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Abstract: Altering the content of an alloying element in alloy materials will inevitably affect the
content of other elements, while the effect is frequently disregarded, leading to subsequent negligence
of the common influence on the physical properties of alloys. Therefore, the correlation between
alloying elements and physical properties has not been adequately addressed in the existing studies.
In response to this problem, the present study focuses on the Al10Ti15Nix1Crx2Cox3 alloys and
investigates the competitive interplay among Ni, Cr, and Co elements in the formation of physical
properties through a single-element (SE) analysis and a multi-element (ME) analysis based on the
first principles calculations and the partial least squares (PLS) regression. The values of C11 and
C44 generally increase with the incorporation of Ni or Cr content in light of SE analysis, which
is contrary to the inclination of ME analysis in predicting the impact of Ni and Cr elements, and
the Ni element demonstrates a pronounced negative competitive ability. The overall competitive
relationship among the three alloying elements suggests that increasing the content of Ni and Cr does
not contribute to enhancing the elastic constants of alloys, and the phenomenon is also observed in the
analysis of elastic moduli. The reason is that the SE analysis fails to account for the aforementioned
common influence of multiple alloying elements on the physical properties of alloys. Therefore,
the integration of SE analysis and ME analysis is more advantageous in elucidating the hidden
competitive mechanism among multiple alloying elements, and offering a more robust theoretical
framework for the design of alloy materials.

Keywords: alloying elements; common influence; single-element analysis; multi-element analysis;
competitive mechanism

1. Introduction

Alloy materials, encompassing a diverse array of alloy components, often exhibit
exceptional physical properties, e.g., high strength [1], good ductility [2], outstanding
thermal stability [3], superior corrosion and wear resistance [4,5], excellent electrical and
thermal conductivity [6,7]. The modulation of alloying element content can effectively
control these aforementioned characteristics, as alterations in alloy composition trigger a
cascade of intrinsic property transformations within the alloy materials. For instance, Al,
Ta and Nb elements induce phase transformation [8–10], Si and B elements refine grain
structure [11,12], C, Mo and Ti elements promote nanotwin generation [13–15], Cu, Cr, and
S elements alleviate or accelerate component segregation [16–18], and Zn and W elements
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enhance solid solution strengthening [19,20]. It can be seen that the internal structural
characteristics of alloy materials can be directly or indirectly influenced by adjusting the
content of alloying elements, thereby impacting the physical properties of alloy materials.
Therefore, relevant exploration is warranted to investigate the potential regular effects of
varying alloying element content on the physical properties of alloy materials.

To this end, researchers have consistently pursued the exploration of alloy materials
with excellent physical properties by effectively controlling the content of alloying elements,
and then uncovering the influence trend. Zhang et al. [21] incorporated the Ag element
into the Al-33Zn-2Cu alloy and observed a linear increase in both yield strength and
tensile strength with increasing Ag content. Ye et al. [22] observed that the hardness
of CuCoFeNiTix high-entropy alloy (HEA) gradually increased with the increase in Ti
content, while the ductility gradually decreased. Nguyue et al. [23] found that the phase
structure of AlxFeMnNiCrCu0.5 HEA exhibits multiple transformations with increasing Al
content, leading to parabolic fluctuations in the tensile properties of the alloy. Luo et al. [24]
calculated that the Young’s modulus, bulk modulus and hardness of Fe-Mn-Al alloy showed
an overall decreasing trend with the increase in Mn content. Liu et al. [25] simulated that
increasing Mn content in CrFeCoNiMnx (0 ≤ x ≤ 3) HEAs will improve the required fracture
energy for their crystal cell structure. Meanwhile, researchers controlled the content of
diverse alloying elements and conducted corresponding investigations. The content of
Mn, C, and Al elements in Fe-Mn-Al-C low-density steels was simultaneously increased by
Wang et al. [26]. The results demonstrated that the value of yield strength declines with
the increase in Mn content, and rises with higher Al and C contents. The study conducted
by Li et al. [27] demonstrates that the influences of Cu and W on CoNiCuMoW HEAs
are opposite, with an observed enhancement in thermodynamic stability and dislocation
energy factor resulting from increased W content. And Fan et al. [28] independently studied
the effects of Al and Cu contents on the mechanical properties of (FeCrNiCo)AlxCuy HEAs,
observing a significant increase in hardness and yield strength with higher Al content, while
noting a substantial reduction in fracture strength with increased Cu element presence.
Obviously, the variation in alloy element content in alloy materials has a regular impact on
physical properties. Through the regularity analysis, it is possible to identify optimal ratios
of alloy elements that yield superior physical properties.

