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Abstract: Control charts are tools of paramount importance in statistical process control. They are
broadly applied in monitoring processes and improving quality, as they allow the detection of special
causes of variation with a significant level of accuracy. Furthermore, there are several strategies
able to be employed in different contexts, all of which offer their own advantages. Therefore, this
study focuses on monitoring the variability in univariate processes through variance using the
Binomial version of the ATTRIVAR Same Sample S2 (B-ATTRIVAR SS S2) control chart, given that
it allows coupling attribute and variable inspections (ATTRIVAR means attribute + variable), i.e.,
taking advantage of the cost-effectiveness of the former and the wealth of information and greater
performance of the latter. Its Binomial version was used for such a purpose, since inspections are
made using two attributes, and the Same Sample was used due to being submitted to both the
attribute and variable stages of inspection. A computational application was developed in the R
language using the Shiny package so as to create an interface to facilitate its application and use
in the quality control of the production processes. Its application enables users to input process
parameters and generate the B-ATTRIVAR SS control chart for monitoring the process variability with
variance. By comparing the data obtained from its application with a simpler code, its performance
was validated, given that its results exhibited striking similarity.

Keywords: control chart; ATTRIVAR; variability; variance; application; interface; R; Shiny package

1. Introduction

Control charts were initially introduced by [1] and are the primary and most technically
sophisticated tools of statistical process control [2]. They are widely employed in process
monitoring and serve to detect nonconformities and special causes of variation, thus
enabling the early identification of disturbances aimed to minimize negative adverse
financial impacts [3].

Among control charts, some utilize variable inspection for monitoring continuous qual-
ity characteristics, while others employ attribute inspection, which was initially designed
for monitoring non-continuous quality characteristics.

One of which is grounded on the numerical measurements of quality characteristics,
and another is based on the attributes defined by [4] as quality characteristics measured in
a nominal scale or categorized according to a predetermined scheme of labels. For instance,
classifying fruits as being good or rotten, and nails or screws as defective or not defective.

Although the primary purpose of attribute inspection was outlined about 70 years ago,
researchers have made contributions by suggesting their use for controlling continuous
quality characteristics, and more recent studies have proposed better means for such [5].

There are numerous comparisons between variable and attribute charts in the litera-
ture, such as [5–10]. These authors emphasize the superior efficiency and informativeness
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of variable inspection due to its reliance on measurements, as opposed to a simpler, faster,
and cheaper application of attribute inspection.

Several researchers explore the use of attribute inspections for continuous charac-
teristics, such as [8,9,11], in an attempt to continuously seek to improve the efficiency of
resource utilization and improve the performance of control charts.

Ergo, what once meant having to use a sample 6.667 times larger in attribute charts
to achieve the same level of performance as variable charts [2] now requires a sample less
than twice as large using the npS2 proposed by [9].

The strategy of using variable and attribute inspections combined into a single chart
had initially been proposed by [12] and is similar to one which was later on called as
ATTRIVAR (ATTRIbute + VARiable) by [5]. Thenceforth, these mixed charts combine the
advantages of both forms of inspection initially called as such.

A version of [12] consisted in designing the npx (attribute) and X (variable) charts
separately and dividing the collected sample into two subsamples. Then, the former was
submitted to npx chart evaluation, and the latter was submitted to X chart evaluation if the
former had been rejected.

Ref. [7] also proposed a mixed chart without subdividing the sample and used the
same sample in both stages of inspection (as in [13,14], and to the proposal herein). Ref. [5]
proposed ATTRIVAR-1 chart, which uses the same sample in both stages, in addition to
ATTRIVAR-2 chart, which makes use of different samples. In this work, the terminologies
SS (same sample) and DS (different sample) refer to these strategies, respectively.

Unlike these proposals, which addressed only mean monitoring, Ref. [10] proposed
a mixed chart to monitor variability through variance. The authors coupled the npS2

chart from [9] in the stage of attribute inspection with the S2 chart in the stage of variable
inspection using different samples.

Afterwards, Ref. [15] proposed the Trinomial version of the ATTRIVAR (T-ATTRIVAR)
chart aimed at mean monitoring but using three attributes in the first inspection stage
instead of two as in other strategies.

Thus, this paper explores the Binomial version of ATTRIVAR Same Sample S2 (B-
ATTRIVAR SS S2) chart that makes use of the first inspection stage with two attributes
(“binomial”) using the same sample in both inspection stages (“same sample”) to monitor
the process variance (S2).

