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Abstract: Using a simple acid-base neutralization method, a Ch-PW solid catalyst was synthesized by
mixing choline hydroxide (ChOH) and phosphotungstic acid (HPW) at a 2:1 molar ratio in an aqueous
solution. This catalyst was combined with a 20 wt.% potassium peroxymonosulfate (PMS) solution, using
acetonitrile (ACN) as the extraction solvent to create an extraction catalytic oxidative desulfurization
system. The optimal desulfurization conditions were determined through response surface methodology,
targeting the highest desulfurization rate: 0.99 g of Ch-PW, 1.07 g of PMS, 2.5 g of extraction solvent, at a
temperature of 50.48 ◦C. The predicted desulfurization rate was 90.79%, compared to an experimental rate
of 93.64%, with a deviation of 3.04%. A quadratic model correlating the desulfurization rate with the four
conditions was developed and validated using ANOVA, which also quantified the impact of each factor
on the desulfurization rate: PMS > ACN > Ch-PW > temperature. GC-MS analysis identified the main
oxidation product as DBTO2, and the mechanism of desulfurization in this system was further explored.

Keywords: response surface methodology; desulfurization; choline phosphotungstate; PMS; optimization

1. Introduction

The desulfurization of oil products primarily focuses on removing organic sulfur
compounds from petroleum products [1]. This crucial process not only reduces sulfur
dioxide emissions from burning sulfur-containing fuels, which helps improve air quality
and protect the environment, but also safeguards human health. Furthermore, desulfurized
fuels enhance the combustion efficiency and extend the life of engines while minimizing
wear. Many countries and regions enforce stringent regulations on the sulfur content in
petroleum products, compelling refineries to adopt desulfurization practices to comply
with environmental standards. Removing sulfur from fuel not only boosts its combus-
tion efficiency but also increases the overall energy system’s efficiency. As the focus on
environmental protection and energy efficiency intensifies, advancements in desulfuriza-
tion technologies are spurring research and innovations in this area, particularly in the
development of new desulfurization methods and the enhancement of catalysts [2].

Phosphotungstic acid has emerged as a versatile and vital catalyst across a range of
applications including the synthesis of fine chemicals, petrochemical processing, water
treatment, environmental purification, renewable energy production, organic synthesis,
and materials science. Recent advances have particularly highlighted its role in the catalytic
oxidative desulfurization of oil products. Wu et al. [3] created spherical PEHA-HPW by
simply combining pentamethylene hexamine (PEHA) with phosphotungstic acid (HPW)
and used it with hydrogen peroxide to achieve the 100% removal of dibenzothiophene
(DBT) within 30 min. Wang et al. [4] developed nanospherical HPW-ZrO2 catalysts by load-
ing phosphotungstic acid onto zirconium dioxide (ZrO2), which, when used with hydrogen

Catalysts 2024, 14, 326. https://doi.org/10.3390/catal14050326 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal14050326
https://doi.org/10.3390/catal14050326
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://doi.org/10.3390/catal14050326
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal14050326?type=check_update&version=1


Catalysts 2024, 14, 326 2 of 11

peroxide, completely removed DBT, with GC-MS analysis revealing DBTO2 as the oxidation
product. Jangi et al. [5] supported phosphotungstic acid on natural zeolites—clinoptilolite,
mordenite, ferrierite, and natrolite—and found that PTA-Ferr exhibited the highest catalytic
activity, removing 82.02% of DBT. Xiong et al. [6] formulated phosphotungstic acid ionic
liquid materials by dissolving it in octadecyl dimethyl ammonium chloride (OTAC), show-
ing exceptional catalytic performance in the treatment of DBT, 4-MDBT, and 4,6-DMDBT.
After 60 min, the desulfurization rates of the three sulfur-containing organic compounds
were all close to 100%.

