential map ensures the stability of Â, maintaining stable system dynamics
even when ∆A changes. The update of the input control matrix ∆B allows the model to
adjust state changes based on the input xt, while C and D transform the hidden state into
the final output. The rationale for adopting the state space transition equation design lies
in its capability to simulate and predict the dynamic changes in actual complex systems.
Through the state space model, a more accurate capture of the system state evolution
over time is possible, crucial for complex system prediction based on time series data. The
Transformer integrated with the state space model can be enhanced and optimized through:

1. Enhanced temporal dynamic modeling: The state space transition equation enables
the model to capture the dynamic changes in time series data more finely, improving
prediction accuracy.

2. Flexible parameter updates: The parameter update mechanism in the state space
model allows the model to flexibly adapt to the characteristics of different complex
systems, enabling targeted optimization.

3. Enhanced data processing capability: The introduction of the state space model
enables the model to handle data containing complex dynamics, such as financial data
analysis or natural language text, often embodying implicit time series characteristics.
The model can process not only static semantic information but also capture the
evolution of data over time, critical for dynamic prediction.

4. Optimized state change modeling: The state space transition equation provides a
mathematically rigorous way to describe continuous state changes, enabling the
model to predict future states more precisely in time series prediction tasks compared
to conventional Transformer structures.

5. Customized output equation: By combining the state space model’s output equation
yt = Cht + Dxt with the Transformer’s output layer, the model’s output incorporates
information determined by the current state and also considers the impact of direct
inputs, offering a more comprehensive prediction.

These enhancements not only improve model accuracy but also strengthen the model’s
capability to predict complex system behavior and understand the deep semantics of text
data. Furthermore, by integrating the concept of state space, the model is endowed with
the ability to process and predict dynamic changes in systems, an ability not possessed by
traditional Transformer models. The state space model provides a mathematical frame-
work for describing and predicting the evolution of system states over time, essential for
understanding the dynamic characteristics of complex systems such as financial markets
and climate changes. Combined with the state space model, our Transformer becomes
not just a powerful tool for processing text sequences but also a model capable of deeply
analyzing and predicting the behavior of complex systems.
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3.3.3. State Space Loss Function

In the research of complex system prediction, the design of the loss function is crucial
for the learning and predictive capabilities of the model. The state space loss function
proposed in this article is designed for a novel prediction model that integrates state
space models with the Transformer architecture. It significantly differs from traditional
Transformer model loss functions, mainly by considering both the dynamic characteristics
of time series and the accuracy of predictions. The state space loss function not only
measures the discrepancy between predicted outputs and true values but also considers
the smoothness and coherence of model state transitions. Its mathematical expression is as
follows [81]:

L(θ) = λ1Lpredict(θ) + λ2Lsmooth(θ) (27)

where Lpredict(θ) is the traditional prediction loss component, typically measured using
Mean Squared Error (MSE) to quantify the difference between model outputs and true
values [82]:

Lpredict(θ) =
1
N

N

∑
t=1

(yt − ŷt)
2 (28)

N is the total number of data points, yt is the true value at time t, and ŷt is the model’s
predicted output.

Lsmooth(θ) is the smoothness loss component unique to state space models, used to
ensure the continuity and reasonableness of state transitions. A typical choice is the
Frobenius norm of the changes in the state transition matrix as the smoothness term [83]:

Lsmooth(θ) = ||∆A||2F + ||∆B||2F (29)

where ∆A and ∆B are the changes in the state transition matrix and the control input matrix,
respectively, and || · ||F represents the Frobenius norm.

λ1 and λ2 are weighting parameters used to balance the contributions of prediction loss
and smoothness loss to the total loss. The choice of these parameters depends on the specific
task and data characteristics, needing determination through cross-validation or other
model selection techniques. The design of the state space loss function is motivated by the
importance of not only prediction accuracy but also the smooth evolution of system states
over time in complex system prediction tasks. The state space loss function encourages
the model to learn smooth state transitions through the Lsmooth(θ) term, capturing the
system’s dynamic characteristics. Additionally, relying solely on prediction loss during
model training often leads to overfitting. Introducing smoothness loss, the state space loss
function enhances the model’s generalization ability, making it more robust on unseen
data. Lastly, in practical applications, a conflict may exist between prediction accuracy and
the smoothness of state transitions. By adjusting the values of λ1 and λ2, the state space
loss function allows for finding an optimal balance between the two according to practical
needs. Therefore, the state space loss function provides the following advantages in the
complex system prediction tasks of this study:

1. Consistency with dynamic prediction and loss function: The state space loss function
aligns closely with the goal of dynamic system prediction, focusing simultaneously on
the accuracy of predictions and the smoothness of state changes during the prediction
process. This is crucial for dynamic systems where state changes are often smooth
over time, and any abrupt changes may indicate system anomalies or data issues. The
Lsmooth(θ) part effectively reduces the likelihood of such abrupt changes, making the
model’s predictions more credible.