Although there is a certain number of works on control charts coupling attribute and
variable inspections in the literature, research on monitoring the variability of univariate
processes through variance, i.e., B-ATTRIVAR SS S2, is still lacking. The novelty of this
study lies in proposing an interface capable of receiving input data from a user thereof, to
obtain control limits through simulations and generate a (B-ATTRIVAR SS S2) chart so as to
monitor the variability of a univariate process.

The control chart strategy proposed herein is similar, particularly to those from: Ref. [9],
as both make use of attribute inspections to monitor the process variance, Ref. [10], given
that the attribute and variable data were also used to monitor process variance, and [15],
who proposed the most similar strategy but used it to monitor process mean using three
attributes in the first monitoring stage (instead of two as in this study).

Even though in-control process parameters are usually unknown in practice and
require estimates using historical data, this paper focuses on monitoring processes where
these parameters are known [16].

In addition to advances in statistical process control strategies, an integration of
computer interfaces is also crucial to increase the manufacturing system’s efficiency. As
discussed by [17], the convergence between digital models and physical industrial envi-
ronments using data is of paramount relevance to smart manufacturing. This is due to
the fact that it can provide interaction and information exchange between software, the
computational interfaces, and the physical systems of manufacturing processes.

In this context, the application of computational interfaces offers new possibilities for
monitoring and controlling industrial processes in real time. Although this work mainly
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focuses on introducing an interface developed using R and Shiny to monitor process
variability, it is also worth mentioning the potential of integrating it with industrial digital
systems, such as manufacturing execution systems (MES). Despite not being directly
discussed in this study, the role of MES in facilitating quality monitoring and process
optimization is also worth being mentioned. The authors of [18] explain that MES can
provide a useful platform in quality monitoring, as it allows direct data acquisition and
the monitoring of quality parameters’ variability. Ref. [19], for instance, explores the
possibilities of using control charts to analyze the data stored in MES and provide feedback
to the systems aiming to optimize production parameters.

This manuscript is organized as follows: Section 2 describes the B-ATTRIVAR SS S2

chart and draws a comparison with more usual charts; Section 3 explains how its application
was conceived and the manner in which the results have been achieved; Section 4 presents
its interface and operation, as well as a validation of its results; and Section 5 draws its
conclusion and proposes suggestions for future works.

2. Chart B-ATTRIVAR SS S2

After sample collection, all n items of the B-ATTRIVAR SS S2 chart are inspected based
on attribute, similarly to the npS2 from [9]. These inspections make use of some device
(such as a go/no-go gauge, for example) configured using the discriminant control limits
LDL (lower discriminant limit) and UDL (upper discriminant limit). Each item outside
these limits is classified as nonconforming. After classifying all items in the sample, YD is
recorded as the number of rejected items. If YD ≥ CLY (attribute control limit), the process
is defined as being out of control. Conversely, it is assessed whether YD < WY (warning
attribute control limit). If so, it is found that the process is in control. If otherwise, the
variable inspection process is initiated using the same sample.

The stage of variable inspection is performed similarly to that in the classic S2 chart
described by [2,4], in which quality is measured based on all n items in the sample, and
variance S2 is calculated. If S2 is outside the acceptance interval defined by LCL (variable
lower control limit) and UCL (variable upper control limit), the process is defined as being
in control. Otherwise, it is out of control. This entire process is depicted in Figure 1.

It is worth mentioning that it is common to use only the upper control limit to inspect
variable S2, as a process should have the least possible variability, as mentioned by [20],
given that this strategy makes the chart more effective at detecting increases in process
variance. In such a case, UCL is denoted as CLS2 .

In this paper, both the attribute and variable inspection limits are optimized to achieve
acceptable performance values determined by ARL0 and ARL1, or by α and β, considering
that ARL refers to the average run length or the average number of samples collected until
the chart signals for the first time, in addition to the fact that [4]:

ARL =
1

(Probability o f sample rejection by the chart)
(1)

ARL0 =
1
α

(2)

ARL1 =
1

(1 − β)
(3)

where α is the probability of type I error, β is the probability of type II error, the index “0”
indicates a process in control, and index “1” indicates a process being out of control.
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Figure 1. Flowchart of the B-ATTRIVAR SS S2 Chart.