Choline, found naturally, is leveraged in green chemistry due to its environmental
friendliness, low volatility, high solubility, affordability, thermal stability, and recyclability.
Choline chloride, primarily serving as a hydrogen bond donor, is integral to developing
deep eutectic solvents and has emerged as a key player in oil desulfurization [7]. Liu et al. [8]
synthesized a choline chloride/2-polyethylene glycol (ChCl/2PEG) deep eutectic solvent
that, powered by hydrogen peroxide, removed 99.1% of dibenzothiophene (DBT) in just
3 h. Abbasi et al. [9] combined trichloroacetic acid (TCA) with choline chloride to produce
a solvent that, when used with hydrogen peroxide, achieved a 99.6% removal rate for DBT
and 91.4% for benzothiophene (BT). Fan et al. [10] formulated a novel deep eutectic solvent
by blending choline chloride, benzene sulfonic acid, and ethylene glycol, which removed
100% of DBT, BT, and 4,6-DMDBT within two hours, retaining a 91% desulfurization
efficiency even after five cycles. Yue et al. [11] applied molecular dynamics’ simulations
and free energy perturbation to model the extraction processes of TS/DBT/MDBT with
choline chloride-based deep eutectic solvents.

In the process of catalytic oxidative desulfurization, hydrogen peroxide is predom-
inantly used as the oxidant because of its high reactivity and environmentally friendly
oxidation byproducts. However, its use is limited by its instability, strong corrosiveness,
and high cost. In earlier studies [12–14], our team employed peroxymonosulfate as an
alternative oxidant in conjunction with cobalt-based ionic liquid catalysts, achieving highly
efficient desulfurization. Peroxymonosulfate stands out for its potent oxidative strength,
minimal corrosiveness, affordability, and exceptional stability as a solid salt.

Response surface methodology (RSM) is a statistical approach grounded in experi-
mental design and analysis that seeks the optimal conditions for various processes. It offers
numerous benefits including high efficiency, low cost, strong optimization and data analysis
capabilities, and wide applicability. RSM is an invaluable tool for researchers and engineers
to optimize process parameters, thereby improving production efficiency and product
quality while simultaneously reducing costs and enhancing competitiveness. In the realm
of desulfurization, RSM has facilitated significant advances: Mahmoudi et al. [15] optimized
a magnetically recoverable polyoxometalate-based nanocatalyst with hydrogen peroxide to
remove dibenzothiophene (DBT), conducting 20 experiments to pinpoint optimal temperature,
oxidant-to-sulfur ratio, and catalyst dosage; Danmaliki et al. [16] optimized the adsorption
of DBT using AC-Ni in a flowing phase, identifying ideal conditions for DBT concentration,
AC-Ni amount, bed height, flow rate, and contact time; Almashjary et al. [17] formulated a
deep eutectic solvent using choline chloride (ChCl) and propionic acid (Pr), employing RSM to
fine-tune the desulfurization process and establish the best conditions for the ChCl/Pr ratio,
synthesis temperature, extraction temperature, extraction duration, and liquid-to-liquid ratio.

In this research, the desulfurization catalyst Ch-PW was synthesized through an acid-
base neutralization reaction between choline hydroxide (ChOH) and phosphotungstic acid
(HPW). This catalyst was then integrated with potassium peroxymonosulfate (PMS), a
complex salt, to establish a catalytic system for desulfurization. To simulate oil, dibenzoth-
iophene sulfone was dissolved in octane, and acetonitrile (ACN) was employed as the
extraction solvent. Utilizing response surface methodology, the optimal process conditions
were determined by designing and optimizing the variables of Ch-PW, PMS, ACN, and
temperature based on the desulfurization rate.

The main objective of this article is to establish that the coupling of choline phospho-
tungstate with persulfate constitutes an effective desulfurization system. Subsequently,
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using response surface methodology, the optimal conditions for the desulfurization process
are rapidly determined, offering a less toxic, more convenient, and highly efficient approach
for desulfurization in the oil industry.

2. Results and Discussion
2.1. Experimental Results and Model Selection

Table 1 outlines the desulfurization rates obtained from 29 experimental setups, struc-
tured according to the Box–Behnken design. The rates of desulfurization achieved by the
Ch-PW/PMS system varied between 29.7% and 93.4%. Notably, the experiments for Run
1, Run 4, Run 14, Run 18, and Run 27 were conducted under the central level conditions
(0,0,0,0), achieving desulfurization rates of 90.3%, 88.6%, 93.4%, 91.6%, and 88.4%, respec-
tively. This repetition of experiments under identical conditions serves to assess the random
errors inherent in the experimental procedure [18].

