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Abstract: Information extraction methods proved to be effective at triple extraction from structured
or unstructured data. The organization of such triples in the form of (head entity, relation, tail entity)
is called the construction of Knowledge Graphs (KGs). Most of the current knowledge graphs are
incomplete. In order to use KGs in downstream tasks, it is desirable to predict missing links in KGs.
Different approaches have been recently proposed for representation learning of KGs by embedding
both entities and relations into a low-dimensional vector space aiming to predict unknown triples
based on previously visited triples. According to how the triples will be treated independently or
dependently, we divided the task of knowledge graph completion into conventional and graph neural
network representation learning and we discuss them in more detail. In conventional approaches,
each triple will be processed independently and in GNN-based approaches, triples also consider their
local neighborhood.

Keywords: knowledge graphs; information extraction; knowledge graph embeddings

1. Introduction

A graph can be directed if the order of nodes in the graph is important or undirected if
the order of the nodes in the graph is not important. A knowledge graph is a heterogeneous
multi-digraph which means it is directed, and multiple edges can exist between two
nodes. An agent generates knowledge by relating elements of a graph to real-world
objects and actions. A knowledge graph (KG), also known as a knowledge base, is a
structured representation of facts that describes a collection of interlinked descriptions
of entities, relationships, and semantic descriptions of entities. KGs, as a compelling
abstraction, help organize structured knowledge by linking them from multiple sources.
The difference between the knowledge base and knowledge graphs is the assumption
of being less rigidly defined, structured, homogeneous, and stable schema breaks which
empower knowledge graphs to be more scalable. The advantage of KG is the better
representation of heterogeneous objects using a unified space to connect them.

Four crucial elements of machine learning models are learning, memory, knowledge
representation, and reasoning. Although learning can be addressed by machine learning,
current machine learning models require lots of data that, in many cases, cannot be provided
by one person or group. In addition to lack of data suffering, current advances in artificial
intelligence still cannot address ‘data context’. Hence, a new approach to better create
knowledge from data. After putting data into context, the lack of explainability in machine
learning models is still an open challenge that needs to be better addressed. A knowledge
graph is a promising approach that can better lead researchers to address these limitations.

The idea of structured knowledge in a graph was first introduced by [1] in 1988, and in
2012 this concept gained great attention after its usage in Google’s search engine. Google’s
KG, one of the most important projects in knowledge graphs announced in 2016, holds over
70B facts [2]. The underlying technology is not publicly documented, but they used the
schema.org standard and integrated Wikipedia, World Bank, Eurostat, etc. Cyc [3] is one of
the early AI projects based on a knowledge base containing 1.5 M concepts in various areas,
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including healthcare, finance, and transportation. Cyc’s knowledge base is represented
by the CycL language and benefits micro theories for reasoning. OpenCyc released part
of Cyc in RDF format until 2017. Facebook’s entities graph with over 500 M facts was
launched in 2010 and contains Facebook users’ information including profile information,
interests, and connections. The research on Semantic Web and linked data generated some
open datasets, including the linked open data cloud, which are now primarily used as KG
datasets. These datasets are mainly generated from Wikipedia using its massive amount of
factual knowledge. DBPedia [4] is a de facto central dataset on the Semantic Web, which
was first introduced in 2007 by extracting knowledge from Wikipedia pages with over 13
B RDF triples. FreeBase [5] was launched by a company in 2008, and Google bought it
in 2010. Google shut down freebase in 2016, and its latest dump has over 1.9 B facts. In
2008 YAGO [6] also was first released. YAGO combines entities from Wikipedia articles
with WordNet synsets. YAGO contains over 120 M facts. Wikidata [7] is another dataset
launched in 2012 based on Wikipedia knowledge and revised by community members.
Wikidata is structured by a customized data model supporting RDF and OWL with over
7B triples.

Entities can be real-world objects, events, and abstract concepts corresponding to
a node, and directed edges are considered relationships. The knowledge graph stores
objective information structured in RDF-style triples, which consists of two entities and one
relation in the form of (head, relation, tail) or (subject, predicate, object) [8]. In a knowledge
graph, labels are types of relations that can connect the facts; edges (relations) are specific
facts connecting two nodes (head and tail entities).

Current real-world knowledge graphs are usually incomplete and need an inference
engine to predict links and complete the missing facts among entities available in the KG.
Relation classification or inference from information already available KG is called link
prediction. The process of completing incomplete triples (i.e., (Einstein, ?, Germany)) is
called knowledge graph completion (KGC). An example of it can be seen in Figure 1.

Figure 1. Sample KG where there exists a missing edge between the two nodes.

A common approach in link prediction and knowledge graph completion is via em-
bedding into vector spaces to learn representations of entities and relations and embedding
vectors of entities and relations can then be updated by maximizing the global plausibil-
ity. Embedding methods generalize from known facts and model triple-level uncertainty.
Compared to traditional one-hot representation approaches, knowledge graph embed-
ding can better address semantic computing using a distributed representation method.
However, the reasoning results are not globally consistent. Different models have been
proposed to solve this issue. Different scoring functions are defined to measure triples’
plausibility to enable updating the representation on the training data. Using different
scoring functions in knowledge graph embeddings will reflect different designing criteria.
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We define representation models in the conventional knowledge graph completion section
in Section 2.

Although representative models including TransE [9], TransH [10], DistMult [11],
ComplEx [12], RotatE [13], show promise, they are incapable of leveraging the belief
propagation of graph convolution in the representation learning process [14] and fail to
cover the complex inherently implicit information in the local neighborhood of a triple.
Instead, they treat each triple independently. As a result, they cannot benefit from graph
structures to smoothen the embedding spaces. R-GCN [15], CompGCN [16], TransGCN [17],
KE-GCN [14], and KBGAT [18] are some of the few works which leverage graph neural
networks to jointly learn multi-layer layer representations of entities and relations. These
works will be discussed in Section 3. Unlike most previous works which only cover
conventional knowledge completion approaches, we covered graph neural network which
has been recently studied in knowledge graph tasks. The challenges and gaps in Section 4
will be described, and in Section 5, the conclusion is expressed.