The performance of the B-ATTRIVAR SS S2 chart (mixed inspection) was compared
to that of S2 (variable inspection) and np (attribute inspection) charts, as in Table 1, which
shows simulated ARL values with sample sizes of 5 (n = 5) by varying the standard
deviation of simulated samples through λ in each row. The results demonstrate a similar
performance of the studied chart to that of the np chart. Nevertheless, it is still worth
mentioning its advantages over the np charts, mainly on account of the fact that the quality
characteristic measurements required in the stage of variable inspection of the B-ATTRIVAR
SS S2 are capable of providing valuable information to enhance the process analysis and
make improvements. Although the performance of the ATTRIVAR proved inferior to that
of the S2 chart, it still offers notable advantage over it, i.e., its operational simplicity [14].
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Table 1. Comparison of the performance of charts for monitoring S2 with n = 5.

λ (Lambda)
ARL

S2 np B-ATTRIVAR SS S2

1.0 367.28 371.71 370.71
1.1 107.93 118.87 120.12
1.2 42.79 50.26 51.54
1.3 21.21 26.72 26.31
1.4 12.32 15.61 15.48
1.5 8.10 10.19 10.22
1.6 5.72 7.18 7.33
1.7 4.33 5.44 5.51
1.8 3.52 4.37 4.34
1.9 2.92 3.54 3.56
2.0 2.51 3.00 3.04

3. Application Development

The application was developed using the RStudio development environment, which
is free and offers various packages and functionalities available for installation using a com-
putational programming based on the R language. According to [21], R is ranked among
the 10 most popular programming languages used globally and has become a fundamental
computational tool for research in various areas, such as statistics, mathematics, physics,
chemistry, medicine, among others.

Additionally, the Shiny package was used for interface development, which, according
to [21], was launched in 2012 and has continuously gained popularity in developing
interactive websites using R language functionalities.

The average run length (ARL) was used for measuring the efficiency or performance
of control charts. Ref. [22] considers it as the best-known and most widely used method to
measure and analyze control chart performance.

3.1. Inputs and Outputs Definition

Regarding the development of a B-ATTRIVAR SS control chart application aimed
to monitor the variability of univariate processes through variance, the code should be
capable of generating control limits for the attribute (WY and CLY) and variable (LCL and
UCL, or just CLS2 if LCL ≤ 0) inspections. Based on these four outputs, the application can
effectively perform the primary function of a control chart: either accepting or rejecting
samples to classify the process as being in control or out of control.

For such a purpose, the initial necessary inputs would be sample size (n), mean (µ0),
and standard deviation (σ0) of the process, given that they are essential parameters for the
program to perform normal sample simulations.

The user would have to provide the maximum desired probability of a type I error
(αmax) and the maximum desired probability of a type II error (βmax) for a given variation
(λ) in standard deviation to obtain the attribute and variable control limits. Thus, αmax
would define the min ARL0 and βmax for a given λ, which would define the max ARL1.
Then, it would be possible to determine the acceptance intervals, as ARL0 and ARL1 are
directly related to the control limits.

To start the first stage of monitoring with attribute inspection, The user would have to
determine the discriminant limits LDL and UDL, which were also defined as outputs. Thus,
these values could be configured using a go/no-go gauge device, for instance. Afterwards,
they could conduct inspections and input the number of nonconforming items in each
sample into the application to proceed to the next stage.

Furthermore, the user would have to provide the maximum percentage of samples
to be submitted to variable inspection (%S2

max) to define the discriminant limits (LDL
and UDL).
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3.2. Obtaining Control Limits

The process of obtaining control limits was expected to be performed through simula-
tions and trial-and-error iterations. Its logical is that the program makes the first iteration
using lower values for the control limits, and it comes to %S2, α or β in each iteration. Then,
the program verifies whether these values are lower than the maximum values established
by the user, and it changes the limits and proceeds to the next iteration if otherwise.

To enhance code organization, it was segmented into four sections, namely, A, B, C1,
and C2. Each having a beginning and an end, and their own iterations able to calculate and
record the results in the form of a matrix.

In section A, it explores the possible combinations of WY and CLY to derive the smallest
discriminant limits (LDL and UDL) satisfying the %S2

max condition:

%S2
Simulated=

NV
TN

≤ %S2
max (4)

where NV is the number of samples, which would be submitted to variable inspection, and
TN is the total number of simulated samples.

For such a purpose, it simulates one million samples from a normal distribution based
on user-defined parameters (n, µ, and σ) for in-control conditions, and calculates how
many would undergo variable inspection, i.e., WY ≤ YD ≤ CLY. Then, it performs the test
described in Equation (4). This entire process repeats until the condition is satisfied.