Table 1. The Box–Behnken design for the 29 experimental setups alongside their respective results.

Runs A: Ch-PW
/g

B: PMS
/g

C: ACN
/g

D: Temperature
/◦C

Removal
/%

1 1.00 1.00 2.50 50.00 90.3
2 1.00 0.50 2.50 60.00 35.2
3 1.50 0.50 2.50 50.00 45.6
4 1.00 1.00 2.50 50.00 88.6
5 0.50 0.50 2.50 50.00 47.6
6 1.00 1.50 1.50 50.00 40.6
7 1.00 0.50 3.50 50.00 29.7
8 1.00 1.50 3.50 50.00 73.6
9 1.00 1.00 1.50 40.00 47.6
10 0.50 1.00 3.50 50.00 43.8
11 0.50 1.00 2.50 40.00 52.7
12 1.50 1.00 2.50 40.00 48.5
13 0.50 1.00 1.50 50.00 64.7
14 1.00 1.00 2.50 50.00 93.4
15 1.00 0.50 1.50 50.00 68.7
16 1.50 1.00 1.50 50.00 44.8
17 0.50 1.50 2.50 50.00 52.9
18 1.00 1.00 2.50 50.00 91.6
19 1.00 1.50 2.50 40.00 48.7
20 1.00 1.00 3.50 40.00 60.7
21 1.50 1.00 3.50 50.00 49.8
22 1.00 0.50 2.50 40.00 57.6
23 1.00 1.50 1.50 60.00 63.8
24 1.00 1.50 2.50 60.00 71.2
25 1.50 1.00 2.50 60.00 52.3
26 1.00 1.00 3.50 60.00 49.2
27 1.00 1.00 2.50 50.00 88.4
28 0.50 1.00 2.50 60.00 47.6
29 1.50 1.50 2.50 50.00 52.8

To forecast the experimental conditions that yield the highest desulfurization rates, the De-
sign Expert 8.06 software was utilized to develop a quadratic model. This model delineates the
relationship [19] between four experimental factors—the dosage of choline phosphotungstate,
potassium peroxymonosulfate solution, acetonitrile addition, and temperature—and the desul-
furization rate (removal), as detailed in Equation (1) (a coded factor equation). The selection of
the quadratic model, characterized by a Prob>F value less than 0.0001, significantly underscores
the model’s robustness and confirms its validity.
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Removal = 90.46 − 1.29A + 4.62B − 1.95C + 0.29D + 0.48AB + 6.48AC + 2.22AD +
18.00BC + 11.22BD − 6.92CD − 21.91Aˆ2 − 19.28Bˆ2 − 17.68Bˆ2 − 17.91Dˆ2

(1)

Figure 1 depicts the correlation between 29 experimental desulfurization rates and
the corresponding 29 predicted rates calculated using Equation (1). The color of the data
points in Figure 1 changes from blue to red, representing the change in desulfurization rate
from low to high. The alignment of all data points along the coordinate system’s diagonal
in Figure 1a confirms that the predicted values closely match the experimental results,
affirming the appropriateness of the quadratic model. Figure 1b presents the residual
plot for these 29 data points, showing a random distribution of residuals. This pattern
indicates that the errors are random, lacking any systematic or gross errors. Furthermore,
the majority of residuals fall within the −2 to 2 range, underscoring the robustness and
credibility of the quadratic model.
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Figure 1. The relationship between predicted vs. actual (a) or residuals vs. predicted (b).

In Figure 1a, the upper right corner displays five parallel red dots, while Figure 1b
features five vertical dots on the extreme right. These dots represent the discrepancies
between experimental and predicted values, obtained by repeating the central points of
29 Box–Behnken design experiments five times. This repetition is used to ascertain the
experimental error at these points, which is essential for evaluating the overall error across all
experimental points. Such errors are critical for assessing the model’s predictive accuracy and
for facilitating further statistical analysis. Since the predicted values remain constant under
identical experimental conditions, variations in experimental values lead to the formation of
five closely clustered red horizontal dots in Figure 1a, indicating the high precision of the
experimental values under consistent conditions. Similarly, the residuals—differences be-
tween experimental and predicted values—with constant predicted values result in vertically
aligned residual dots as depicted in Figure 1b.