2. Conventional Knowledge Graph Completion

With unprecedented data volume growth worldwide, utilizing traditional graph
structures to construct and manipulate KG is hard. The traditional formal logic reasoning
is not tractable or robust in large-scale KGs. Several link prediction embedding models
have been recently proposed to calculate semantic relations between entities in KG, which
will be discussed in this section.

Knowledge representation learning (KRL) or knowledge graph embedding (KGE) is
trying to map entities and relationships into a continuous vector space to capture better the
semantic relation between entities in low dimensional space. For example, each entity h in
a KG can be represented by a point h in vector space, and each relation r can be modeled
as an operation like projection, translation, etc., in the space. The embedding procedure
in a given KG starts with randomly representing entities and relations in a vector space.
With the help of an evaluation function, the plausibility of each triple will be evaluated
at each iteration. Then, the embedding vectors of entities and relations update through
optimization algorithms to maximize the global plausibility of facts.

In Table 1, we define the Notation and Problem Definition for each triplet fact (h, r, t)
for the following sections.

Table 1. Notation and Problem Definition.

Notation Description

d Vector
Wr The normal vector of hyperplane
r Embedding vector of relation

h, t Embedding vectors of head and tail
M Projection matrix
〈 〉 Diagonal matrices
d The dimensionality of an entity in embedding space
k The dimensionality of relation in embedding space

Re The real part of a complex value
⊗ Hamilton product

Although various KGEs have been widely studied, most of them can only train
an embedding model based on its observed triples. Hence, most current studies have
focused on generalizing KGE models. KGEs for relation prediction can be classified into
translational, decompositional, CNN-based, and graph neural network-based models [18].
In the following section, we will discuss each model separately.
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2.1. Translational Models

Translational models interpret relations as simple translations over hidden entity
representations. Translational distance models measure the plausibility of a fact and
exploit distance-based scoring functions. The translational-based models try to find a
low-dimensional vector representation of entities in relation to the translation of entities.

TransE [9] is one of the common translational models where both entities and relations
are considered vectors in the same space. This model aims to model the inversion and
composition patterns. Despite the simplicity of TransE, it cannot perform well in one-to-
many, many-to-one, and many-to-many relations [10,19]. Although some of the complex
models handle this issue, they are still not efficient in the process. For example, relation
Writer of, might learn similar vector representations for Harry Potter, Fantastic Beasts and
Where to Find Them, and The Ickabog which are all books by J. K. Rowling. However, these
entities are different. To overcome this issue, extensions of TransE including TransH [10],
TransR [19], TransD [20], TransM [21], and TransW [22] have been recently proposed which
have different relation embeddings and scoring functions.

TransH [10] models a relation as a translating operation on a hyperplane with almost
the same complexity as TransE. In this model, each relation is represented by two vectors,
the norm vector of the hyperplane and the translation vector on the hyperplane. They
addressed the issue of N-to-1, 1-to-N, and N-to-N relations by enabling each entity to
have distinct distributed representations. The experiments on link prediction, triplet
classification, and fact extraction on benchmark datasets like WordNet and Freebase show
improvements compared to TransE.

TransE and TransH simply put entities and relations within the same semantic vector
space. However, an entity may have multiple aspects and relations. Each relation might
focus on a particular part of that entity that might be far from others. Additionally, entities
and relations are entirely different objects, making them unsuitable to be represented in
the same vector space. TransR builds entity and relations embeddings in separate vector
space and then create a translation in the corresponding relation space. The comparison be-
tween TransR and the two previously introduced models shows significant improvements,
including link prediction, triple classification, and relational fact extraction. TransR uses a
projection matrix that projects entities from entity to relation space [19].

TransD uses two vectors to represent an entity or a vector. One represents the meaning
of the entity or relation, and the other is used to construct a dynamically mapping matrix.
This way, it covers both diversity of relations and entities. TransD is proposed to simplify
TransR by eliminating matrix-vector multiplication operations and has fewer parameters,
resulting in more applicability to a large scale. The evaluation of the model in link predic-
tion and triplet classification outperforms the previously mentioned models. In TransD,
each entity-relation pair has a unique mapping matrix. The elimination of matrix-vector
operations in this model improved the performance.

TransM [21] leveraged the knowledge graph’s structure. This model’s optimal function
deals with each triplet based on its weight. In this model, the transition model for triplets
will be held the same as TransE, but the optimal function they proposed uses pre-calculated
weight corresponding to the relationship. The main difference between TransE and TransM
is it is more flexible when dealing with heterogeneous mapping properties of KGs by
minimizing margin-based hinge loss function. The proposed model outperformed in link
prediction and triplet classification tasks.

Recently, TransW [22] proposed using word embeddings for knowledge graphs em-
beddings to better deal with unseen entities or relations. Unlike previous works, which
ignore the detail of the words within triples, TransW aims to enrich a KG by missing entities
and relations using word embeddings. The linear combination of word embedding of
entities and relations in this model leads to detecting unknown facts. The word embedding
for relations and entities is calculated separately using the Hadamard product. The results
outperformed compared to previous translational approaches.
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RotatE [13] is another translational-based approach for KG representation learning.
This model can infer different relation patterns of symmetry and antisymmetry. RotatE
model defines each relation as a rotation from the source entity to the target entity in
the complex vector space. Some relations are symmetric like marriage, and some are
antisymmetric like filiation; some relations are inverse like hypernym and hyponym, and
finally, some are composed of others like my dad’s wife is my mom. How to infer these
characteristics in KGs is essential to predicting missing links. Unlike the models mentioned
above, RotatE aims to model and infer these characteristics at the same time.