However, based on the aforementioned researches, it can be observed that whether
through manipulation of a single alloying element or multiple alloying elements, the final
analysis solely focuses on the impact of altering the content of a single alloy element on
the physical properties of alloy materials. The potential effect of altering the content of a
single alloy element on other alloy elements and their collective influence on the physical
properties of alloy materials are disregarded. Therefore, the regulatory strategies of the
aforementioned alloying elements have not been adequately investigated. Addressing
this issue, the present study employs a combination of first principles calculations and
partial least squares (PLS) regression to simultaneously regulate the content of Ni, Cr,
and Co elements in Al10Ti15Nix1Crx2Cox3 alloys, and the physical properties, lattice con-
stant, elastic constants, elastic moduli, Vichers hardness, and yield strength, are calculated
and discussed. Subsequently, the differences between single-element (SE) analysis and
multi-element (ME) analysis were explored for the same alloying element, revealing the
competition mechanism between alloying elements and providing more reliable theoretical
guidance for further experimental preparation.

2. Materials and Computational Methods

The exact muffin-tin orbitals (EMTO) and coherent potential approximation (CPA)
methods based on the density functional theory were employed to implement the first prin-
ciples calculations of Al10Ti15Nix1Crx2Cox3 alloys [29–31]. In which, the full charge density
technique is chosen to calculate the total energy [32]. The Kohn-Sham equations [33,34] is
used to solve the single-electron equations of optimized overlapping muffin-tin potential
spheres. To represent the exchange-correlation function, the Perdew–Burke-Ernzerhof
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(PBE) generalized gradient approximation (GGA) is utilized [35]. The paramagnetic state
is characterized using the disordered local moment model [36], while ensuring conver-
gence accuracy in the Brillouin zone by setting 25 × 25 × 25 inequivalent k-points for
integration calculations. Meanwhile, the EMTO basis group optimizes the convergence of
s, p, d, and f orbitals [37], and the electrostatic correction of the single-site CPA method
is implemented using the screened impurity model, employing a screening parameter
of 0.7 [38]. As a measure to ensure the accuracy of calculated results, we solve for the
Green’s function at 16 complex energy points located on the Fermi surface [39]. By fitting
the predicted energy-volume data using a Morse-type function and then deriving the state
equation [40]. Consequently, the results enable us to determine the equilibrium volume
and lattice constant of Al10Ti15Nix1Crx2Cox3 alloys.

Subsequently, the PLS regression [41] is utilized to investigate the disparity in the
impact of one alloying element between SE and ME analyses according to the calculated
results of first principles calculations. The PLS regression is a sophisticated statistical
method that integrates various analytical techniques such as multiple linear regression
analysis [42], principal component analysis [43], canonical correlation analysis [44], and
others. It adeptly tackles challenges related to multicollinearity, high-dimensional vari-
ables, and limited sample sizes [45]. For this study, the contents of Al and Ti elements in
Al10Ti15Nix1Crx2Cox3 alloys are, respectively, fixed at 10 at% and 15 at%, and the Ni, Cr,
and Co contents are control variables in the range of 0–75 at%. Clearly, the modification of
one element within the Ni, Cr, and Co inevitably results in an alteration in the content of
other elements. Therefore, a main control (MC) element is established with a 15 at% content
increment for each calculation step, while the other two elements serve as slave control (SC)
variables with equivalent content values. For instance, the red dotted line with a circular
box is shown in Figure 1, Cr is the MC element, with its content CCr gradually increasing
from 0 at% to 75 at% in increments of 15 at%, while the Ni and Co are the SC elements and
the corresponding content values are determined by CCr as CNi = CCo = (75 at% − CCr)/2.
Consequently, the content variations in Ni, Cr, and Co elements for different MC element
are list in Table 1. Obviously, the analyzed samples are small and characterized by multiple
independent variables that exhibit correlation within each sample. Therefore, the numerical
analysis problem addressed in this paper is well suited for employing the PLS method to
establish regression models, enabling an insightful examination of the influence of various
alloying elements on the intrinsic properties of Al10Ti15Nix1Crx2Cox3 alloys and unveiling
the competitive mechanisms among these elements.
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Table 1. The variations in Ni, Cr, and Co contents under different MC elements.

