
Citation: Lescure, V.; François, M.;

Charleux, M.; Aubry, E.; Combemale,

L.; Briois, P.; Caboche, G. Reactive

Magnetron Sputtering for Y-Doped

Barium Zirconate Electrolyte

Deposition in a Complete Protonic

Ceramic Fuel Cell. Crystals 2024, 14,

475. https://doi.org/10.3390/

cryst14050475

Academic Editor: Zhonghua Yao

Received: 29 March 2024

Revised: 7 May 2024

Accepted: 15 May 2024

Published: 18 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Reactive Magnetron Sputtering for Y-Doped Barium Zirconate
Electrolyte Deposition in a Complete Protonic Ceramic Fuel Cell
Victoire Lescure 1,2, Mélanie François 1 , Maëlys Charleux 1,2, Eric Aubry 2, Lionel Combemale 1 , Pascal Briois 2

and Gilles Caboche 1,*

1 Laboratoire Interdisciplinaire Carnot de Bourgogne, FCLAB, ICB-UMR6303, CNRS, Université de Bourgogne
Franche-Comté, 9 Avenue Savary, BP47870, CEDEX, 21078 Dijon, France;
victoire.lescure@u-bourgogne.fr (V.L.); melanie.francois@u-bourgogne.fr (M.F.);
maelys.charleux@u-bourgogne.fr (M.C.); lionel.combemale@u-bourgogne.fr (L.C.)

2 Institut FEMTO-ST, FCLAB, UMR 6174, CNRS, Université de Bourgogne Franche-Comté, 15B, Avenue des
Montboucons, 25030 Besançon, France; eric.aubry-01@utbm.fr (E.A.); pascal.briois@utbm.fr (P.B.)

* Correspondence: gilles.caboche@u-bourgogne.fr; Tel.: +33-380396153

Abstract: Yttrium-doped barium zirconate is a commonly used electrolyte material for Protonic
Ceramic Fuel Cells (PCFC) due to its high protonic conductivity and high chemical stability. However,
it is also known for its poor sinterability and poor grain boundary conductivity. In this work, in
response to these issues, reactive magnetron sputtering was strategically chosen as the electrolyte
deposition technique. This method allows the creation of a 4 µm tick electrolyte with a dense
columnar microstructure. Notably, this technique is not widely utilized in PCFC fabrication. In
this study, a complete cell is elaborated without exceeding a sintering temperature of 1350 ◦C. Tape
casting is used for the anode, and spray coating is used for the cathode. The material of interest is
yttrium-doped barium zirconate with the formula BaZr0.8Y0.2O3−δ (BZY). The anode consists of a
NiO-BZY cermet, while the cathode is composed of BZY and Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSFC) in a
50:50 weight ratio. The electrochemical impedance spectroscopy analysis reveals a global polarization
resistance of 0.3 Ω cm2, indicating highly efficient interfaces between electrolytes and electrodes.

Keywords: reactive magnetron sputtering; proton conducting ceramics; barium zirconate; tape
casting; spray coating

1. Introduction

Ceramics exhibit specific properties such as chemical resistance, high temperature
resistance, electrocatalytic properties, and hardness and are used in a wide range of appli-
cations, particularly in the energy sector. Energy production stands as one of the global
challenges of our century to reduce the emission of greenhouse gases and slow down global
warming. The use of hydrogen in fuel cell systems is a promising alternative. Currently,
Protonic Ceramic Fuel Cells (PCFC) are drawing more and more attention, as they are an ex-
cellent candidate due to their high protonic conductivity, above 10−2 S cm−1 at 600 ◦C [1–3],
leading to noteworthy overall performances with a maximum power density higher than
500 mW cm−2 at 650 ◦C [4–6]. In contrast to solid oxide fuel cells (SOFCs), where oxygen
ions serve as the active species, PCFCs feature H+ ions as the active entities. This character-
istic enables a reduction in operating temperatures within the range of 400–600 ◦C, owing
to the higher mobility of H+ ions [7–9]. Lowering the operating temperature is crucial to
extend the life expectancy of the cell. Also, thanks to the protonic conduction, water is
formed at the cathode side, which prevents the fuel from being diluted [10,11].