2. Prevention of overfitting: Traditional Transformer models might perform poorly on
future data due to overfitting historical data. The smoothness loss component in
the state space loss function helps improve model performance on unseen data by
forcing the model to learn more generalized state change rules rather than merely
memorizing patterns in the training dataset.
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3. Flexibility in parameter adjustment: By adjusting the values of λ1 and λ2, researchers
can flexibly control the weight of prediction loss versus smoothness loss in the total
loss function. For different complex system prediction tasks, these parameters can be
optimized based on the specific characteristics of the system and task requirements to
achieve the best prediction performance.

4. Enhanced interpretability: The state space loss function not only optimizes the model’s
predictive performance but also enhances its interpretability. Since the model needs
to consider the coherence of state transitions, the trends learned by the model are
more aligned with the physical or logical laws of the real world, allowing researchers
to explain the model’s predictive behavior by analyzing the parameters of the state
space model.

5. Adaptability to complex tasks: Complex systems, like financial markets or weather
systems, have multifactorial and nonlinear state changes. Traditional loss functions
struggle to capture this complexity. The state space loss function, by simulating
changes in the state transition matrix and control matrix, better adapts to this com-
plexity, thereby enhancing model performance in such complex tasks.

3.4. Experimental Configuration
3.4.1. Hardware and Software Configuration

In the research of complex system prediction models driven by text big data, the con-
figuration of hardware and software is a vital foundation to ensure the smooth progress of
experiments and the reliability of results. The hardware platform utilized in the experiment
comprises high-performance computer systems equipped with advanced NVIDIA GPUs
and high-speed CPUs to ensure the efficiency of model training and testing. Specifically,
the NVIDIA Tesla V100 GPU was employed, featuring 5120 CUDA cores and 16 GB of
HBM2 memory, providing exceptional parallel processing capabilities and fast data transfer
rates, crucial for handling large-scale text datasets and complex deep learning models.
Additionally, servers equipped with Intel Xeon Gold 6154 CPUs, boasting up to 3.00 GHz
processing speed and 22 cores, were deployed to effectively support parallel execution of
model training and data processing tasks.

Regarding the software environment, experiments were conducted using the Python
programming language. Python is widely utilized in the fields of scientific computing and
machine learning due to its rich libraries and frameworks, excellent readability, and exten-
sive community support. PyTorch was selected as the primary deep learning framework to
support complex model training and data processing requirements. PyTorch offers power-
ful automatic differentiation capabilities, efficient tensor operations, and convenient tools
for model definition and optimization, greatly facilitating the experimental process. During
this study, multiple library functions and tools were utilized to support data processing,
model construction, and experimental analysis. Here, are some key libraries and tools:

1. NumPy: A fundamental scientific computing library in Python, NumPy provides
powerful multi-dimensional array objects and a wide range of mathematical functions
for efficiently handling large volumes of data. In this study, NumPy was extensively
used for data preprocessing, feature extraction, and numerical computation tasks.

2. Pandas: A data analysis and manipulation library, Pandas offers user-friendly data
structures and data analysis tools. By using Pandas, various formats of datasets,
including CSV and Excel, could be conveniently processed and analyzed.

3. Matplotlib and Seaborn: Both libraries were utilized for data visualization. Matplotlib,
a plotting library, provides extensive drawing functions supporting various formats
and high-quality graphic output. Seaborn, built on Matplotlib, offers a higher-level
interface focused on drawing statistical graphics, making data visualization more
intuitive and attractive.

4. Scikit-learn: A Python library for machine learning, Scikit-learn offers simple and
efficient tools for data mining and data analysis. In this study, Scikit-learn was used
for model evaluation, cross-validation, and various machine-learning tasks.
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5. Mamba: A computational framework tailored for state space models, Mamba sup-
ports the rapid development and accurate estimation of complex models. Through
Mamba, effective parameter estimation and state inference for state space models
were achieved, crucial for capturing dynamic changes in complex systems.

With such hardware and software configurations, combined with cutting-edge libraries
and tools, this study was conducted in an efficient and reliable experimental environment.
These configurations not only provided strong support for processing and analyzing large-
scale text datasets but also laid a solid foundation for the development and evaluation of
complex system prediction models driven by text big data.

3.4.2. Training Strategy

When conducting research on complex system prediction models based on text big
data, formulating a reasonable training strategy and parameter setting is crucial for the
model’s training effectiveness and generalization capability. This study adopted a com-
prehensive training strategy, including the choice and parameter setting of optimizers,
the method of cross-validation, and the determination of batch size. These strategies and
settings were essential to ensure the effectiveness of model training and the reliability of
the results.