2.2. ANOVA Analysis

Table 2 displays the analysis of variance (ANOVA) derived from the response surface
methodology. The model shows a total sum of squares (SS) of 8691.62, with 14 degrees of
freedom, a mean square of 620.83, and an F-value of 78.13. The Prob>F value, significantly
less than 0.0001, confirms the quadratic model’s extreme significance, validating the use of
this model to establish the relationships between the four factors and the desulfurization rate
(removal). According to the results, the desulfurization rate is predominantly influenced by factor
B (PMS), with factor C (ACN) also having a notable impact. In contrast, factors A (Ch-PW) and
D (temperature) show a minimal influence. The coefficients for factors A and D in Equation (1)
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are considerably smaller than those for B and C, indicating that variations in B and C have a
more substantial effect on the desulfurization rate than A and D. The influence hierarchy
of the factors on the desulfurization rate is PMS > ACN > Ch-PW > temperature. The
minimal influence of the Ch-PW catalyst on the desulfurization rate may be attributed
to the chosen levels of the Ch-PW addition being too close to the optimal, resulting in
inadequate differentiation.

Table 2. The results of ANOVA analysis.

Source Sum of Squares df Mean Square F-Value Prob>F Significance

Model 8691.62 14 620.83 78.13 <0.0001 **
A-CH-HPW 20.02 1 20.02 2.52 0.1348 No

B-PMS 255.76 1 255.76 32.19 <0.0001 **
C-Acetonitrile 45.63 1 45.63 5.74 0.0311 *
D-Temperature 1.02 1 1.02 0.13 0.7254 No

AB 0.90 1 0.90 0.11 0.7411 No
AC 167.70 1 167.70 21.11 0.0004 **
AD 19.80 1 19.80 2.49 0.1367 No
BC 1296.00 1 1296.00 163.10 <0.0001 **
BD 504.00 1 504.00 63.43 <0.0001 **
CD 191.82 1 191.82 24.14 0.0002 **
A2 3114.77 1 3114.77 392.00 <0.0001 **
B2 2410.10 1 2410.10 303.31 <0.0001 **
C2 2026.61 1 2026.61 255.05 <0.0001 **
D2 2081.43 1 2081.43 261.95 <0.0001 **

Residual 111.24 14 7.95
Lack of fit 93.57 10 9.36 2.12 0.2445 No
Pure error 17.67 4 4.42
Cor total 8802.87 28

Std. Dev. 2.82 R2 0.9874
Mean 58.69 Adj-R2 0.9747
C.V.% 4.80 Pred R2 0.9356
PRESS 566.58 Adeq precisior 30.345

* Significant (p < 0.05); ** Extremely significant (p < 0.01).

From Table 2, the standard deviation (std. dev.) of 2.82 indicates that the data points
closely cluster around the mean, suggesting minimal predictive errors for the model.
With a coefficient of variation (C.V.%) of 4.80%, the response variable demonstrates little
variability relative to the mean, indicating a low degree of dispersion in the data. An
R2 value of 0.9874 is exceptionally high, illustrating that the model accounts for nearly
all the variability in the data, which signifies an excellent fit. The adjusted R2 (Adj-R2)
of 0.9747 adjusts for the number of predictors in the model and the degrees of freedom,
further validating the model’s accuracy. A predictive R2 (Pred-R2) of 0.9356 assesses the
model’s effectiveness in forecasting new datasets, indicating strong predictive performance,
though slightly lower than its explanatory capability (i.e., Adj-R2). An adequacy precision
(Adeq Precision) of 30.345, which is the ratio of signal to noise, signifies the model’s robust
ability to distinguish significant effects from random noise, with values above 4 generally
indicating a sufficient discriminative capability. Here, a value of 30.345 highlights the
model’s exceptional predictive discriminative power.

Overall, the ANOVA data demonstrate that the selected quadratic model fits ex-
ceptionally well, possesses strong predictive capabilities, minimal errors, and powerful
discriminative ability, enabling it to accurately predict response variables.