In section B, it accesses each combination of WY and CLY, but using the values of LDL
and UDL for each, and proceeds to obtain the smallest variable control limits (LCL and
UCL) meeting the requirement of αmax:

1
ARL0

≤ αmax (5)

For such, it simulates samples under control and submits them to attribute inspections
and to variable inspections whenever necessary, until it reaches ten thousand signals. Then,
it records the number of simulated samples until each signal’s emission, thus allowing
it to calculate ARL0 by computing the arithmetic mean of these ten thousand recorded
numbers. Afterwards, it assesses the condition of Equation (5) and repeats this until it is
satisfied by incrementing the upper limit and decrementing the lower limit during each
iteration, as shown in the Equations (6) and (7). For each combination of WY, CLY, LDL,
and UDL, it assigns the following values to limits by ever incrementing the absolute value
of parameter L:

LCL =
[
σ2 − Lσ2

]
(6)

UCL =
[
σ2 + Lσ2

]
(7)

Within section C1, it already has recorded the various combinations of WY, CLY, LDL,
UDL, LCL, and UCL, and it assesses whether each of them meets the βmax requirement set
by the user:

1 − 1
ARL1

≤ βmax (8)

For such, it simulates normal samples, albeit out of control, by altering only the
standard deviation to σ1 = λσ (where λ and σ are defined by the user). These samples
undergo the entire B-ATTRIVAR SS S2 chart flow using the parameters from each obtained
combination. Consequently, ARL1 is calculated for each combination (similarly to ARL0)
and it is tested whether Equation (8) is satisfied. This process is carried out only once for
each parameter combination, and it records which combinations can meet this requirement.

In section C2, it accesses combinations meeting the βmax requirement and selects the
best solution as the one with the lowest calculated β.
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Definite results can be seen by the user and are used by the program to perform other
steps and ensure the functioning of the control chart itself. The displayed parameters are:
n, µ, σ, WY, CLY, LDL, UDL, %S2, LCL, UCL, α, λ, and β.

4. Results

Given the objective of developing an interface to enable the utilization of the B-
ATTRIVAR SS S2 chart, it is necessary to initially understand the expected usage dynamics
through which the application was conceived.

At first, the application user is expected to input the initial parameters required for
obtaining the control limits (as described earlier). Once the program finishes obtaining
them, the user should be able to visualize a chart showing horizontal lines representing the
control limits and should input the YD of their sample, which can be plotted on the chart. If
YD is between WY and CLY, something users can verify on the chart, they should input the
quality characteristic measurements for all items in the sample. Therefore, the program
should calculate and plot sample variance on the chart, and the signal if it somewhat
indicates that the process is out of control.

4.1. The Interface

The main layout of its interface was configured as depicted in Figure 2. In the area
marked with the number one, there is a sidebar with fields where the user can input values
or keep the predefined values in the program (shown in Figure 2). Below this sidebar, in
the area marked with the number two, there is the RUN button which the user should
click on to execute the code and obtain the results. Adjacent to this, in the area marked
with the number three, there are the two tabs of the application, between which the user
can switch by clicking on one of them. At the bottom, the area marked with the number
four represents where the results of calculations and the chart itself are displayed in the
RESULTS AND CHART tab; and the editable table to insert sample data in the INSERT
DATA tab.
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After pressing the RUN button, the end results and the chart are displayed in the
RESULTS AND CHART tab, as shown in Figure 3.

Some parameters entered by the user (n, µ0, σ0 e λ) are shown below the tab names and
above the graph, along with the results found for other parameters through simulations
and calculations (WY, CLY, LDI, LDS, %S2, LCL, UCL, α, β).
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4.2. The Chart

Bearing a resemblance to the charts presented by [13–15], Figure 3 shows an x-axis
representing the sample number, and two y-axes: one for YD on the left side and another
for sample variance on the right side.

The chart displays the limits of WY and CLY on the YD axis, and UCL on the variance
axis, all represented as dashed lines. The circular points represent the YD data series, while
the differently shaped points represent the calculated sample variance data series. It is
crucial to highlight that the points representing sample variance will be plotted only if
Wy ≤ YD < CLy, due to the fact that samples satisfying YD < Wy are accepted and those
within YD ≥ CLY are rejected in the B-ATTRIVAR SS chart, and thus do not need to be
submitted to variable inspection in both cases.

Points are standardly plotted in black. However, they are shown in red to represent
signals (when samples are rejected for instance) to display if they occur in the attribute
inspection (circular points) or variable inspection (non-circular points).