The choice of optimizer plays a significant role in the convergence speed and final
performance of deep learning models during training. The Adam optimizer [84] was
selected for its combination of advantages from momentum and RMSprop, offering good
convergence under various conditions, especially suitable for handling large-scale datasets
and complex model structures. The core of the Adam optimizer is its adaptive adjustment of
learning rates for each parameter, dynamically tuning the learning step size during training,
thus enhancing efficiency and stability. The learning rate was set to 1 × 10−4, a relatively
small value aimed at avoiding crossing the optimum solution too quickly, ensuring stable
convergence to good performance. The learning rate choice was based on preliminary
experiments and literature recommendations to adapt to the model’s learning needs with
complex data. Furthermore, the β1 and β2 parameters in the Adam optimizer were set to
0.9 and 0.999, respectively. These parameters control the exponential decay rates for the
gradients and squared gradients, reflecting the extent of past gradient information utilized,
aiming to balance the retention of historical information and the impact of current gradients.
To comprehensively evaluate the model’s generalization ability and reduce dependence on
specific data splits, five-fold cross-validation was adopted. In k-fold cross-validation, the
dataset is evenly divided into k subsets, each subset is used as the test set in turn, while the
rest serve as the training set, this process repeats k times, each time with a different subset
as the test set. This method ensures each data point has the chance to be part of the test
set, providing a more comprehensive and reliable estimation of model performance. In
practice, five-fold cross-validation means the entire dataset is divided into five parts, not
only increasing the total number of training rounds but also requiring the model to adapt to
different data distributions. This method is particularly important for assessing the model’s
performance on unseen data, helping to reveal potential overfitting issues. Batch size, an
important parameter in deep learning training, affects the learning efficiency, memory
usage, and final performance of the model. In this study, the batch size was uniformly
set to 32. This size was chosen considering the balance between training efficiency and
hardware resource limitations, especially the GPU memory capacity. A moderate batch
size ensures sufficient data volume in each iteration to estimate gradients while avoiding
memory overflow problems caused by too large batch sizes. Additionally, an appropriate
batch size helps improve the stability and generalization ability of model training, as it
somewhat simulates a balance between full-batch training and stochastic gradient descent.

3.4.3. Model Evaluation Metrics

In this study, to comprehensively evaluate the performance of the proposed model
in complex system prediction tasks, we selected three core metrics: precision, recall, and
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accuracy. Precision measures the proportion of correctly predicted positive samples among
those predicted as positive, reflecting the model’s accuracy in predicting positive classes;
recall indicates the proportion of correctly predicted positive samples out of all actual
positive samples, measuring the model’s ability to capture positive samples; accuracy is the
proportion of correctly predicted samples out of the total number of samples, providing an
intuitive display of the model’s overall performance. These three indicators reflect the per-
formance of the model from different perspectives, helping to fully understand the model’s
effectiveness in practical applications and providing a basis for future model optimization.

3.5. Baseline

For a comprehensive evaluation of the performance of the proposed state space-based
Transformer model in complex system prediction tasks, this paper has chosen Transformer [85],
BERT [86], Whole Word Masking BERT (wwm-BERT) [87], and Finsformer [88] as baseline
models for comparative analysis. These models have demonstrated their strong perfor-
mance in the field of NLP, especially in text understanding and generation tasks.

BERT, introduced by Google in 2018 [89], is based on the encoder architecture of
Transformer and utilizes a bidirectional training method to comprehend the context of
language. A key innovation of BERT is the use of a Masked Language Model (MLM) for
pre-training deep bidirectional representations, which can then be applied to downstream
tasks without specific architectural modifications for the task at hand.

The MLM task of BERT can be represented as [90]:

LMLM = − ∑
i∈M

log p(wi|w−i) (30)

where M is the set of masked words, and w−i denotes all words except for the ith word.
By predicting masked words, BERT learns rich linguistic features. Whole Word Masking
BERT is a variant of BERT that masks entire words during the pre-training phase, instead
of individual letters or characters [91]. This method better handles semantic information
in language, especially for languages with complex structures like Chinese. The main
improvement lies in the masking strategy. In wwm-BERT, instead of randomly masking
individual characters or tokens, entire words are masked to better simulate real-world
language usage and promote the model to learn more accurate word-level representations.
This improvement is particularly effective for languages with a large number of compound
words, enhancing the model’s performance in understanding and generating these lan-
guages. Finsformer is a Transformer-based model variant specifically designed for the
financial domain. It introduces domain-specific knowledge and data processing mecha-
nisms to the foundation of Transformer to better understand and predict financial text data.
The core idea of Finsformer is to incorporate the relationships between financial entities
into the self-attention mechanism as additional information, enabling the model to capture
specific contexts and interactions between entities in financial texts more effectively [92].
This design results in improved performance for Finsformer on financial prediction tasks
compared to traditional Transformer models.