BaCeO3-based oxides are currently the most studied electrolyte material for
PCFCs [12–15]. It is generally reported that doped BaCeO3 exhibits the highest protonic
conductivity among the perovskite-type materials [16,17]. In particular, Y-doped BaCeO3
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(BCY) appears to be the most promising electrolyte candidate with a protonic conduc-
tivity equal to or superior to 2 10−2 S·cm−1 at 600 ◦C [18–20]. However, BaCeO3-based
perovskites show low stability in H2O and/or CO2-containing atmospheres, which limits
their practical application [21–23]. Acceptor-doped BaZrO3 is considered a good elec-
trolyte material, especially with a substitution of 20% mol of yttrium [24–26]. In contrast
to BaCeO3-based material, BaZr0.8Y0.2O3−δ (BZY20) presents excellent chemical stabil-
ity [27–29]. However, it exhibits a lower total conductivity than BCY due to its high grain
boundary resistance [30,31]. In addition, the highly refractive nature of BZY20 requires
high sintering temperatures (1600–1700 ◦C) and long annealing times (>24 h) to achieve
dense membranes with large grains and reach an appropriate total conductivity [15,32,33].
In this work, BZY20 was the chosen electrolyte material. To overcome its poor sinter-
ability and poor grain boundary protonic conductivity, instead of adding sintering aids,
the strategy was to employ physical vapor deposition in order to deposit a dense and
columnar electrolyte layer to decrease the number of grain boundaries and thus increase
the performance [6,34–36].

The anode, used as support for the complete cell, is a 400 µm thick porous layer,
enabling the fuel to be directed into the core of the cell [37]. It is made of a ceramic and
metal composite called cermet, so the reaction can only occur in a specific zone named Triple
Phase Boundary (TPB) [38]. The TPB is the point of contact between the three different
phases: ceramic, metal, and gas present in the pores. Here, the ceramic is BZY20, and the
metal is the widely used Ni obtained after NiO reduction [39]. Ni acts as a catalyst in the
oxidation of hydrogen in addition to conducting electrons [40,41].

The cathode material is a composite consisting of a Mixed Ionic-Electronic Conductors
(MIEC) and a protonic conductor in order to increase the number of TPBs [42,43]. Further-
more, the use of a composite cathode allows to reduce the Thermal Expansion Coefficient
(TEC) mismatch existing between classical cathode and electrolyte material [44,45]. Among
the different MIECs, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) was chosen due to its greater affinity
with the electrolyte material [46–48].

To achieve good performance in a complete cell, it is necessary to control the mi-
crostructure of the electrolyte, especially the grain boundaries. In this work, multiple
processes are used: tape casting, DC magnetron sputtering, and spray coating. Each has its
own advantages. The anode bears all the mechanical properties of the cell; thus, it must be
more solid and thicker than the rest. The method used to make it was tape casting, allowing
a homogeneous layer [49,50]. Next, the electrolyte was deposited onto the anode by reactive
magnetron sputtering, resulting in a thin, dense, and highly texturized layer [6,51]. The
final component, the cathode, was then spray-coated. This method is convenient as it
enables the electrode to be easily and simply placed on top of the electrolyte without any
physical contact with it [52].

2. Materials and Methods

The complete cell was made by a succession of three different processes without
exceeding 1350 ◦C: (1) tape-casting for the anode, which is used as the mechanical sup-
port of the cell, sintered at 1350 ◦C; (2) reactive magnetron sputtering for the electrolyte
annealed at 1000 ◦C; and (3) spray coating for the cathode annealed at 800 ◦C. Figure 1
illustrates a schematic cell, highlighting the different shaping methods applied to each
component’s production.
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2.1. Elaboration Process