MC Element Ni MC Element Cr MC Element Co
CNi (at%) CCr (at%) CCo (at%) CNi (at%) CCr (at%) CCo (at%) CNi (at%) CCr (at%) CCo (at%)

0 37.5 37.5 37.5 0 37.5 37.5 37.5 0
15 30 30 30 15 30 30 30 15
30 22.5 22.5 22.5 30 22.5 22.5 22.5 30
45 15 15 15 45 15 15 15 45
60 7.5 7.5 7.5 60 7.5 7.5 7.5 60
75 0 0 0 75 0 0 0 75

3. Results and Discussions

To compare the disparities between SE and ME analyses for the same alloying element,
the lattice constant a0 of Al10Ti15Nix1Crx2Cox3 alloys is initially determined by the EMTO-
CPA method. Subsequently, the relationships between the lattice constant a0 and the
content of Ni, Cr, and Co elements are individually obtained, as shown in Figure 1. The
three curves in the figure correspond to only one MC element, namely Ni, Cr, and Co, while
the homologous SC elements are not displayed. Clearly, the a0 value shows an almost linear
increase with the rise in Cr content, and gradually decreases with the augmentation of Ni
or Co content. The results demonstrate a positive correlation between the lattice constant
a0 and the Cr content, while exhibiting a negative correlation with the Ni and Co contents.
The observed trend can be attributed to the relatively larger atomic radius of the Cr element
in comparison to the relatively smaller atomic radii of Ni and Co elements. At the same
time, it can be seen that the value of a0 presents a more pronounced decline with increasing
Co content compared to the increase observed with Ni content, indicating that the presence
of the Co element has a stronger negative influence on the lattice constant of alloys. In
general, the Cr element exhibits a pronounced positive influence on the lattice constant
of alloys, whereas Ni and Co elements exert an opposing effect, with Co demonstrating a
more substantial negative impact.

Obviously, the analysis of each curve is exclusively focused on the impact of vary-
ing the content of one MC element, disregarding any corresponding changes in SC el-
ements and thus failing to account for their combined effect on the lattice constant of
Al10Ti15Nix1Crx2Cox3 alloys. Meanwhile, it is evident from Table 1 that the contents of
SC elements exhibit significant variations in accordance with the content of MC element.
Therefore, it is imperative to concurrently consider the combined influence of variation
in the content of the three alloying elements Ni, Cr, and Co on the lattice constant in
Al10Ti15Nix1Crx2Cox3 alloys. Herein, the PLS regression is employed to explore deeper
layers of information to fulfill this objective [41]. The optimal number of principal com-
ponents is initially determined as 1 through cross-validation analysis based on the data
results presented in Figure 1 and Table 1. Subsequently, regression analysis is conducted,
and the corresponding findings are summarized in Table 2.

Table 2. The PLS regression results between the content of Ni, Cr, and Co elements and the lattice
constant a0.

Independent
Variables

Dependent
Variable

Standardized
Regression
Coefficients

Projected
Importance Indexes

R2 Value
(%)