These baseline models, with their respective core mechanisms and optimization objec-
tives, demonstrate powerful capabilities in processing text data, particularly in capturing
semantic and contextual information. The selection of these models as baselines is due to
their representative status in the NLP field, their excellent performance in their respective
domains, and their methodological complementarity and comparability to our proposed
model. This choice aims to ensure our research is competitive with the current state of the
art and provides a comprehensive and in-depth evaluation basis for the performance of
our model in complex system prediction tasks.
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4. Results and Discussion
4.1. Legal Case Judgment Prediction Results

The objective of this experiment was to verify the effectiveness of the proposed model
in predicting legal case judgment. The legal case judgment prediction task requires the
model to understand and analyze the complex linguistic structure of legal documents,
making accurate predictions based on case facts and legal logic. This task challenges not
only the model’s language understanding capabilities but also its logical reasoning ability.
Experimental results, as shown in Table 2, are presented below.

Table 2. Legal case judgment results.

Model Precision Recall Accuracy

Transformer [85] 0.80 0.77 0.79
BERT [86] 0.83 0.80 0.82
wwm-BERT [87] 0.86 0.83 0.85
Finsformer [88] 0.89 0.86 0.88
Proposed Method 0.93 0.90 0.91

From the experimental results, it is observed that all models demonstrated capabilities
in processing legal texts, yet significant gaps exist in precision, recall, and accuracy. Al-
though the traditional Transformer model has advantages in processing sequential data, its
performance is less optimal than BERT-based models due to the complexity and specificity
of legal texts. The BERT model, with its deep bidirectional context understanding, has
improved significantly in both precision and recall due to a better grasp of semantics within
the text. As an improved version of BERT, wwm-BERT further enhances performance by
adopting a more granular pre-training approach, better understanding the subtle differ-
ences between lexicons, especially in scenarios like the legal domain where differentiation
is crucial. Although Finsformer is optimized for the financial domain and not an exact
match for legal case judgment applications, its capability to capture complex, specialized
texts also showed promising performance. The proposed model achieved the best results
across all metrics, attributing its success to not only combining BERT’s deep contextual un-
derstanding but also enhancing the ability to capture dynamic changes in the text through
the integration of state space models. In scenarios like legal case judgment, where case
narratives, relevant legal provisions, and the judge’s logical reasoning all exhibit temporal
variations as the case progresses, state space models excel. Therefore, compared to tradi-
tional Transformer structures, the proposed model can more finely capture temporal series
changes in text data, such as judges’ remarks on case facts and the application of legal logic,
which are key factors affecting legal judgment outcomes. Additionally, the introduction of
the state space loss function also promotes the model’s ability to capture the logic of case
development, enhancing prediction accuracy. By modeling these complex relationships
more rigorously, the proposed model not only achieves mathematical precision but also
captures and understands the complexity of legal texts more comprehensively in practical
applications. The characteristics of legal cases demand high attention to detail and strict
logical coherence, areas where traditional models fall short. By integrating state space mod-
els, the proposed model can fully consider the development and legal reasoning process
of each case, rather than merely extracting static features from the text. This approach is
crucial for improving the accuracy of legal text analysis.

4.2. Legal Case Translation Results

This section aims to verify the performance of different models in the machine trans-
lation task. Machine translation, a complex natural language processing task, requires
models to not only accurately capture the semantic information of the source language
but also correctly translate this information into the target language expressions. The
challenge lies in effectively handling the structural differences, semantic equivalence, and
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contextual adaptability between the source and target languages. The experimental results
are presented in Table 3.

Table 3. Translation results.

Model Precision Recall Accuracy

Transformer [85] 0.84 0.82 0.83
BERT [86] 0.86 0.84 0.85
wwm-BERT [87] 0.89 0.86 0.88
Finsformer [88] 0.92 0.88 0.90
Proposed Method 0.95 0.91 0.93