The initial step consists of the preparation of the slurry. Ceramic powders BZY20 (pro-
vided by Cerpotech (Heimdal, Norway), lot #180120A-BZY20, with chemical purity > 99.0%)
and NiO (provided by Fuel Cell materials (Colombus, OH, USA), lot #R5739, item #312010)
were mixed together with a mixture of solvents, ethanol (Sigma Aldrich (St. Louis, MI,
USA) #32205-M with a chemical purity of >99.8%) and Methyl Ethyl Ketone (Sigma Aldrich
#78933 with chemical purity > 99.0%), along with a dispersant TEA (TriEthylAmine, Sigma
Aldrich #90279 with a chemical purity of >99.0%). The components were mixed together in
a Turbula-T2F device for 16 h with zirconia balls to achieve a homogeneous mixture. After
that, PolyVinyl Butyral (PVB, Sigma-Aldrich #P110010) as binder and PolyethylEne Glycol
(PEG, Sigma-Aldrich #P3015) and BenzylButyl Phthalate (BBP, Sigma-Aldrich #308501 with
a chemical purity of 98%) as plasticizers are added. The slurry underwent an additional
mixing period of 24 h. The detailed composition of the slurry is given in Table 1.

Table 1. Composition of the anode slurry (in g).

BZY NiO EtOH MEK TEA PVB PEG BBP

24 36 14.4 14.4 3.15 11.1 2.25 2.25

The anode slurry is tape casted onto a glass plate using an automatic tape caster
(Elcometer®, Manchester, UK) with a casting rate of 1 cm s−1. To prevent any air bubbles,
the slip is de-aired beforehand. A homogeneous layer is obtained via a doctor blade,
the gap of which from the glass plate is fixed between 1700 and 2000 µm. The thickness
is determined by taking into consideration the drying and sintering shrinkage. After a
drying time of minimum 24 h at room temperature, the cells are punch-cut to a diameter
of 34 mm. The last step is the sintering at 1350 ◦C for 10 h with a heating and cooling rate
of 3 ◦C min−1. A plateau at 360 ◦C for 1 h is applied to eliminate the organic compounds.
The cells are covered with the electrolyte powder to prevent the Ba evaporation during the
sintering [53–55].

Then, the BZY electrolyte layer was deposited by co-sputtering of Ba (purity 99.9%,
Ø 50 mm × 3 mm) and Zr0.8Y0.2 (purity 99.9%, Ø 50 mm × 6 mm) targets as described
in previous work [56]. The reactor is a 90 L cylinder Alcatel 604 SCM (CIT Alcatel, An-
necy, France) pumped down via a turbomolecular pump system that permitted a residual
vacuum below 10−4 Pa. The chamber is equipped with circular planar and water-cooled
magnetron sputtering sources spaced 60 mm from the rotating substrate holder. The Ba-
and Zr0.8Y0.2-targets are supplied with a pulsed DC (Direct Current) advanced energy
dual generator authorizing the control of the discharge power. Argon (100 mL min−1) and
oxygen (15 mL min−1) flow rates are controlled with Brooks flowmeters and the working
pressure is kept at 1.2 Pa during deposition (working pressure measured using an MKS
Baratron gauge, MKS Instruments, Andover, MA, USA). The anodes are placed on the
rotating substrate holder at 40 mm from the substrate holder axis and are heated at 560 ◦C
by radiative effect with a graphite electrical resistance heater placed behind the substrate
holder. The powers applied to the two targets are optimized to obtained the required
composition. The power applied on the Ba- target varies from 120 to 150 W and from 200 to
230 W for the Zr0.8Y0.2-target. The deposition speed in these conditions is 0.4 µm h−1. The
half-cell was then annealed at 1000 ◦C for 2 h, with a heating rate of 3 ◦C min−1 to ensure
good densification and stress relaxation.