2.3. Response Surface Analysis

Figure 2 illustrates the response surface plots and contour maps that depict the influ-
ence of four factors—catalyst Ch-PW (A), oxidant PMS (B), extraction solvent ACN (C),
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and temperature T (D)—on the desulfurization rate. Specifically, Figure 2a displays the
interaction between factors A and B, while Figure 2b explores the interaction between
factors A and C, and Figure 2c again shows the interaction between factors A and C. From
Figure 2a, it is evident that keeping factor B constant, the response (removal) initially rises
and then falls as factor A increases from 0.5 to 1.5. Similarly, with factor A constant, factor
B exhibits an increase followed by a decrease from 0.5 to 1.5. In Figure 2b,c, with factor
A constant, both factors C and D show an initial increase followed by a decrease when
increased from 1.5 to 3.5 and from 40 to 60, respectively. These response surface plots
demonstrate that optimal values exist for factors A, B, C, and D, confirming that the chosen
ranges for these factors are appropriate.

Catalysts 2024, 14, x FOR PEER REVIEW 7 of 12 
 

 

  
(a) 

  
(b) 

  
(c) 

Figure 2. Response surface plots of Ch-PW to PMS (a), ACN (b), and T (c). 

2.4. Optimal Experimental Conditions Determined by Response Surface Methodology 
The optimal conditions for the four factors were identified through careful analysis. 

The response surface methodology yielded the following optimal settings: 0.99 g of cata-
lyst Ch-PW, 1.07 g of PMS, 2.5 g of extraction solvent, and a temperature of 50.48 °C, pre-
dicting a desulfurization rate of 90.79%. Experimentally, under these conditions, a desul-
furization rate of 93.64% was achieved, with a mere 3.04% deviation between the predicted 
and actual values, validating the model’s predictive accuracy. 

Seven experiments were conducted under optimal conditions, each following a con-
sistent cycle: After completing the initial desulfurization, the liquid quickly separated into 
layers. The upper oil phase (octane phase) was removed, leaving behind the lower extrac-
tion phase (ACN phase). Next, 6 g of simulated oil containing 500 ppm sulfur and 1.07 g 
of PMS (20 wt.%) was added. Both the temperature and reaction time were maintained 

0.50  
0.70  

0.90  
1.10  

1.30  
1.50  

  0.50

  0.70

  0.90

  1.10

  1.30

  1.50
40  

50  

60  

70  

80  

90  

100  

  R
em

ov
al

  

  A: Ch-PW  

  B: PMS  

0.50 0.70 0.90 1.10 1.30 1.50

0.50

0.70

0.90

1.10

1.30

1.50
Removal

A: Ch-PW

B:
 P

M
S

50 50
60

60

6060

70

70

80

905

1.50  

2.00  

2.50  

3.00  

3.50  

  0.50

  0.70

  0.90

  1.10

  1.30

  1.50
40  

50  

60  

70  

80  

90  

100  

  R
em

ov
al

  

  A: Ch-PW  

  C: ACN  

0.50 0.70 0.90 1.10 1.30 1.50

1.50

2.00

2.50

3.00

3.50
Removal

A: Ch-PW

C
: A

C
N

50

50

60

60
60

70

70

70

80

90

5

40.00  

45.00  

50.00  

55.00  

60.00  

  0.50

  0.70

  0.90

  1.10

  1.30

  1.5040  

50  

60  

70  

80  

90  

100  

  R
em

ov
al

  

  A: Ch-PW  

  D: T  

0.50 0.70 0.90 1.10 1.30 1.50

40.00

45.00

50.00

55.00

60.00
Removal

A: Ch-PW

D
: T

50
60

60

60 60

70

70

80

90
5

Figure 2. Response surface plots of Ch-PW to PMS (a), ACN (b), and T (c).

From Figure 2a’s contour map, the contours formed by factors A and B, as well as A
and D, are nearly circular, while those formed by factors A and C deviate from this shape,
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forming an ellipse. Circular contours suggest weaker correlations between factors, whereas
elliptical contours with an increased curvature indicate stronger correlations. Accordingly,
factors A and B, as well as A and D, show relatively weak correlations, while a stronger
correlation exists between factors A and C. This aligns with findings from earlier ANOVA
analyses.