It is observed that as the model structure evolves from the basic Transformer to more
advanced BERT, wwm-BERT, and Finsformer, model performance gradually improves.
This trend indicates the increasing requirement for semantic understanding and context-
capturing abilities in machine translation tasks. The original Transformer model relies
on self-attention mechanisms to process sequence data, showcasing a clear advantage in
capturing long-distance dependencies. However, its performance might be limited when
dealing with complex semantic and structural transformations, especially in translations
between multiple languages. In contrast, the BERT model, with its deep bidirectional
context understanding through pre-training, offers enhanced semantic comprehension,
thus performing better in machine translation tasks. wwm-BERT, an improvement on
BERT, refines the handling of vocabulary by employing whole word masking during
pre-training, enhancing the model’s ability to understand nuanced differences between
words, which is particularly important in translation scenarios with significant grammatical
and lexical disparities. Although Finsformer, optimized for the financial domain, was not
initially designed for legal case judgment, its capability to capture complex, domain-specific
texts also demonstrates commendable performance in the translation field. The proposed
model outperforms other models on all metrics, benefiting from its combination of the
dynamic nature of the state space model and the powerful semantic processing ability of
the Transformer. In the machine translation task, understanding and predicting the rules
of conversion between languages require models to grasp not just the static properties of
language, such as semantics and syntax, but also the dynamic aspects, such as context flow
and stylistic changes. By incorporating the state space model, the proposed model enhances
understanding of the dynamics of language changes, crucial for improving translation
accuracy. The state space loss function further optimizes the smoothness of state transitions
and the coherence of predictions during the learning process, making the translation not
merely a simple lexical substitution but closer to the logic and fluency of real language use.

A significant challenge in translation tasks is handling the differences in structure and
expression between languages. For example, Chinese and English have substantial differ-
ences in syntactical structure and expression habits, demanding that translation models
not only perform direct translations but also make appropriate semantic transformations
and adjustments. Mathematically, by incorporating the state space model, the proposed
model can more flexibly model and capture these transformation rules between languages.
By learning the dynamic correspondences between languages, the proposed model is
theoretically better equipped to adapt to these differences, achieving more natural and
accurate translation outputs. Furthermore, the mathematical innovation of the proposed
model, such as the integration of state space theory with deep learning, allows it to capture
the temporal dependencies in sequence data, particularly important when translating
long sentences and complex sentence types. In these cases, the correspondence between
the source and target languages might not be one-to-one but requires capturing multiple
dependencies. Here, the state space model demonstrates its superiority, offering more
information and context to guide the translation.
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4.3. Financial Data Analysis Results

This section is dedicated to testing and verifying the performance of different models
in financial data analysis tasks, particularly in assessing investment risks. Financial data
analysis is a highly complex and dynamic field, involving not just the processing of quan-
titative data but also the understanding and analysis of market news, reports, and other
textual information. Thus, the aim of the experiment design is to evaluate the capability of
various models to handle these complex data, with performance measured by three core
metrics: precision, recall, and accuracy.

As can be observed from Table 4, performance progressively improves from the tra-
ditional Transformer model to the proposed model. Although the original Transformer
model effectively processes sequence data and captures long-distance dependencies, it may
be limited when facing complex, noisy financial data. The BERT model and its variants,
by handling deep contextual information, improve the understanding capability of the
model, crucial for dealing with financial texts that often contain complex economic terms
and implicit market logic. The wwm-BERT model refines the handling of vocabulary by
fine-tuning BERT, enhancing the model’s comprehension of professional terms and specific
concepts within financial texts. Such fine-grained understanding is necessary for accu-
rately predicting market dynamics and investment risks. The Finsformer model, initially
optimized for the financial domain, demonstrates that domain-specific optimization is
highly effective in enhancing model performance. In financial data analysis, this optimiza-
tion allows Finsformer to more precisely capture subtle market movements, leading to
improvements across all metrics. Finally, the method proposed in this article performs the
best among all models. This success is mainly due to the model’s deep integration and
understanding of the unique dynamics of the financial domain. By incorporating the state
space model, the proposed method captures not just the static features within texts but also
understands the dynamic changes in these features over time, which is particularly crucial
in financial data analysis. Moreover, the proposed state-space loss function further opti-
mizes the accuracy of financial time series prediction. It focuses not only on the prediction
accuracy at individual time points but also emphasizes the coherence of the entire time
series and the prediction of dynamic trends, essential for comprehending the complexity
of financial markets. Predicting financial markets requires not just accurate judgments of
the current state but also continuous predictions of future trends, demanding that models
capture not only precise information at single points but also understand the changing
patterns of market dynamics overall.

Table 4. Financial data analysis results.