CNi
a0

−0.150 0.320
98.6CCr 0.633 1.353

CCo −0.484 1.033

In the regression analysis, the content of Ni, Cr, and Co elements is set as the indepen-
dent variable, and the value of lattice constant a0 is regarded as the dependent variable. The
standardized regression coefficient serves as a metric for assessing the relative influence of
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the independent variable on the dependent variable, and the larger the absolute value of
the coefficient, the more significant its impact becomes. The projected importance index
quantifies the explanatory ability of the independent variable to the dependent variable,
with a higher value indicating a stronger ability to explain. The R2 value, in addition,
serves as an indicator of the goodness of fit for the PLS regression model, with a higher
value indicating a stronger fit degree. In light of the analysis results, the standardized
regression coefficients of Ni, Cr and Co elements are −0.15, 0.633 and −0.484, respectively.
Hence, the standardized regression relationship between the a0 and the CNi, CCr, CCo can
be formulated as a0 = −0.15CNi + 0.633CCr − 0.484CCo. The result indicates that the Cr
element exerts the most significant positive influence on the formation of lattice constant
a0 in the Al10Ti15Nix1Crx2Cox3 alloys, whereas the Ni an Co elements exhibit an opposing
effect, and the Co element displays a larger magnitude of negative impact. Meanwhile,
Figure 2 provides a visual representation illustrating the varying degrees of impact for bet-
ter understanding. Herein, the absolute value of regression coefficient quantifies the degree
of influence exerted by each alloying element on the lattice constant, aligning consistently
with the atomic radius of these three alloying elements, and the positive and negative
signs well reflect the influence direction of each element. Meanwhile, the corresponding
values of projected importance indexes, respectively, are 0.32, 1.353 and 1.033, showing
that the Cr and Co elements significantly contributes to the construction of the regression
expression, whereas the influence of the Ni element is comparatively minor. However, on
the whole, the regression expression exhibits a robust fit with the experimental data for
the independent variables CNi, CCr, CCo and the dependent variable a0, as indicated by an
impressive R2 value of 98.6%. Consequently, it follows that the influence trend of the same
alloying element on the lattice constant shows no significant difference between SE and
ME analyses.
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Figure 2. Histogram of standardized regression coefficients for Ni, Cr and Co elements with respect
to a0.

To further investigate potential disparities, additional significant physical properties,
namely the elastic constants C11, C12 and C44, are calculated, and the relationships between
the elastic constants and the content of MC elements, Ni, Cr, Co, are depicted in Figure 3.
Evidently, the influence of increasing the content of a certain MC element on the C11 and
C44 exhibits similarity. The values of C11 and C44 exhibited an overall upward trend with
the increase in Ni, Cr, or Co content. The influence of Co is the most pronounced among
them, while the influences of Cr and Ni decrease sequentially, with a particular flattening
out observed in higher Ni content, as shown in Figure 3a,c. However, the fluctuation
of elastic constant C12 exhibits a higher degree of complexity, as illustrated in Figure 3b.
When the content of MC element is low, there is a rapid decline in the value of C12 with an
increase in Ni or Cr content, while the influence of Co content remains relatively constant.
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Meanwhile, the influence of the Co element is most pronounced when the content of MC
element is high, whereas the impacts of Cr and Ni elements are relatively insignificant.
To summarize, in the analysis of a single element, the influences of Ni, Cr, and Co on C11
and C44 are successively amplified, while their effects on C12 do not exhibit a prominent
regularity.
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Figure 3. The relationships between the elastic constants and the content of different MC elements in
Al10Ti15Nix1Crx2Cox3 alloys: (a) C11, (b) C12, and (c) C44.

At the same time, the competitive relationships between Ni, Cr, and Co elements are
further elucidated through the implementation of ME analysis based on the PLS regression,
as listed in Table 3. According to the calculated results, the standardized regression
relationships between the dependent variables C11, C12, C44 and the independent variables
CNi, CCr, CCo could be formulated as follows

C11 = −0.463CNi − 0.101CCr + 0.480CCo
C12 = −0.447CNi − 0.184CCr + 0.528CCo
C44 = −0.495CNi − 0.153CCr + 0.511CCo

(1)

in which, the standardized regression coefficients corresponding to the content of Ni,
Cr, and Co elements are utilized as the coefficient values preceding the independent
variables, and the coefficients reflect the influence trend of the independent variables on
the dependent variable.

Table 3. The PLS regression results between the content of Ni, Cr, and Co elements and the elastic
constants.