HAKE [23] is a translational distance model with some similarities to RotatE [13].
Despite RotatE, HAKE aims to model the semantic hierarchy rather than modeling relation
patterns. Unlike RotatE, which models relations as rotations that lead two entities to the
same modulus, HAKE explicitly models modulus information which considers the depth
of the tree as moduli and the distance function just considers the modulo part. In Table 2,
the scoring functions of the introduced models have been described.

Table 2. Scoring functions of state-of-the-art translational-based knowledge graph embedding models.

Model Score Function Memory Complexity

TransE ||h + r− t|| l1
l2

O(Ned + Nrd)

TransH
∣∣∣∣(h− wT

r hwr
)
+ dr −

(
t− wT

r twr
)∣∣∣∣2

2
O(Ned + Nrd)

TransR ||Mrh + Mrt||22 O
(

Ned + Nr(d2 + d)
)

TransD
∣∣∣∣∣∣(rphT

p + I)h + r−
(

rprT
p + I

)
t
∣∣∣∣∣∣2

2
O(2Ned + 2Nrd)

TransM wr||h + r− t|| l1
l2

O(Ned + Nrk)

TransW ||(∑ hi ⊗ whi+ bh) + ∑ ri ⊗ wri
−(∑ ri ⊗ wti + bt)||21/2

RotatE −||h� r− t|| O(2Ned + 2Nrd)
HAKE ||hm ◦ rm − tm||2 + λ

∣∣∣∣sin
((

hp + rp − tp
)
/2
)∣∣∣∣

1 O(2Ned + 2Nrd)

Compared to other models discussed in the following section, translational models
are arguably faster, easier to train, and have fewer parameters to fine-tune. However,
as the operations of translational models are mainly addition or multiplication, results
lack expressiveness. The expressivity of the models for graphs can be defined as the
diversity of their graph representations. Below the order of discussed models have been
depicted in Figure 2.

Figure 2. Translational model timeline.
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2.2. Tensor Dompositional Models

The other types of embedding models are tensor decompositional models, which use
tensor products to capture rich interactions. Tensor is a multi-dimensional numeric field
that generates aliases scalars, vectors, and matrices [24].

Among tensor decompositional models RESCAL [25] and its extensions are more trend-
ings. RESCAL follows a statistical relational learning approach to address uncertainty and
complex relational structures. It uses a vector to capture to represent the latent semantics
of each entity and a matrix that models pairwise interactions among latent factors [26]. The
issue of this approach is the number of parameters which is o(d2). Additionally, RESCAL
has never been tested on data with many relation types [27]. RESCAL has a large number
of parameters, and this makes it prone to overfitting.

To simplify RESCAL, DistMult [11] proposed using bilinear diagonal matrices, which
is a particular case of bilinear objective used in neural tensor models (NTN) and reduces
the number of parameters to o(d) per relation. NTN models are among the most expensive
models as they use linear and bilinear relation operations. In RESCAL, each relation is repre-
sented by a square matrix, and DistMult simplifies it by using a diagonal matrix. The issue
of DistMult is it can just deal with symmetric relations because of using diagonal matrices.
Other than that, is a model, characterized by three-way interactions between embedding
parameters to produce a single feature per parameter. The linear transformation on entity
embedding vectors cannot model asymmetric relations. Using such models learn shallow
features with less expressive features, but it is scalable to large knowledge graphs [28].

ComplEx [12] also aimed to generalize DistMult by proposing complex-valued em-
beddings to improve asymmetric relations modeling between entities. The dot product of
vector embeddings cannot well represent asymmetric relations. In asymmetric relations,
we cannot interchange subjects and objects without changing the relation. ComplEx em-
bedding method infers new relational triplets with asymmetrical Hermitian product. In
this model, entity and relation embeddings are in a complex space rather than one real
space. This enables ComplEx model asymmetric relations.

Suchanek et al. [29] subsumes DistMult and ComplEx with more generalizability by
exploiting hypercomplex space for learning KG embeddings. Unlike standard vector space
with single component i, each quaternion embedding is a vector in the hypercomplex
space H with the imaginary components i, j, and k with a new scoring function with
relational quaternion embedding through the Hamilton product. It has been proved that
the Hamilton operator compared to Hermitian and inner product in Euclidean space, has
better expressiveness. However, rotation-based models cannot model hierarchical structure.
This model also is not capable of modeling multiple relations between two entities at
the same time. A new method called dual quaternion KGE (DualE) [30] is proposed to
solve the issues as mentioned above. Embeddings in dual quaternion space are vectors in
hypercomplex space. This model integrates and unifies translation and rotation operations.

Tucker [31] employs a different decomposition model called a Tucker Decomposition
to compute a smaller core tensor and a sequence of three matrices where each matrix
represents entity embedding and relation embedding separately. In Table 3, the scoring
functions of the introduced models have been described.

Table 3. Scoring functions of state-of-the-art tensor decompositional-based knowledge graph embed-
ding models.

Model Score Function Memory Complexity

RESCAL h.Wr.t O
(

Ned + Nrd2)
DistMult 〈h, r, t〉 O(Ned + Nrd)
ComplEx Re

(〈
h, r, t

〉)
O(2Ned + 2Nrd)

Quaternion h⊗ rC.t O(Ned + Nrd)
DualE h⊗ rC.t O(Ned + Nrd)
Tucker W ×1 hT ×2 Mr ×3 t O(Ned + Nrd + dedrde)
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The issue of the above-mentioned models is that the learned embeddings should be
solely compatible with each individual fact. In another word, the above-mentioned models
only consider structural information observed in triples rather than external information.
This results in the incompatibility of downstream tasks [32]. This motivates researchers to
include other information like entity types [33], logical rules [32], and relation paths [34]
to improve the learning of embeddings. Below the order of discussed models have been
depicted in Figure 3.