Model Precision Recall Accuracy

Transformer [85] 0.82 0.80 0.81
BERT [86] 0.85 0.82 0.83
wwm-BERT [87] 0.88 0.85 0.86
Finsformer [88] 0.91 0.87 0.89
Proposed Method 0.94 0.90 0.92

4.4. Discussion on Results

Regarding the experimental results above, as a state-space model library Mamba’s
main advantage lies in handling time-series data with high computational efficiency. In
traditional applications, it is not designed to enhance the performance of models like
Transformers. However, we observed that state-space models have unique advantages
in capturing hidden state changes in dynamic systems, which is particularly crucial in
complex system prediction tasks, especially when the predictions involve nonlinear re-
lationships over time. One of our core contributions in this paper is demonstrating how
state-space models can be combined with Transformers to enhance the latter’s capability in
handling dynamic data. Our experiments confirm that this combination not only improves
computational efficiency but, more importantly, significantly enhances model prediction
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performance. Specifically, the introduction of the state-space model allows the Transformer
to capture temporal dependencies in the data more accurately, often manifesting as context
dependencies or long-term dependencies, which traditional Transformer models struggle
with. For example, in legal case judgment prediction, the development of the case and the
legal argumentation process often involve complex temporal logic; in financial data analy-
sis, predicting market behavior requires understanding and calculating the relationship
between past actions and future trends. Our model has shown significant improvements
in Precision, Recall, and Accuracy in these tasks, proving the effectiveness of combining
state-space models with Transformers.

4.5. Different Loss Function Ablation Results

The experimental design in this section aims to explore the impact of different loss
functions on model performance, especially across three distinct tasks: legal case judgment,
legal case translation, and financial data analysis. By comparing the performances of
Cross-Entropy Loss, Focal Loss, and the State Space Loss Function, the experiment seeks to
validate the effectiveness of the proposed State Space Loss Function in enhancing model
performance. The experimental results are shown in Table 5.

Table 5. Different loss function ablation experiment results.

Model Precision Recall Accuracy

Legal Case Judgment—Cross-Entropy Loss 0.82 0.80 0.81
Legal Case Judgment—Focal Loss 0.87 0.83 0.85
Legal Case Judgment—State Space Loss 0.93 0.90 0.91
Legal Case Translation—Cross-Entropy Loss 0.84 0.81 0.83
Legal Case Translation—Focal Loss 0.88 0.84 0.86
Legal Case Translation—State Space Loss 0.95 0.91 0.93
Financial Data Analysis—Cross-Entropy Loss 0.83 0.81 0.82
Financial Data Analysis—Focal Loss 0.87 0.85 0.86
Financial Data Analysis—State Space Loss 0.94 0.90 0.92

In the legal case judgment task, models utilizing Cross-Entropy Loss achieved a
precision of 0.82, a recall of 0.80, and an accuracy of 0.81; models with Focal Loss showed
improved precision to 0.87, a recall of 0.83, and an accuracy of 0.85; while models applying
the State Space Loss Function reached the highest metrics across all indicators: precision of
0.93, recall of 0.90, and accuracy of 0.91. In the legal case translation task, the Cross-Entropy
Loss models had a precision of 0.84, a recall of 0.81, and an accuracy of 0.83; Focal Loss
models had a precision of 0.88, a recall of 0.84, and an accuracy of 0.86; State Space Loss
models outperformed others with a precision of 0.95, a recall of 0.91, and an accuracy of 0.93.
For the financial data analysis task, Cross-Entropy Loss models exhibited a precision of
0.83, a recall of 0.81, and an accuracy of 0.82; Focal Loss models showed a precision of 0.87,
a recall of 0.85, and an accuracy of 0.86; models using the State Space Loss achieved the best
performance with precision, recall, and accuracy metrics at 0.94, 0.90, and 0.92, respectively.

The experimental findings reveal that, across legal case judgment, legal case transla-
tion, and financial data analysis tasks, models employing the State Space Loss Function
significantly outperform those using Cross-Entropy Loss and Focal Loss in terms of preci-
sion, recall, and accuracy. This trend indicates that, compared to traditional loss functions,
the State Space Loss Function better drives models to capture and understand key infor-
mation in complex tasks, thereby enhancing predictive performance. Cross-Entropy Loss,
while widely used, focuses mainly on increasing the match between model outputs and
actual labels but may not adequately address imbalanced samples or complex dependen-
cies within tasks. Focal Loss, by giving more attention to samples that are hard to predict
correctly, somewhat mitigates this issue, especially in tasks with severe sample imbalance.
The design of the State Space Loss Function, considering the dynamic nature of tasks and
prediction accuracy, not only emphasizes the consistency between model outputs and true
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labels but also introduces constraints on internal state changes through the mathematical
properties of state space models. This approach encourages models to pay more attention
to long-term, inherent dependencies during data learning rather than merely optimizing
momentary output matching. In tasks such as legal case judgment, legal case translation,
and financial data analysis, which often involve rich contextual information, long-term
dependencies, and complex logical relationships, this design is particularly important.
The State Space Loss Function prompts models to focus more on capturing these complex
relationships, thereby improving prediction accuracy and robustness. In the task of legal
case judgment, decisions often depend on a deep understanding of legal texts and an
accurate grasp of case facts, requiring models to comprehend not just the literal meaning of
texts but also the underlying logic and legal principles. By considering the coherence of
model states, the State Space Loss Function aids models in better understanding and simu-
lating the legal reasoning process, thus achieving better performance in complex legal text
analysis tasks. For the legal case translation task, differences in structure and expression
habits between languages pose a challenge in directly translating texts. The State Space
Loss Function, by introducing constraints on the smoothness of state changes, encourages
models to consider differences between languages and semantic continuity more finely
during language translation, ensuring the naturalness and accuracy of translations. In the
financial data analysis task, the volatility and uncertainty of market data require models
to accurately predict future market trends. Traditional loss functions might struggle to
capture subtle changes and long-term trends in market data. The State Space Loss Function,
by constraining the model’s internal state changes, helps models better understand market
dynamics, improving model performance in financial data analysis tasks.