Independent
Variables Dependent Variables Standardized Regression

Coefficients
Projected Importance

Indexes R2 Values (%)

CNi
C11 C12 C44

−0.463 −0.447 −0.495 1.213 1.021 1.228
72.5 75.3 76.1CCr −0.101 −0.184 −0.153 0.284 0.336 0.214

CCo 0.480 0.528 0.511 1.227 1.358 1.252

To intuitively observe the different influence trends, a corresponding histogram is
illustrated in Figure 4. Overall, based on the regression analysis results, it can be inferred
that the presence of the Co element exerts a significant positive influence on the elastic
constants C11, C12 and C44, and the result is consistent with the SE analysis in Figure 3.
Meanwhile, the Ni and Cr elements demonstrate a negative effect on the elastic constants
in general; the adverse impact of the Ni element is particularly significant, and that of
the Cr element is small. Therefore, a noteworthy phenomenon can be observed when
comparing the outcomes depicted in Figures 3 and 4. It can be seen that the augmentation
of Ni and Cr content is observed to positively impact the values of C11 and C44 in the SE
analysis, while the ME analysis reveals a negative promoting effect of the two alloying
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elements. The analysis of the curves in Figure 3 reveals that the positive promoting effect
of Ni and Cr elements is not superior to that of the Co element, and the influence of Cr
and Ni elements exhibit a gradual decrease in succession. Consequently, a subsequent
regression analysis reveals the latent competitive relationship among the various alloying
elements concerning the elastic constants as shown in Figure 4. In Table 3, the projected
importance indexes represent the explanatory power of independent variables on their
corresponding dependent variables, as previously mentioned. And the corresponding
R2 values, respectively, are 72.5%, 75.3% and 76.1%, indicating that the fitting degree of
regression equations are relatively good, the intricate numerical relationship between the
content of alloying elements and the elastic constants in Figure 3 lead to the results, and
ignoring the role of Al and Ti elements may also have some influence. This issue needs
further investigation. However, the outcomes of the competition among multiple alloying
elements remain valuable as a point of reference.
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to the elastic constants.

Elastic moduli, including bulk modulus B, shear modulus G, and Young’s modulus E,
are further determined to facilitate a comparative analysis of the impact of alloying elements
in the SE and ME analyses. The relationships between the content of MC elements and the
elastic moduli are illustrated in Figure 5. For the bulk modulus B, the corresponding curves
display a complex trend of variation as the content of one MC element increases, as shown
in Figure 5a. The B value exhibits an initial decrease followed by an increase as the Ni or Cr
content increases, while the overall trend rises with the increase in Co content. Therefore,
it can be predicted that the promoting effect of the three alloying elements on the bulk
modulus B is positive for the Co element, negative for the Ni element, and inconclusive
for the Cr element. Meanwhile, the variation in curves exhibits similar regularities in
Figure 5b,c, and the values of G and E gradually rise with the increase in one MC content.
And the influence trend of the three alloying elements is similar at low content, while the
impact of the Co element becomes predominant at high concentrations. Therefore, the SE
analysis demonstrates that augmenting the Co content among the three alloying elements
is more conducive to improving the elastic moduli of Al10Ti15Nix1Crx2Cox3 alloys.

In order to further elucidate the competitive relationship among the three alloying
elements on the elastic moduli of alloys, a ME analysis based on the PLS regression is
conducted using the data presented in Table 1 and Figure 5, and the corresponding results
are summarized in Table 4. As mentioned above, the standardized regression relationships
between the dependent variables B, G, E and the independent variables CNi, CCr, CCo could
be formulated as follows
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B = −0.427CNi + 0.191CCr + 0.498CCo
G = −0.405CNi + 0.104CCr + 0.421CCo
E = −0.398CNi + 0.108CCr + 0.425CCo

(2)

where the coefficients associated with CNi, CCr, and CCo in the equations correspond to
the standardized regression coefficients presented in the table. The absolute value of
coefficients reflects the intensity of competition among the three alloying elements, while
the positive and negative signs signify the direction of their respective influences.
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Table 4. The PLS regression results between the content of Ni, Cr, and Co elements and the elas-
tic moduli.