The cathode is deposited directly onto the electrolyte by spray coating via an airbrush.
The slurry has to be more liquid than the slurry for tape casting. The liquid/solid ratio is 5
to 1, so the final slurry is slightly viscous. The composition of the slurry is given in Table 2.
All the components are mixed by a Turbula for 24 h. Before the deposition, a 16 mm-circle
template is tapped down onto the substrate to obtain a final cathode purposely smaller
than the half-cell (anode/electrolyte). This prevents any short-circuits that could be caused
by a contact between the anode and the cathode. The airbrush is held at 20 cm from the
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substrate. Several deposition conditions were tested, as many parameters influence the
final appearance of the cathode: the number of depositions, the duration of these sequences,
the frequency, the drying time, etc. In the end, the selected method is 13 depositions of 5 s
with a drying time of 2 min between each. This step is followed by an annealing treatment
at 800 ◦C under air.

Table 2. Ink composition for the spray coating deposition (in g).

BZY BSCF Graphite EtOH TEA PVB PEG BBP

5 5 0.4 50 0.106 1.2 1.2 0.75

2.2. Characterization

X-ray Diffraction (XRD) analysis was conducted on a Bruker D2 Phaser (Bruker Cor-
poration, Billerica, MA, USA) coupled with linear detector Lynxeye_XE_T (Bruker Corpo-
ration, Billerica, MA, USA) using Cu Kα radiation. The microstructure was investigated by
scanning electron microscopy (SEM) on a Hitachi SU1510 coupled with a Bruker XFlash6I10
(Bruker Corporation, Billerica, MA, USA) energy-dispersive X-ray (EDX) analyzer, on a
Hitachi SU8230 (Hitachi, Tokyo, Japan) coupled with a Thermo-Scientific UltraDry EDS
detector (Thermo Fisher Scientific, Waltham, MA, USA) and on a Thermo Fisher Scientific
Phenom ProX desktop SEM (Thermo Fisher Scientific, Waltham, MA, USA). Weight losses
during sintering were studied by thermogravimetric analysis (TGA) on a TA Instrument
Q600 SDT (TA Instruments, New Castle, DE, USA) using the following procedure: ramp
at 5 ◦C min−1 to 360 ◦C, dwelling time of 1 h, ramp at 5 ◦C min−1 to 1350 ◦C, dwelling
time for 10 h. The roughness of the surface of the samples was determined by an Olympus
DSX510 microscope (Olympus, Tokyo, Japan).

Electrochemical measurements were performed on a homemade test bench inspired
by a Norecs ProboStat device (Norecs, Oslo, Norway). The reduction was carried out at
525 ◦C to decrease the kinetics of the chemical reaction. The anode side was fed by gas
at 45.4 mL min−1 with a pressure of 1.2 bar. Pure N2 was send during the increase in the
temperature at 1.5 ◦C min−1. The cathode side was fed by dry air at 100 mL.min−1 at
1.5 bar during the heating and the reduction. The quantity of H2 was increased step by step
by 5% until 50% for 2 h then by 10% for 90 min. The air flow was adjusted at 100 mL.min−1

at a pressure of 1.7 bar. The final OCV was 0.78 V for 100% of wet H2 at a pressure of
1.4 bar using a flow of 50 mL min−1. This OCV value is lower than expected due to gas
leakages but was stable for some hours before dropping to 0 V due to the breaking of the
sample during the increase in temperature from 525 to 550 ◦C. Electrochemical Impedance
Spectroscopy (EIS) was carried out using a Metrohm PGSTAT302N (Metrohm, Herisau,
Switzerland) from 105 Hz to 10−1 Hz with an amplitude of 10 mV.

3. Results and Discussion
3.1. Characterization of the Anodic Substrate

A TGA was first performed to determine the behavior of the green anodic tape during
the sintering process. The resulting thermogram, presented in Figure 2, consists of four
distinct weight losses. The first one, noted A, occurs during the first ramp (between 20 and
300 ◦C) and accounts for 26.0%, corresponding to the degradation of binders, dispersants,
and plasticizers and the evaporation of residual solvents. The second weight loss (1.6%),
noted B, occurs between 300 and 955 ◦C and corresponds to the degas/dehydration of the
bulk, which is known to happen between 600 and 700 ◦C in protonic conductors [57]. A
third weight loss of 1.3%, noted C, is attributed to the decomposition of the BaCO3 impurity
initially present in the BZY powder (see X-ray diffractogram pattern of BZY powder on
Figure A1 in Appendix A). And, finally, from 1300 ◦C until the end of the thermal treatment
meaning after a dwell of 10 h at 1350 ◦C, the vaporization of BaO is visible represented by
a weight loss of 1.5%, noted D.
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Figure 2. TGA of BZY-NiO anode material at 1350 ◦C for 10 h.