Through ablation experiments with different loss functions, this study demonstrates
the significant advantage of the State Space Loss Function in enhancing model performance.
This provides new insights and methods for the future application of deep learning models
in complex tasks. While continuing to explore and optimize loss functions, this also
opens possibilities for deep learning models to address more complex and dynamic real-
world problems.

4.6. Different Transformer Attention Ablation Results

The experimental design in this section aims to assess the performance differences
among various Transformer architecture variants on specific tasks. The experiments span
legal case judgment, legal case translation, and financial data analysis, involving variants
such as the standard Transformer, sparse attention Transformer, and state space-based
Transformer. By comparing the performance of these models in terms of precision, recall,
and accuracy, the experiment seeks to reveal the specific impact of different attention
mechanisms on model performance, and how the state space theory can optimize the
Transformer model to adapt to complex data analysis tasks.

Table 6. Different transformer backbone ablation experiment results.

Model Precision Recall Accuracy

Legal Case Judgment—Multi-head Attention 0.78 0.73 0.76
Legal Case Judgment—Sparse Attention 0.85 0.81 0.83
Legal Case Judgment—State Space-based Transformer 0.93 0.90 0.91
Legal Case Translation—Multi-head Attention 0.77 0.75 0.76
Legal Case Translation—Sparse Attention 0.86 0.83 0.85
Legal Case Translation—State Space-based Transformer 0.95 0.91 0.93
Financial Data Analysis—Multi-head Attention 0.78 0.72 0.74
Financial Data Analysis—Sparse Attention 0.85 0.80 0.82
Financial Data Analysis—State Space-based Transformer 0.94 0.90 0.92

Results in Table 6 demonstrate that in tasks such as legal case judgment, legal case
translation, and financial data analysis, the state space-based Transformer model signifi-
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cantly outperforms both the standard Transformer and sparse attention Transformer models.
This trend reveals the effectiveness of state space theory in enhancing the Transformer
model’s capability to process complex data analysis tasks. Despite the significant advantage
of the standard Transformer model in handling sequential data, its performance is limited
in complex tasks requiring deep understanding and long-term dependency modeling. This
limitation stems from the model’s focus on capturing local dependencies within sequences,
with insufficient capability to grasp long-distance dependencies and complex logical struc-
tures. The sparse attention Transformer model, by introducing a sparsity mechanism to
optimize attention computation, aims to improve efficiency and accuracy in processing
long sequences. The sparse attention mechanism, by limiting the focus of attention, reduces
interference from irrelevant information, thereby improving the model’s ability to capture
long-distance dependencies to some extent. However, this method has limited effects
on enhancing model understanding of complex logical structures, especially in scenarios
requiring nuanced comprehension of task backgrounds and dynamic data changes. The
state space-based Transformer model further extends the capabilities of the Transformer
by incorporating state space theory to capture dynamic changes and intrinsic structures in
sequence data. This model is particularly suited to tasks where data inherently possess time-
series characteristics or require capturing time dynamics, such as financial data analysis. In
financial markets, asset price movements are influenced by numerous factors, including
macroeconomic indicators, market sentiment, and significant news events, among others,
with complex interactions between these factors. The state space-based Transformer model,
by simulating these dynamic changes, can more accurately predict future market trends,
achieving higher precision, recall, and accuracy in financial data analysis tasks.

From a mathematical perspective, the advantage of the state space-based Transformer
model lies in its ability to integrate the dynamic characteristics of time series with deep
semantic information. The introduction of dynamic system theory in the state space model
part provides a mathematical tool for describing and predicting the evolution of system
states over time. When this theory is applied to the Transformer architecture, it not only
enhances the model’s ability to capture the dynamic changes in time-series data but also
retains the Transformer’s advantage in processing complex semantic relationships. This
combination enables the model to understand not only the literal meaning of texts but also
to capture the patterns and trends hidden behind time series, such as fluctuation trends in
financial markets or reasoning processes in legal cases.