Figure 3. Tensor decompositional models’ timeline.

2.3. Neural Network Models

Semantic matching energy (SME) [27] is one of the early neural network models
which first project entities and relations to their vector embeddings in the input layer. The
proposed model captures the inherent complexity in the data by defining similarities among
entities and relations. The energy function is encoded using a neural network to extract
relevant components of each argument’s embedding using relation types. The computed
results can be comparable in a space. It works based on energy function to assign low
energies to plausible triplets of the multi-relational graph. Head entity and relation are
combined and make a function; tail entity and relation also make another function in the
hidden layer. Then they calculate the fact score by their dot product of two functions.

Neural Tensor Network (NTN) [35] is an expressive neural tensor network that is
capable of reasoning over relations between entities. In this work, unlike previous works,
they represent each entity as the average of its word vectors. They used a bilinear tensor
layer that directly related two entity vectors across multiple dimensions. The model
computes the relation by an NTN-based function. The scoring function of this model is:

fr(h, t) = uT
r tanh

(
hT Mrt + Mr,1h + Mr,2t + br

)
(1)

The issue with these models is they learn more shallow and less expressive features
than multi-layer models, which limits the performance of KGs. Link prediction should
be manageable with the number of parameters and computational costs to be useful for
KGs. They sacrifice accuracy over speed by using simple operations like inner products
and matrix multiplications over an embedding space [28]. To increase the expressiveness,
it is essential to increase the embedding size. However, increasing the embedding size is
proportional to the number of entities and relations that exist in the graph. An intuitive
example will be a model like DistMult with the embedding size of 200 on the Freebase
dataset will require 33 GB of memory regarding its parameters [28]. Using fully connected
models in multi-layer KGEs can be prone to overfitting. To solve that, convolutional layers
evolved, which are highly optimized to GPU. In Table 4, the scoring functions of the
introduced models have been described.
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Table 4. Scoring functions of state-of-the-art tensor decompositional-based knowledge graph embed-
ding models.

Model Score Function Memory Complexity

SME gle f t(h, r)T gright(r, t) O(Ned + Nrd)
NTN rTtanh

(
hT M̂t + Mr1h + Mr2t + br

)
O
(

Ned + Nrd2d
)

2.4. Convolutional-Based Models

Although previous models were fast models and can be scaled to large KGs, they learn
less expressive features than multi-layer models. ConvE [28] yields the same performance
as DistMult and R-GCN [15] with much fewer parameters and is effective at modeling
nodes with high indegree. It uses 2D convolution layers for link prediction, which consists
of a convolution layer, a projection layer that deals with embedding dimension, and an
inner product layer. ConvE generates a matrix by wrapping each vector over several
rows and concatenating the matrices. Each convolutional filters generate different feature
map tensors to extract the global information. Although this model outperforms common
convolutional models in computer vision and other areas is still shallow and needs to study
deeper models to improve its performance. HypER [36] also applies convolutions but uses a
fully connected layer to avoid wrapping and generate relation-specific convolutional filters.

The number of interactions that ConvE can capture between relation and entity em-
beddings is limited. To increase this number, InteractE [37] is proposed based on multiple
permutations to capture possible interactions better, substituting simple feature reshaping
used in ConvE with checked reshaping and circular convolution to capture more feature
interactions in a depth-wise manner. This way the interaction between entity and relation
embeddings for learning better representations and circular convolution will be enhanced.

ConvKB extends ConvE by omitting the reshaping operation in encoding represen-
tations in the convolution operation [38]. ConvKB [39] uses CNN to capture global rela-
tionships and transitional characteristics between entities and relationships. Each triple in
this model is represented by a 3-column matrix where each column represents a vector of
each element of a triple. The matrix is the input of a convolution layer to map to different
feature spaces and then concatenate them to create a single feature vector as an input triple
representation. Its plausibility score is calculated via the dot product of the feature vector
and a weight vector. Despite ConvE, ConvKB covers global relationships between the same
dimensional entries of an embedding triple.

ConEx [40] is a Hadamard product composition of a 2D convolution followed by an
affine transformation and a Hermitian inner product on complex-valued embeddings. The
proposed model uses the asymmetric properties of Hermitian products and the parameter
sharing property of a 2D convolution. Hermitian product has been previously used in the
ComplEx embedding model, which shows good expressiveness. However, results show
that the Hamilton product is more expressive.

Although both previous convolutional models are parameter efficient and showed
outperforming results, they consider each triple independently without considering the
possible relationships between triples. Another challenge in embedding approaches men-
tioned above is the failure to capture multistep relationships; most of them solely work on
the observed facts. They train each node and edge representation based on the context of
triples they are involved in. An alternative approach is using machine learning architec-
tures for graphs instead of computing numerical representations for graphs. Graph neural
networks have been studied widely as a solution to these challenges. In graph neural
networks, edges serve as weighted connections, and nodes serve as neurons. In Table 5, the
scoring functions of the introduced models have been described.
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Table 5. Scoring functions of state-of-the-art convolutional-based knowledge graph embedding
models.