Independent
Variables Dependent Variables Standardized Regression

Coefficients
Projected Importance

Indexes R2 Values (%)

CNi
B G E

−0.427 −0.405 −0.398 1.134 1.127 1.115
79.4 70.6 71.5CCr 0.191 0.104 0.108 0.357 0.325 0.320

CCo 0.498 0.421 0.425 1.326 1.302 1.315

At the same time, the bar chart in Figure 6 clearly presents the regression coefficients,
facilitating a better understanding of the competitive relationship among alloying elements.
Evidently, the positive coefficients for Cr and Co indicate that increasing their content is ad-
vantageous in enhancing the elastic moduli of alloys, particularly with a more pronounced
effect observed for higher Co content due to its larger corresponding coefficient value. The
result is consistent with the influence trend of the Co element predicted by SE analysis, and
clearly illustrate the uncertain impact of the Cr element in Figure 5. For the Ni element,
it can be seen that the coefficient values are all negative, showing that the addition of Ni
content is not conducive to improving the elastic moduli of alloys. In which, the coefficient
of −0.427 aligns well with the predicted trend of the Ni element on the bulk modulus B
in Figure 5a. And the coefficients of −0.405 and −0.398 indicate a hidden competitive
relationship in Figure 5a,c, showing that while the influences of the Ni element on the G and
E are upward in the SE analysis, it should be downward when considering the combined
effect of three alloying elements in the ME analysis, the observed outcome is attributed to
the altering of Ni content in Al10Ti15Nix1Crx2Cox3 alloys while disregarding its impact on
the Cr and Co contents. And the height of the histogram directly reflects the competitive
relationship among the three alloy elements. It is evident that Co and Ni exhibit strong
competitive advantages, albeit in opposite directions, while Cr demonstrates relatively
weaker competitiveness, suggesting that increasing Co content or reducing Ni content can
significantly enhance the elastic moduli of Al10Ti15Nix1Crx2Cox3 alloys. Moreover, the R2

values reflect the fitting degree of the corresponding regression expressions as 79.4%, 70.6%,
and 71.5%, respectively. The degree of fit is not optimal, as it is determined by the intricate
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interplay of data relationships. However, the results still hold some theoretical reference
value in terms of revealing the competitive relationship between various alloying elements
and promoting the mechanical properties of alloy materials.
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4. Conclusions

In summary, the competitive mechanisms between Ni, Cr, and Co elements on the
physical properties of Al10Ti15Nix1Crx2Cox3 alloys are investigated through SE and ME
analyses based on first principles calculations and PLS regression. The key findings are
outlined as follows:

The increase in Ni or Co content in the Al10Ti15Nix1Crx2Cox3 alloys leads to a0 re-
duction, whereas the opposite effect is observed with the addition of the Cr element in
light of SE analysis. Meanwhile, the ME analysis reveals that the Cr element exhibits the
most significant competitive advantage among the three alloying elements, with a positive
promotion direction, while the Ni and Co elements demonstrate a negative effect, which
aligns with SE analysis.

The SE analysis suggests that augmenting the contents of Ni, Cr, and Co elements can
effectively enhance the values of C11 and C44, while the impact on the elastic constant C12
remains inconclusive. Further analysis using ME revealed the competitive relationship
among the three alloying elements in the formation of elastic constants, with negative
effects observed for Ni and Cr elements, while a positive effect is observed for the Co
element. Moreover, both Ni and Co elements exhibited strong competitive strength, but
their competitive directions are opposite.

The SE analysis reveals a positive promotional effect of the Ni, Cr, Co elements on
the elastic moduli G and E. However, a negative influence of the Ni element on the elastic
moduli B, G and E is observed through the ME analysis. Additionally, it is observed that
there is a gradual decline in the level of competitiveness among the elements Co, Ni, and Cr.

Among them, the SE analysis and ME analysis yield some different conclusions, the
reason is that the SE analysis solely takes into account the impact of variations in the content
of a single alloying element, while disregarding the influence on the content of other alloy-
ing elements and subsequently neglecting their collective effect on the physical properties
of alloys. Therefore, merely employing the first principles calculations is inadequate for
comprehensively investigating the influence of alloying element content on the physical
properties of alloy materials, but using multivariate numerical analysis will be more helpful
to reveal the hidden interaction mechanism. The present study provides a novel research
concept to elucidate the competitive relationship among alloying elements, thereby offering
more reliable theoretical guidance for the development of new alloy materials.
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