Based on these results, elemental analyses were conducted to observe any changes
in BZY composition during the sintering process. The content of each element, as well
as the theoretical content, is presented in Table 3. For comparison, a sample covered by
BZY sacrificial powder and sintered under the same conditions was also studied. The
composition of the anode after sintering without sacrificial powder is Ba0.89Zr0.78Y0.21O3−δ

with a ratio of A site/B site equals to 0.89 instead of 1. This result is consistent with the TGA
study and confirms BaO vaporization at high temperatures. To prevent BaO vaporization
during barium cerate and zirconate sintering, a solution is to use sacrificial powder [58,59].
As shown in Table 3, the ratio of A site/B site remains 1 after the sintering treatment using
this strategy.

Table 3. EDX elemental analyses of the anode surface after sintering with and without sacrificial
powder.

Ba (A Site) at% Zr (B Site) at% Y (B Site) at% Ratio (A Site)/(B Site)

Theoretical values 1.00 0.80 0.20 1

Without BZY sacrificial powder 0.89 ± 0.08 0.79 ± 0.07 0.21 ± 0.07 0.89

With BZY sacrificial powder 1.00 ± 0.05 0.89 ± 0.02 0.11 ± 0.02 1

X-ray diffraction patterns of the surface of the BZY-NiO anode after the sintering at
1350 ◦C for 10 h with and without sacrificial powder are presented in Figure 3. When
sacrificial powder is used, the diffractogram consists of three different phases: perovskite
structure with BaZr0.9Y0.1O2.95 composition (ICCD file N◦00-064-0183, with lattice parame-
ter of 4.212(3) Å calculated by Bragg’s law), NiO (ICCD file N◦00-047-1049) and Y2BaNiO5
(ICDD file N◦00-047-0090). Such Y2BaNiO5 phase was also reported by other authors when
an excess of BZY compared to NiO is employed during sintering [29,60,61]. In addition,
Tong et al. and Liu et al. also reported that Y2BaNiO5 promotes grain growth of BZY
and leads to the appearance of electronic conductivity, which is detrimental to electrolyte
application but beneficial to anode application [29,61].
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Without any sacrificial powder, the perovskite structure proves once again the barium
deficiency as it was identified with Ba0.9(Zr,Y)O2.84 (ICCD file N◦04-020-2236, with lattice
parameter of 4.209(7) Å). NiO and Y2O3 were also detected. This result provides clear
evidence that under the sintering conditions, the samples decompose to form yttria doped
zirconia (Equation (1) [62]) or yttria (Equation (2) [63,64]) and volatile barium species, BaO
or BaCO3, like as observed in other studies [62–67].

BaZr0.8Y0.2O3−δ + CO2 → BaCO3 + Zr0.8Y0.2O2−δ (1)

BaZr0.8Y0.2O3−δ + (5x/ 4)O2 → xBaO + (x/2)Y2O3 + Ba1−xZr0.8Y0.2−xO3−δ (2)

Figure 4 shows SEM micrographs of the BZY-NiO anode substrate after sintering at
1350 ◦C for 10 h in air without any sacrificial powder and after sintering with BZY sacrificial
powder. Samples sintered with sacrificial powder exhibit a denser microstructure with
an average porosity diameter of 1.4 ± 1.3 µm, determined using ImageJ software v. 1.54,
while anode sintered without sacrificial powder shows an average porosity diameter of
4.3 ± 2.4 µm. Such micrometric porosity might lead to detrimental pinhole defects in the
electrolyte layer due to shading effects during DC sputtering [68].