Model Score Function Memory Complexity

ConvE f (vec( f (
[

h; r
]
) ? Ω)W)t O(Ned + Nrd+TmΩnΩ + Td(2dm −mΩ

+1)(dn − nΩ + 1)
ConvKB concat( f ([h, r, t]) ? Ω)w O(Ned + Nrk + 4T)
HypER f

(
vec
(
h ? vec−1(wr H

))
W)t O(Ned + Nrd)

InteractE f ( f (perm([h; r])~ w)W + b)t O
(

Ned + Nrd + TmΩnΩ + 2Tpd2)
ConEx Re

(〈
conv(h, r), h, r, t

〉)
The proposed models in this section can learn representations of entities and relations

in KGs for link prediction. The effectiveness of these models depends on their ability to infer
different relation patterns, including symmetry, asymmetry, composition, inversion, and
transitivity. However, none of the current approaches can cover them well [41]. Recently,
graph neural networks have been widely studied and seem to be a promising approach
to solving this issue. In the next section, we discuss these approaches. Below the order of
discussed models have been depicted in Figure 4.

Figure 4. Convolutional based models’ timeline.

3. Graph Neural Networks

Deep learning approaches have been exploited for graph data modeling and repre-
sentation. An essential step in performing graph-structured data tasks is learning better
representations. KGs can be treated as graphs with triplets in which relations are edges.
Conventional neural networks are limited to handling only Euclidean data. By leveraging
representation learning, graph neural networks have generalized deep learning models to
perform on structural graph data with good performance. In GNNs, an iterative process
propagates the entity state until equilibrium. This idea was extended by [42] to use gated
recurrent units in the propagation step. Graph neural network (GNN) models have been
proved to be a powerful family of networks that learns the representation of an entity by
aggregation of the features of the entities and neighbors [43]. In traditional GNNs, multiple
layers are stacked to aggregate information throughout the knowledge graph and output
learned entity embeddings. Some GNN models also can learn relation embeddings.

GNNs have been recently applied in knowledge graphs to learn powerful embeddings
by using topological structures in the KGs. GNNs generally update node representations
by aggregating and propagating node features in the graph. Unlike conventional embed-
dings, GNNs are capable of end-to-end supervised learning, which can perform various
classification tasks [44]. However, most of the commonly designed GNNs are suitable
for uni-relational connections between entities which is not suitable for KGs which are
multi-relational.

Several attempts have been exploited to apply neural networks to deal with structured
graphs. Recursive neural networks were laid as early work to process data in acyclic
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graphs [45]. This idea has been extended to graph neural networks in [46] to generalize
recursive graph neural networks for directed and undirected graphs. They generally learn
the target node’s representation by its neighbor’s information iteratively until it reaches an
equilibrium point. Graph neural networks with the key factor of high dimensional data
growing have been widely studied and applied to learn representations from complex
graph-structured data with remarkable performance in different domains.

Overall, graph-based models regarding their embedding dimensionality can be clas-
sified into low-dimensional and high-dimensional embedding. Low-dimensional em-
beddings of nodes in large graphs proved extremely useful in different prediction tasks.
However, most existing approaches require all nodes in the graph to be present when
training the embedding model. These approaches are transductive and are not capable of
being generalized to unseen nodes. Another group of approaches has been recently studied,
which are inherently inductive and generate node embeddings from previously unseen
data. Generating new node embeddings in the inductive setting is more difficult because
generalizing to unseen nodes requires aligning newly observed subgraphs to the node
embeddings [47]. BoxE [48] and GraphSAGE [47] are examples of inductive embedding.
GraphSAGE leverages node feature information to generate node embedding for unseen
data in undirected graphs. It operates by sampling a fixed-size neighborhood of each node
and applying an aggregator over it. However, GraphSAGE is incapable of distinguishing
different graph structures. BoxE modeling is region based supervised embedding learning
which embeds entities as points and relations as a set of hyper-rectangles to spatially char-
acterize logical rules and more straightforward calculations in similarity representations.
This model makes use of boxes in its loss function model, and the entities are still in the
form of vectors. As a result, they cannot benefit from the probabilistic semantics of box
embeddings. Below the order of discussed models have been depicted in Figure 5.

Figure 5. GNN-based models’ timeline.

3.1. Graph Convolution Network Models

By evolving CNNs, convolution is exploited on graph data in parallel. Convolutional
graph neural networks (ConvGNNs) are mainly divided into two main approaches: spec-
tral based, which depends on graph structure based on the Laplacian eigenbasis, and spatial
based, which works on sampling a fixed-size neighborhood of each node and aggregating
over it. This approach has proved powerful in several large-scale inductive benchmarks [49].

Graph convolutional networks have gained much attention; they work under an
encoder-decoder framework to aggregate local information in the graph neighborhood for
each node. Similar to convolutional neural networks, which operate over local regions of
input data, GCNs go over a node and its neighbors in the graph to learn the embedding
representation of that node via recursive aggregation of embeddings of the neighborhood.
Depending on the number of convolution layers, GCNs can capture information of imme-
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diate neighbors or K hops away nodes [50]. In other words, convolutions can smoothen the
learned representations vectors of nodes over the entire graph.

In GCNs, the convolution operator uses locality information in graphs to leverage
attributes associated with nodes [51]. However, general GCN is limited to undirected
graphs and is not suitable for highly multi-relational data [28]. Additionally, it is limited to
learning node embedding on fixed edges instead of jointly learning optimal embeddings
of nodes and edges [14]. Relational Graph Convolutional Network (R-GCN) [15] is one
of the well-known approaches which is developed for knowledge base completion tasks
such as link prediction and entity classification. GCN represents a graph encoder, but to
make it capable of specific tasks, it needs to be developed into R-GCN, which takes the
neighborhood of each entity equally by hierarchical propagation rules to be suitable for
directed graphs. It aggregates relation-specific transformation matrices with neighborhood
information [52]. The encoder maps each entity to a real-valued vector, and the decoder
(scoring function) reconstructs the edges of the graph based on vertex representations. In
this model, DistMult factorization is used as a scoring function where every relation is
related to a diagonal matrix. Optimizing cross-entropy loss pushes the model to pick better
triples than negative ones. However, R-GCN does not take relation or attribute similarity
between entities into account. Additionally, using R-GCN’s scoring function generates
many negative triples for a positive triple [53]. RA-GCN [54] has been proposed to solve
these issues by improving the propagation extension for entity updating and extracting
additional entity and related information through aggregation.