Reasoning analysis: The desulfurization mechanism hinges on the catalyst Ch-PW,
with tungsten atoms serving as electron acceptors. During catalytic oxidation, these facili-
tate electron transfer to activate the oxidant (B)–peroxymonosulfate-generating sulfate and
hydroxyl radicals. These radicals can oxidize dibenzothiophene in the acetonitrile phase,
thereby driving desulfurization. Increasing the catalyst enhances the catalytic performance
by raising free radical production, thus improving desulfurization rates. However, as the
catalyst is solid, it may also consume active radical species, potentially diminishing its
effectiveness, indicating an optimal catalyst dosage. Similarly, while more oxidant also
increases free radical production, excess ions from the salt can quench these radicals, point-
ing to an optimal oxidant dosage. Regarding the extraction solvent, its increase can dilute
the catalyst and oxidant concentrations, affecting the desulfurization outcomes; optimal
concentrations are required for peak efficiency. Finally, while higher temperatures improve
reaction rates by reducing solution viscosity, excessive temperatures might increase radical
collision and quenching, suggesting an optimal temperature range is essential.

2.4. Optimal Experimental Conditions Determined by Response Surface Methodology

The optimal conditions for the four factors were identified through careful analysis.
The response surface methodology yielded the following optimal settings: 0.99 g of catalyst
Ch-PW, 1.07 g of PMS, 2.5 g of extraction solvent, and a temperature of 50.48 ◦C, predicting
a desulfurization rate of 90.79%. Experimentally, under these conditions, a desulfurization
rate of 93.64% was achieved, with a mere 3.04% deviation between the predicted and actual
values, validating the model’s predictive accuracy.

Seven experiments were conducted under optimal conditions, each following a consis-
tent cycle: After completing the initial desulfurization, the liquid quickly separated into
layers. The upper oil phase (octane phase) was removed, leaving behind the lower extrac-
tion phase (ACN phase). Next, 6 g of simulated oil containing 500 ppm sulfur and 1.07 g
of PMS (20 wt.%) was added. Both the temperature and reaction time were maintained
constant for the subsequent desulfurization trial, and the corresponding desulfurization
rate was recorded. This procedure was repeated through seven trials in total. As depicted
in Figure 3, the desulfurization rate stayed above 90% for the first five trials. However, it
dropped to 85% after the sixth trial and further decreased to 80% after the seventh. The
desulfurization system demonstrated robust recyclability characteristics.
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During the cyclic experimental process, the upper oil phase is removed after each
experiment, and fresh oil and oxidant are introduced for the next trial. Over time, the con-
tamination on the surface of Ch-PW decreases its activity. Furthermore, the accumulation
of sulfate ions, oxidation byproducts in the acetonitrile phase, is not removed throughout
the cycles. This leads to a significant impairment of the desulfurization activity, ultimately
causing deactivation.

2.5. Analysis of Desulfurization Products and Mechanism

To elucidate the desulfurization mechanism of Ch-PW coupled with PMS, GC-MS
analysis was conducted on the desulfurization products within the acetonitrile phase, as
depicted in Figure 4a,b. The GC trace in Figure 4a reveals two distinct peaks, one high and
one low. The lower peak, with a retention time of 16.3 min, was identified as DBT, while
the higher peak at 20.65 min was determined to be DBTO2, as illustrated in Figure 4b. This
analysis confirms that DBTO2 is the principal oxidation product of DBT.
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The desulfurization mechanism, inferred from the GC-MS findings, is outlined in
Figure 4c. Initially, acetonitrile, serving as the extraction solvent, extracts dibenzothiophene
from the simulated oil into the acetonitrile phase. Subsequently, dibenzothiophene is
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oxidized by the combined action of the oxidant PMS and catalyst Ch-PW in the acetonitrile
phase. Ch-PW interacts with PMS to generate

{
PO4 [W(O)(O 2)2]4

}3− anionic species,
with the tungsten-oxygen active centers exhibiting potent oxidizing capabilities, swiftly
converting thiophenic compounds and their derivatives into sulfoxides or sulfones. Owing
to acetonitrile’s presence, dibenzothiophene continuously extracted into the acetonitrile
phase is transformed into a sulfone, increasing its polarity and thus retaining it within the
acetonitrile phase. Throughout this process, Ch-PW remains catalytically active, facilitated
by the activation of PMS, until the consumption of PMS is complete.