Crystals 2024, 14, x FOR PEER REVIEW 7 of 16 
 

 

different areas on the cell. So, to prevent any contact between the anodic and cathodic 
parts of the final cells, the electrolyte has to reach a minimum thickness equal to 2.7 µm. 

  
(a) (b) 

Figure 4. SEM micrographs of the BZY-NiO substrate surface, after annealing at 1350 °C for 10 h in 
air. (a): without any sacrificial powder. (b): with sacrificial powder. 

 
Figure 5. Three-dimensional microscopy of the anode substrate (scale in µm). 

3.2. Study of Thin Electrolyte Layer Deposition by PVD 
By considering the previous observations, the electrolyte layer was then directly de-

posited on the anodic support by reactive magnetron sputtering. The aim was to realize a 
dense layer with a thickness superior to 2.7 µm. Previous work [51] proved that using one 
single ceramic target to deposit ceramic electrolyte did not work, hence the use of a pure 
Ba metallic target and a Zr0.8Y0.2 metallic target. Therefore, tests had to be made to adjust 
the composition of the thin film. The power applied to each target has a direct effect on 
the composition. Figure 6 shows how the stoichiometry varies as a function of the ratio of 
the powers applied to the targets. When the PBa/PZr0.8Y0.2 ratio increases, the Ba-content, 
measured by EDX, decreases. A total of 140 W on the Ba target and 220 W applied on the 
Zr0.8Y0.2 target was the closest to obtaining the convenient stoichiometry with a Ba/Zr + Y 
ratio close to 1. 

Figure 4. SEM micrographs of the BZY-NiO substrate surface, after annealing at 1350 ◦C for 10 h in
air. (a): without any sacrificial powder. (b): with sacrificial powder.



Crystals 2024, 14, 475 7 of 15

To define the size and depth of the observed defects, 3D microscopy analyses were
then conducted on the anode surface. Figure 5 shows the result obtained on a 400 × 400 µm
square. The top value reaches 1.3 µm and the lower value is near −1.4 µm. These val-
ues were obtained after calculating the mean top values and the mean lowest values of
10 different areas on the cell. So, to prevent any contact between the anodic and cathodic
parts of the final cells, the electrolyte has to reach a minimum thickness equal to 2.7 µm.
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3.2. Study of Thin Electrolyte Layer Deposition by PVD