Unlike R-GCN which entity embedding learning was done through a convolution-
based encoder and relation embedding learning was in the decoder, TransGCN [17] trains
relation and entity embeddings simultaneously during graph convolution operation with
fewer parameters compared to R-GCN by using relation as transformation operator on
between head and tail entity in a triple. They used transE and RotatE on both datasets
and RotatE-GCN showed better results than TransE-GCN. However, in TransGCN, the
relation embedding during learning ignores entity representations. To solve this issue,
KE-GCN [14] leveraged the strength of the GCN model and KGC methods for relation and
entity embedding updates. KE-GCN is a heterogeneous learning model focusing on jointly
propagating and updating knowledge embedding of both nodes and edges. Similarly,
COMPGCN [16] also uses joint vector representation learning for nodes and edges in
multi-relational graphs by leveraging various entity-relation composition operations from
KGE models.

The entity and relation update of each model is summarized in Table 5. In this table,
hi is hidden layer representations update entity vi in layer l. W(l)

r is the relation-specific
weight matrix of layer l-th. σ denotes a nonlinear activation function and Nr

i denotes the set

of neighbor indices of a node I with relation r. W(l)
r and W(l)

0 also defined as ∑B
b=1 a(l)rb V(l)

b

which is a linear combination of basis transformation V(l)
b with coefficients a(l)rb . zl

r which

is initial relation representation can be defined the same as W(l)
0 but instead of matrices,

COMPGCN uses embedding vectors. As a result, V(l)
b is a set of learnable basis vectors

and a(l)rb is relation and basis-specific learnable scalar weight. N is also the set of immediate
entity relation neighbors of entity v. ml+1

r is the aggregation representation of neighbors. In
Table 6, the scoring functions of the introduced models have been described.
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Table 6. Graph Neural Network-based update functions.

Model Relation Update Entity Update

R-GCN - h(l+1)
i = σ

(
h(l)i W(l)

0 + ∑
j∈Nr

i

∑
r∈R

1
ci,r

h(l)j W(l)
r

)
RA-GCN - h(l+1)

i = σ

(
h(l)i W(l)

0 + ∑
j∈Nr

i

∑
r∈R

h(l)j W(l)
r

)
TransE-GCN rl+1

k = σ
(

W(l)
1 r(l)k

)
v(l+1)

i = σ

(
∑

j∈Nr
i

∑
r∈R

1
ci,r

v(l)j W(l)
r + W(l)

o v(l)i

)
KE-GCN hl+1

r = σrel() ml+1
v = ∑

(u,v)∈N (r)
W l

r
∂ fr(hl

u ,hl
r ,hl

v)
∂hl

r

CompGCN hl+1
r = hl

rW l
rel hl+1

v = ∑
(u,r)∈N (v)

W l
r φin

(
hl

u, hl
r

)

Although the proposed GCNs can effectively improve accuracy, scalability is a major
challenge for them. PinSage [55] can be a promising solution that is capable of handling
billions of nodes and edges however, to the best of our knowledge, it has not been tested for
knowledge graphs. In this approach, they select a fixed number of neighbors for all given
nodes, which might result in dropping out some neighboring nodes and information loss in
multi-relational data. Below the order of discussed models have been depicted in Figure 6.

Figure 6. CNN-based models’ timeline.

3.2. Attention Neural Network Models

Unlike the application of CNNs in images with a predictable number of neighbors, in
graph data, the neighborhood of nodes in a graph is unpredictable. Hence, one of the chal-
lenges of the previous approaches is to define an operator which can be adaptive to the size
of neighborhoods and hold the weight-sharing property of CNNs. New emerging research
in this area is focused on more contextualized embeddings by exploiting information from
their neighborhood. To address this challenge, an attention mechanism is proposed to learn
those nodes that have more essential features than the current node. Attention mechanisms
have been widely used in sequential tasks. Attention mechanisms are suitable for dealing
with variable-sized inputs and working on the most relevant parts of inputs. If the attention
mechanism is executed to compute a single sequence representation, it will be called self-
attention. Self-attention architecture is parallelizable across node-neighbor pairs and can
be applied to tasks where the model needs to generalize to completely unseen graphs [49].

Despite GCNs in which all neighbors share fixed weights and contribute equally
during information passing, graph attention networks assign different levels of importance
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to each neighborhood of a specific node. In graph attention networks, layers are stacked,
and nodes can attend over their neighbors. Each node will hold a different weight in a
neighborhood. The advantage of these networks is that they do not require any knowl-
edge about the structure of the graph and any matrix operations [49]. Graph attention
network (GAT) [49] uses multi-head attention to stabilize the learning process and boost
performance by concatenating n attention heads. However, using multi-head attention
can have a large size of parameters. To address this issue, a relation-aware graph atten-
tion network (RAGAT) [56] is proposed, which defines relation-aware message passing
functions parameterized by relation-specific network parameters and employs averaging
instead of concatenating n attention head. To validate the results of this model, the decoder
(scoring function) uses two different decoders: ConvE and InteractE. R-GCN and RAGAT
are able to transform each neighbor of an entity in terms of their relation. However, they
struggle with over-parameterization issues, especially with a large number of relations.
The over-parameterization problem is tried to be solved in [57] by eliminating the dedi-
cated parameter introduction for specific relations. R-GAT, unlike classic GAT, considers
relation features.