3. Experimental Section
3.1. Preparation of Choline Phosphotungstate (Ch-PW) [20]

Weigh 7.2 g of phosphotungstic acid (HPW) and dissolve in 10 mL of deionized water
while stirring. Separately, dissolve 1.86 g of choline in another 10 mL of deionized water
and stir. Gradually add this choline solution to the phosphotungstic acid solution, which
results in the immediate formation of a white precipitate. Continue stirring the mixture at
room temperature for an additional 5 h after the addition is complete. Subsequently, filter
the mixture and rinse the precipitate thoroughly with deionized water several times. Dry
the precipitate at 70 ◦C for 48 h to obtain the white solid of choline phosphotungstate, as
depicted in reaction Formula (2).
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3.2. Catalytic Oxidative Desulfurization Process

Dibenzothiophene (DBT) was dissolved in n-octane to formulate a simulated oil, which
was adjusted to a sulfur content of 500 ppm. To this, 6 g of simulated oil, a specified quantity
of Ch-PW, 20 wt.% potassium peroxymonosulfate complex salt (PMS), and acetonitrile
(ACN) were added. The mixture was continuously stirred at a regulated temperature
until the desulfurization reaction was completed. Throughout the reaction, samples of
the upper oil layer were periodically drawn and analyzed using a spectrophotometer.
The characteristic absorption peak of DBT at 312 nm was determined using UV–visible
spectrophotometry, establishing a relationship between absorbance (A) and sulfur content
(S) as follows: A = 53.00591S − 0.00484 (R2 = 0.9992). The desulfurization rate (R) was
calculated according to Formula (3), where S0 denotes the initial sulfur concentration of
500 ppm.

R = (S0 − S) × 100%/S0 (3)

3.3. Design of Desulfurization Process Using Response Surface Methodology

A four-factor, three-level Box–Behnken design (BBD) was employed to optimize the
desulfurization process, utilizing Design Expert 8.06 software [21]. The variables considered
included the dosage of choline phosphotungstate (Ch-PW, g), potassium peroxymonosul-
fate solution (PMS, g), acetonitrile (ACN, g), and temperature (T, ◦C), denoted as A, B, C,
and D, respectively. Each variable was tested at three levels, as detailed in Table 3.

Table 3. Box–Behnken design, outlining the factors and their coded levels.

Factors Unit
Level

−1 0 1

A: Ch-PW g 0.5 1 1.5
B: PMS g 0.5 1 1.5
C: ACN g 1.5 2.5 3.5

D: T ◦C 40 50 60
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As can be seen from Table 3, the selection range for Ch-PW is 0.5 to 1.5 g, the selection
range for the PMS solution is also 0.5 to 1.5 g, the selection range for ACN is 1.5 to 3.5 g, and
the selection range for T is 40 to 60 ◦C. To choose a relatively reasonable range, preliminary
experiments were conducted. The selection of ACN is because ACN is immiscible with
octane and has good solubility for DBT. ACN can extract some of the DBT in the octane
phase, which is beneficial for subsequent catalytic oxidation.

4. Conclusions

Choline hydroxide (ChOH) and phosphotungstic acid (HPW) were combined in a 3:1
molar ratio through a straightforward acid-base neutralization reaction to synthesize the
Ch-PW catalyst. This catalyst was integrated with a 20 wt.% potassium peroxymonosulfate
complex salt (PMS) solution and acetonitrile (ACN) as the extraction solvent, forming an
extraction catalytic oxidative desulfurization system. This system was employed to remove
dibenzothiophene (DBT) dissolved in octane, simulating a sulfur-containing oil environ-
ment. Optimal conditions for achieving the highest desulfurization rate, as optimized
through response surface methodology, included 0.99 g of Ch-PW, 1.07 g of PMS, 2.5 g of
ACN, and a temperature of 50.48 ◦C. Under these conditions, the predicted desulfurization
rate was 90.79%, with an actual rate of 93.64% observed, resulting in a minor deviation
of 3.04%. A model relating desulfurization rate to these conditions was established and
validated using ANOVA, which also quantified the influence of the factors on the desul-
furization rate: PMS > ACN > Ch-PW > temperature. The desulfurization products were
analyzed by GC-MS, which identified DBTO2 as the primary oxidation product. Addition-
ally, the mechanism underlying the system’s desulfurization was thoroughly investigated.
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