By considering the previous observations, the electrolyte layer was then directly
deposited on the anodic support by reactive magnetron sputtering. The aim was to realize
a dense layer with a thickness superior to 2.7 µm. Previous work [51] proved that using
one single ceramic target to deposit ceramic electrolyte did not work, hence the use of a
pure Ba metallic target and a Zr0.8Y0.2 metallic target. Therefore, tests had to be made to
adjust the composition of the thin film. The power applied to each target has a direct effect
on the composition. Figure 6 shows how the stoichiometry varies as a function of the ratio
of the powers applied to the targets. When the PBa/PZr0.8Y0.2 ratio increases, the Ba-content,
measured by EDX, decreases. A total of 140 W on the Ba target and 220 W applied on the
Zr0.8Y0.2 target was the closest to obtaining the convenient stoichiometry with a Ba/Zr + Y
ratio close to 1.
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X-ray Diffraction is realized on the electrolyte to determine the final structures. Figure 7
shows the diffraction patterns of the deposited electrolyte before and after the annealing
treatment in comparison with the theoretical XRD pattern of BZY obtained via CaRine
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Crytallography software (v. 3.1). The pattern of the electrolyte before annealing treatment
presents two BZY structures with cubic perovskite structure (space group Pm-3 m); one
corresponds to the anodic substrate, and the second is assigned to the electrolyte. NiO, with
its bunsenite structure, is also detected due to its presence in the anodic part. Concerning
the BZY structure detected in the anodic substrate, a slight depletion of Ba is observed
as these particular samples were not sintered under a bed of sacrificial powder. In the
electrolyte coating, the BZY structure is clearly oriented following two main directions:
[h00] (visible on [100] at 21◦ and [200] at 43◦) and [211] visible at 53◦. Also, a shift in the
peaks of the electrolyte to the lower angles (highlighted with the purple dotted line in
Figure 7 at 30◦) is observed compared to the peaks of the pure BZY powder. This shift is
due to the reductive atmosphere employed during the deposition, which creates oxygen
vacancies and/or stresses in the coating. The formation of oxygen vacancies gives rise
to lattice expansion with the loss of negatively charged oxygen, weakening the extent of
ionic bonding. As a result, the XRD pattern is shifted towards the lower angles. These
observations allow us to choose Ba(Y,Zr)O2.6 (ICDD 04-021-8250) as the main phase of
the electrolyte layer. To ensure good electrolyte layer densification and to compensate
for an excess of oxygen vacancies, the half-cell was annealed for 2 h at 1000 ◦C. The
thermal treatment has no impact on the anodic substrate. However, it has an effect on
the electrolyte structure. In fact, the preferential growth-oriented [211] disappears, and
only one preferential direction remains, following the [h00] plans. This reorientation is
attributed to stress relaxation [69,70]. Also, the thermal treatment was realized under air, so
the oxygen content increased within the structure. This explains the change to Ba(Y,Zr)O2.95
structure (ICDD 04-011-7315) for the electrolyte.
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To ensure a perfect seal between the anodic and cathodic components, the electrolyte
layer has to be as dense as possible and have a minimum thickness of 2.7 µm. Figure 8
presents SEM observations on half cells, proving that these specifications are reached. The
cross-section (Figure 8a) demonstrates the perfect adhesion between the anodic substrate
and the electrolyte layers and shows a homogeneous thickness for this last. The deposited
electrolyte has a columnar microstructure, as supposed after XRD studies and as observed
in different publications [71,72]. It is a great advantage for the PCFC system because this
morphology allows protons to traverse the electrolyte with little to no grain boundaries
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to cross; this could improve the protonic conductivity performances, as proven by Bae
et al. [6]. Figure 8b shows the impact of the thermal treatment at 1000 ◦C. The columnar
structure is conserved, and a straightening of the columns is observed, agreeing well with
the disappearance of the [211] direction seen on the XRD pattern. This could be explained
by the mechanical relaxation during the annealing treatment. Finally, SEM pictures permit
us to evaluate the electrolyte thickness (t), which is close to 4 µm, meaning bigger than
2.7 µm, and to confirm the absence of porosities on the electrolyte surface (Figure 8c). The
surface indeed appears flat without any trace of the underlying anode.
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A 3D microscopy is performed on the electrolyte after the annealing treatment at
1000 ◦C (Figure 9). The deposited layer follows the substrate topography. The height differ-
ence between the top and the bottom of the electrolyte surface remains near 3 µm. Thus,
even if the anode is perfectly covered, the resulting half-cells are not flat, as mentioned after
SEM observations. Nevertheless, the electrolyte morphology allows it to play its insulator
role between the electrodes and avoid contact between hydrogen and oxygen gases.
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Figure 9. Three-dimensional microscopy of the deposited electrolyte (scale in µm).

As presented earlier, different ratios of power applied to each target were tested to
reach the right composition. Other parameters influence the aspect of the film. The first
one is the substrate temperature during the deposition. As shown by Arab Pour Yazdi
et al. [73], if the substrate is not heated during the deposition and without a heating
treatment following the deposition, the film is unstable, and cracks are formed during the
annealing treatment after the deposition stage. Another role of the temperature during the
deposition is controlling the microstructure, along with the energy accumulated by the
adatoms (which is partially correlated with the working pressure; the higher the pressure,
the more collisions there will be between atoms, and the less energy they will have). In his
study, Anders [74] proposes an extended structure zone diagram (SZD), which predicts
the microstructure of the film as a function of these parameters. This diagram defines four
zones with specific microstructures, and the parameters in this study were set to be in the
columnar microstructure zone.
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3.3. Study of the Cathode Part Deposited by Spray Coating