The other issue of GAT is they ignore relation features [18]. A novel embedding
must incorporate relation and neighboring node features in the attention mechanism to
solve this issue. KBGAT [18] is a multi-hop and semantically similar relation extraction
in the knowledge graph’s n-hop neighborhood of any given entity. At the same time that
KBGAT concatenates entity and relation embeddings to calculate the attention values,
r-GAT transforms them separately. Learning embeddings are performed through a linear
transformation to obtain absolute attention value over the concatenation of entity and
relation feature vectors corresponding to a particular triple. Although the results are
impressive, the disadvantage of this method is the computational costs and requirement of
pre-trained KGE as input for the neural network.

A novel aggregation of neighborhood strategy with a local structure for knowledge
graph completion has been proposed by [58]. LSA-GAT uses local structures to derive a
sophisticated representation that covers semantic and structural information. The com-
bination of LSA-GAT, local structure representation module, feature fusion module, and
CNN-based decoder showed significant results. However, aggregating neighborhood
entities fails to effectively model the critical relationships and ignores the distinct aspects
of entities and relations. DisenKGAT [59] tried to learn the disentangled representation of
entities by using micro- and macro-disentanglement as property of the KG. The robustness
of this model is it can work with different kinds of score functions.

HRAN [60] proposed an attention-based model for heterogeneous graph networks
such as knowledge graphs which have various types of entities and relations by aggregating
features from different semantic aspects and dedicating weights to the relation path. They
aggregate the neighbor features of an entity first, and the importance of each relation-paths
is learned through relation features. The extracted features are aggregated with learned
weights and generate embedding representations. The node feature aggregation of this
model is performed through graph convolution. Next, due to heterogeneity in KGs, an
entity-level relation-path-based aggregation is used. In the relation-level aggregation step, a
novel relation-based attention mechanism is proposed to obtain the importance of different
relation paths.

DecentRL [43] is a KG representation learning approach that encodes each node from
the embeddings of its neighbors. Unlike other GNNs which consider the representation of
an entity itself and its neighbors, this approach can be generalized to represent unseen enti-
ties by just learning representations from their context neighbors. The idea of decentRL is
based on averaging its neighbor embeddings, which decentralizes the semantic information
of entities over their neighbors. DecentRL works based on a decentralized attention net-
work (DAN). DAN and GAT have identical layers, but DAN has a decentralized structure.
In this case, the entity participates in the attention scores and the aggregation of neighbors.
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If the entity is an open entity, then GAT generates the embedding completely random and
will be almost meaningless.

In contrast, DAN generates the embedding of the entity without the requirement of its
embedding. This shows DAN’s robustness and more descriptive aspect than conventional
GAT. This model is considered a prototype of a graph attention mechanism in an open-
world setting. They proposed an efficient knowledge distillation algorithm for generating
unseen entities. The results outperform entity alignment and entity prediction tasks
compared to current models under open-world settings such as AlignE, GAT, and AliNet.
Below the order of discussed models have been depicted in Figure 7.

Figure 7. Attention neural network-based models’ timeline.

3.3. Pre-Trained Neural Network Models in Knowledge Graphs

Knowledge graph construction is mainly supervised and requires humans to define all
the facts manually, such as Wikidata or Freebase. Extracting the facts can also be performed
with a semi-supervised approach, which still needs human supervision. With the evolution
of language models such as BERT, outperforming results in various natural language tasks
have been achieved. However, pre-trained language models (PLMs) struggle to capture
rich knowledge. Existing PLMs learn helpful knowledge from unlabeled text and cannot
capture the facts well because of the sparsity and complex forms in the text. In contrast,
knowledge embedding models can represent relational facts in structured data rather
than an unstructured text corpus. Recently some works have studied the applicability of
pre-trained models in the context of KGs, which proved to be a promising solution.

The unified knowledge embedding and pre-trained language representation (KE-
PLER) [62] is proposed to integrate factual knowledge into the pre-trained language model
and produce effective text-enhanced knowledge embedding. The textual entity descriptions
are encoded with a pre-trained language model as their embeddings to optimize the KE
and language modeling objectives jointly. In this approach, entities are encoded into vectors
using their corresponding text. They produced Wikidata5M from Wikipedia data dump
2019 on two different settings, transductive and inductive. In a transductive setting, entities
are shared, and triple sets are disjointed in train, test, and validation data. In contrast, in an
inductive setting, the entities and triplets are mutually disjointed across train, validation,
and test.

Table 7 depicts all reviewed approaches which experimented with their models on the
WN18RR and FB15k-237 datasets. The results show TransD and KGBERT have the best
results on WN18RR and QuatE and DualE have better results on FB15k-237.
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Table 7. Link prediction with different embedding settings. Lower values in MR and Higher Hits are better.

Model WN18RR FB15k-237

MR Hits@10 MR Hits@10

TransE [13] 3384 50.1 357 46.5
TransH [61] 2524 50.3 255 48.6
TransR [61] 3166 50.7 237 51.1
TransD [61] 276 50.7 246 48.4

DistMult [61] 3704 47.7 411 41.9
ComplEx [61] 3921 48.3 508 43.4

Tucker [31] - 52.6 - 54.4
ConvE [28] 5277 48 246 49.1

InteractE [37] 5202 52.8 172 53.5
ConvKB [39] 3324 52.4 311 42.1
ConEx [38] - 55 - 55.5

LSA-GAT [49] 1947 44 273 60
HARN [60] 2113 54.2 156 54.1
R-GCN [15] - - - 41.7

RotatE-GCN [17] - 55.5 - 57.8
TransE-GCN [17] - 47.7 - 50.8
COMPGCN [16] 3533 54.6 197 53.5

RotatE [13] 3384 50.1 177 53.3
HAKE [23] - 58.2 - 54.2

KG-BERT [61] 97 52.4 153 42.0
QuatE [13] 2314 58.2 87 55
DualE [30] 2270 44.4 91 55.9