4.7. Limitations and Future Work

In this study, a State Space-based Transformer model is introduced, aimed at enhanc-
ing the accuracy of complex system prediction tasks, including legal case judgment, legal
case translation, and financial data analysis, among others. Despite the model demon-
strating exemplary performance across various tasks, it is acknowledged that limitations
exist within the research process. Based on these limitations, future research directions are
proposed. Firstly, although the State Space-based Transformer model excels in handling
complex tasks, the training and inference computational costs are relatively high. Especially
when processing large-scale datasets, the model’s efficiency may become a bottleneck. Fur-
thermore, parameter tuning and optimization in the state space model component require
extensive experimentation and computational resources, which could limit the model’s ap-
plication scope under resource-constrained conditions. Secondly, while the model achieves
good performance across multiple tasks, its generalization ability still needs further val-
idation. Current experiments are primarily focused on specific datasets that, although
representative, cannot cover all potential application scenarios. Therefore, whether the
model maintains stable performance when faced with new tasks in different domains or
with different characteristics requires additional research and experimentation. Moreover,
although incorporating the state space model helps the Transformer better understand
and predict the dynamic changes in complex systems, designing more effective state space
representations and more accurately capturing the transition rules between states remain
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challenging. The current model relies on simplifications and assumptions of the state space
model, which may limit its application in highly complex and nonlinear systems.

Addressing these limitations, future research work could explore several areas: Further
research and development of more efficient model training and inference methods are
needed. For example, reducing computational resource consumption and enhancing
model efficiency could be achieved through model architecture improvements or the
introduction of more advanced optimization algorithms. Additionally, exploring model
compression and knowledge distillation techniques might be effective ways to alleviate
model burden and improve applicability. Expanding the model’s application scope and
generalization ability is also a crucial direction for future work. This includes testing
the model’s performance in more domains and a wider range of tasks and validating
the model’s adaptability in multilingual and cross-cultural environments. Through these
efforts, the model’s generalization capability can be further assessed, and optimization
strategies for different application scenarios can be explored. Regarding the state space
model component, future research could explore more complex state representations
and transition mechanisms. Introducing nonlinear dynamical systems theory, attention
mechanisms from deep learning, or novel mathematical tools and model structures like
graph networks may provide new perspectives and methods for capturing more complex
system dynamics. Lastly, this study suggests the vast potential of deep learning models
in understanding and processing complex systems. Therefore, future work could further
explore combining machine learning with theories and methods from multiple disciplines
such as systems science, economics, and social sciences.

5. Conclusions

In this study, a state space-based Transformer model is proposed to address the chal-
lenges of complex system prediction. The motivation and significance of this work stem
from the fact that, although traditional deep learning models have achieved notable suc-
cesses in processing sequential data, limitations still exist in understanding and predicting
the dynamics and nonlinear characteristics inherent to complex systems. To tackle this
issue, the model introduced innovatively integrates state space theory into the Transformer
architecture, aiming to enhance the model’s capability to capture the dynamic changes in
complex systems, thereby improving prediction accuracy and robustness.

In the experimental section, the model was validated and evaluated in three domains:
legal case judgment, legal case translation, and financial data analysis. Experimental results
demonstrate that the state space-based Transformer model proposed exhibits superior
performance across all tasks when compared to standard Transformer models, sparse
attention Transformers, and other advanced variants like BERT and Finsformer. Specifically,
in the task of legal case judgment, the accuracy of the proposed model reached 91%, while
in legal case translation and financial data analysis tasks, accuracies were 93% and 92%,
respectively. These achievements can be attributed to comprehensive improvements in
key metrics such as precision, recall, and accuracy. The exceptional performance of the
state space-based Transformer model in various complex system prediction tasks is not
coincidental but rather derives from several factors: Firstly, the integration of the state space
model enables a better understanding and simulation of the dynamic changes in complex
systems, providing the capability to capture the intrinsic dynamics of time series data.
Secondly, through the carefully designed state space loss function, the model emphasizes
not only the match between predicted outputs and actual values but more importantly, the
smoothness and coherence of state changes during the prediction process, which is crucial
for enhancing the model’s generalization ability and predictive accuracy. Furthermore, the
introduction of the sparse attention mechanism further increases the efficiency of processing
long sequence data, allowing the model to reduce computational resource consumption
while maintaining high precision.

This work not only proposes a novel model architecture theoretically but also verifies
its effectiveness through a series of rigorous experiments. These achievements not only
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enrich the research of deep learning in the field of complex system prediction but also offer
new insights and directions for future research. Facing complex system prediction tasks,
future studies can further explore new mechanisms combining state space models with
deep learning based on the foundation of this work, developing more efficient and accurate
predictive models. Additionally, attempts could be made to apply the proposed model to
more domains and tasks, verifying and expanding its application range and practicality.
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