Finally, the cathode is deposited by spray coating on the electrolyte in order to obtain
a complete cell. This step is followed by a thermal treatment at 800 ◦C under air. The
cathode reaches a thickness of 30 µm. The results are presented in Figure 10a. The SEM
picture shows an enlargement of the electrolyte area in a complete cell. It confirms the
perfect adhesion between the anodic substrate, the electrolyte, and the cathode layers.
Elemental analyses concerning the Ni (only in the anodic part) and Sr (only in the cathodic
electrode) presences were also carried out on the electrolyte edges. The results, presented
in Figure 10b, confirm the electrolyte thickness (>3 µm) and highlight the perfect interface
both on the anode side and on the cathode side.
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closed to the electrolyte.

3.4. Impedance Measurement

The EIS spectra are presented in Figure 11a (Nyquist plot) and Figure 11b (Bode plot).
The Nyquist plot consists of an inductive tail attributed to the electrical wires, followed
by a skewed semi-circle. The ohmic resistance (RΩ) taken at the intercept with the real
part of the impedance at high frequencies is 7.02 Ω cm2 and was stable for the duration of
the measurements carried out at 525 ◦C (4 h). This value is significantly higher than other
reported values for similar samples. For example, Bae et al. reported a RΩ of 0.15 Ω cm2

for a Ni-BZY//BZY deposited by PLD (2 µm thick)//La0.6Sr0.4CoO3−δ cell at 600 ◦C
and Pergolesi et al. obtained a RΩ of 1.85 Ω cm2 for a Ni-BZY//BZY deposited by PLD
(4 µm thick)//La0.6Sr0.4C0.2Fe0.8O3−δ-BaCe0.9Yb0.1O3−δ cell at 600 ◦C [6,75]. However, the
temperature has to be taken into account, since the diffusion is thermally activated, it is
reasonable to suppose that the ohmic resistance of the BZY electrolyte deposited by reactive
pulsed DC sputtering would have shown a lower resistance value at a higher temperature.
In addition, the current collectors used in the homemade set-up were made of stainless
steel, which probably led to an increase in the ohmic resistance due to the passivation layer.

Concerning the electrodes, the anode and cathode contributions cannot be separated
due to the too-close characteristic time constant, as highlighted in the Bode plot. According
to the shape of the Nyquist plot, the cathode process is not dominant, suggesting that the
use of a composite material that presents protonic–electronic-oxygen ion conduction is
beneficial for cell performance. The global polarization resistance is 0.3 Ω.cm2, similar to
the lowest values reported in the literature [76]. Such a low value can be explained by
the very low charge transfer resistances associated with the hydrogen oxidation reaction
(HOR) and oxygen reduction reaction (ORR) due to the quality of the interfaces between
the electrolyte and the electrodes.
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4. Conclusions

In conclusion, this study serves as a compelling proof of concept, confirming the
feasibility of this process sequence for realizing a complete ceramic fuel cell with a well-
controlled electrolyte microstructure. This process sequence, meaning tape casting, DC
magnetron sputtering, and spray coating, enables the production of a thin and dense
electrolyte. Noteworthy advantages include excellent layer adhesion, the absence of de-
lamination issues, and the ability to shape BZY, recognized for its refractory properties, at
temperatures below 1350 ◦C. The EIS analysis reveals a higher ohmic resistance of 7.02 Ω
cm2, possibly due to low temperature and stainless steel current collectors. However, a low
overall polarization resistance of 0.3 Ω cm2 was obtained, indicating efficient interfaces
between electrolytes and electrodes thanks to the elaboration method.
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Appendix A

Figure A1 is the diffractogram of the raw BZY powder. The perovskite phase of BZY
is present and was attributed to ICCD file N◦04-015-2511. A barium carbonate phase is also
present and was attributed to ICCD file N◦00-001-0506.
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