DisenKGAT [59] 1504 57.8 179 55.3
RAGAT [56] 2390 56.22 199 54.7
KBGAT [18] 1921 55.4 270 33.1

Inverse Model [28] 13,219 36 7148 1.2
decentRL + TransE [43] - - 159 52.1

decentRL + DistMult [43] - - 151 54.1
RGCN + TransE [43] - - 325 44.3

RGCN + DistMult [43] - - 230 49.9

Petroni [63] presented an in-depth analysis of to what extent pre-trained language
models can store factual and common-sense relational knowledge. The results on rela-
tional knowledge bases show that without fine-tuning, BERT provides competitive results
compared to traditional methods in the case of relational knowledge. They also showed
that BERT could outperform on open-domain question answering compared to super-
vised methods. Finally, they proved some specific types of factual knowledge are readily
learned. However, this work evaluated knowledge to present and did not investigate the
link prediction model in OKGs.

Wang et al. [64] proposed an unsupervised end-to-end model named Match and
Map (MAMA). It constructs KGs with a single forward passing of pre-trained language
models. In the Match stage, a set of candidate facts from corpora will be created. The stored
knowledge in the pre-trained language model will be matched with the target corpora at
this stage and each of the extracted triples will be passed to the Map stage. In the Map
stage, an OKG will be constructed with the candidate facts. If the constructed facts can be
framed in a fixed KG schema, then they will be mapped according to the Wikidata schema.
If the candidate is in an open schema, it will be partially mapped. This work’s issue will be
to increase the size of unmapped facts on a large scale and lead to performance problems.

Talukdar [65] showed BERT may not predict the correct entity for OKGs, but it can
still predict type compatible entities well. The experiment result for entity linking was also
the same [66]. As mentioned before, OKGs do not have an underlying ontology. Hence,
providing type information is expensive and time-consuming, and BERT predictions can
improve OKGs link prediction [65]. They applied BERT to improve OKG link prediction
with a novel scoring function in this work. OKGIT aimed to use the unsupervised implicit



Information 2022, 13, 396 16 of 19

type of information present in the pre-trained BERT model into OKG embeddings instead
of explicit entity types present in an ontology. Results outperformed ConvE and CaRE.

Yao et al. [61] proposed a knowledge graph using a BERT pre-trained model to improve
the performance with rich language information by capturing rich semantic patterns from
free text. BERT predicts whether two input sentences are consecutive or not. A sentence
in original BERT can be an arbitrary span of contiguous text or word sequence [61]. The
plausibility of a triple is calculated by considering the sentences of (h, r, t) as a single
sequence. The model uses sentences of entities h and t to predict the relation r between them.
This way, the knowledge graph completion task is converted into a sequence classification
problem. The results show that in link prediction, it outperformed in comparison with
TransE, TransR, TransH, TransD, and DistMult.

The critical issue of current approaches which use language models is that they are all
trained based on available datasets like Wikipedia. As a result, if OKG wants to be specific
in an area, there might be issues in accuracy, and it requires pre-train a language model
related to that area.

4. Challenges in Knowledge Graphs

As of now, many challenges remain unsolved. These challenges include scalability,
entity disambiguation, knowledge extraction from heterogeneous and unstructured data,
and managing evolving knowledge management. Most current works assume static
knowledge graphs and do not change the facts over time. A promising direction will be
studying dynamic graph algorithms which can handle the addition of new edges over
a continuous time. Most of the current representation learning lacks the capability of
using multilingual KGs. The use of multi-source knowledge bases and multi-modality in
knowledge graphs is still not well studied.

Other than the above-mentioned challenges, most current real-world knowledge
graphs have low quality, and constructing a special domain knowledge graph is cumbersome.

Most currently available KG embeddings are applicable in ontological KGs rather than
OKGs. Although most ontological KGs are canonicalized, OKGs are not. As an example,
Donald Trump, President Trump, and Trump are the same. Recently some works have been
proposed, but they are not still at the state-of-the-art point.

With the growth of graphs at scale, extraction of knowledge from multiple struc-
tured and unstructured sources is still challenging. Using supervised learning approaches
needs human annotation, which is time-consuming. This leads the researchers to use
unsupervised and semi-supervised methods.

Although some models have been proposed to provide additional semantic infor-
mation, they still lack incorporating great semantic information. Additionally, the above-
mentioned embedding models are not capable of knowledge inference. It seems graph
neural network models are a promising approach that still needs more studies to improve
the performance while reducing the complexity. However, jointly leveraging the power
of both GCN models and knowledge graph completion methods for both entities and
relations is still an open challenge.

5. Conclusions

KG provides an effective way of representing real-world relationships. KGE represents
all the components of KG in vector form to represent the latent properties of the components.
KGE methods as a key component of knowledge graphs started with translation-based
models and continued by introducing more advanced approaches recently. The shortcom-
ings of each approach have been expressed. This paper reviewed the main scoring functions
which can result in different levels of expressiveness of facts. They are classified into trans-
lational, decompositional, neural network-based, and convolutional-based models. Unlike
previous works which focused on the knowledge embedding models, we added how they
could be integrated with graph neural networks to predict links. For this purpose, we
introduced different graph neural network-based knowledge graph embedding. Overall,



Information 2022, 13, 396 17 of 19

results show that the early models such as TransE although have faster computations, but
they carry out less expressiveness in results.

On the other hand, using more complex scoring functions can also result in higher
computational costs but better expressiveness. Graph neural network models mostly work
on encoder-decoder based are one promising solution for link prediction and knowledge
graph completion. Although many types of research have been performed, most of the
current approaches are based on general datasets which are publicly available, and the
results in special domains are not well studied or evaluated.
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