The chart is rather dynamic, as any changes in the editable table data lead to automatic
adjustments in the plotted points on the chart. Additionally, users can press and hold the
mouse button on either of the two abscissa axes to drag them upwards or downwards, thus
moving both their labels and associated points. Furthermore, users can zoom in and out by
pressing and holding the mouse button over any point in the plot area, then dragging it to
form a rectangle defining the area to be zoomed.

4.3. The Editable Table

The data plotted on the chart are from the editable table illustrated in Figure 4 and
located in the INSERT DATA tab. It contains some columns dependent on the user-inputted
n value, although the first and last columns always represent YD and the calculated variance
of each sample, respectively, regardless of the inputted n value. Other columns between
the first and the last ones are intended for inputting quality characteristic measurements,
and thus depend on the sample size (n = 5 in the case of Figure 4, and therefore there are
5 columns for measurements).

All the columns are editable, except for the last one. Although the user can attempt to
change its value, the table automatically recalculates it, since the variance values cannot be
arbitrary, but are rather calculated from the quality characteristic measurements.
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Before users start monitoring any process, the application offers a preview of its
functionality. It generates data for 100 out-of-control samples from a normal distribution,
then it submits them to inspections with the definite results of the control limits and plots
them on the chart. After clicking on the RUN button at the sidebar, once the results are
obtained, the application automatically displays data about the 100 samples in both the
table and the chart.

The editable table standardly displays only five rows, but just below the Editable Table
title, the number of rows can be changed by clicking on Show 5 entries and altering them
to the desired number.

Below the table, there are the DELETE DATA and RECALCULATE YDs buttons. All
the values recorded in the table are deleted by pressing the first button, leaving all fields
empty for new data input and, consequently, erasing all the plotted points on the chart.
The second button recalculates all YDs in the table’s first column based on the values of the
monitored quality measurements.

Naturally, as previously explained, according to the logic of monitoring a process
through an ATTRIVAR chart, the user can start inspections via attribute without conduct-
ing any measurements, which is one of the main advantages of this strategy compared to
variable control to avoid excessive measurements. These can often be expensive and/or ex-
cessively time-consuming; thus, it would be irrelevant to calculate YD through measurements.

Moreover, it would also be unreasonable if the user altered any measurement data
and if YD remained the same, even though the number of nonconforming items might have
changed. Furthermore, automatically calculating this column would be inappropriate as
well, since it would not allow the user to input YD regardless of the measurements, which
would contradict the inherent logic of the ATTRIVAR strategy.

Therefore, the YD fields are editable so that the user can input the number of noncon-
forming items for each sample. Additionally, a button is provided for the user to click upon
at any time to recalculate all YDs in the table based on the measurements.

4.4. Results Validation

Theoretical calculations of the parameters of this chart have not been identified. There-
fore, a simpler code was developed to simulate the ARLs of the B-ATTRIVAR SS S2 chart
aiming to validate the application’s results and ensure the consistency of simulations and
control limit calculations. Control limits are set in it, and it calculates ARLs for different
values of λ.
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Hence, to validate the application results, the control limits generated by the applica-
tion were utilized as input parameters for the code. Subsequently, the results obtained from
both methods were compared in terms of %S2, ARL0, and ARL1. The reasons for selecting
these parameters are as follows:

• Analyzing whether %S2 verifies if the chart submits the expected percentage of samples
in the stage of variable inspection;

• Analyzing whether ARL0 verifies if the chart commits to the type I error after the
expected number of tested samples is calculated;

• And analyzing whether ARL1 verifies if the chart detects a signal at the expected
speed, or after the expected number of tested samples is calculated.

As shown in Table 2, several scenarios were tested, all being µ0 = 0 and σ0 = 1,
and the columns labeled as “reference” correspond to the values obtained through the
simpler code.

Table 2. Results comparison and validation (µ0 = 0, σ0 = 1).

n Wy CLy %S2
max UDL UCL %S2 %S2

Reference ARL0
NMA0

Reference
∆

ARL0
λ ARL1

ARL1
Reference

∆
ARL1

5 1 3 15% 2.15 4.09 14.81% 14.81% 379.221 368.596 2.88% 1.2 41.9332 41.8994 0.08%
5 1 4 15% 2.15 4.07 14.82% 14.81% 385.416 383.675 0.45% 1.2 42.0345 43.2341 2.77%
5 1 5 15% 2.15 4.07 14.80% 14.80% 392.364 375.318 4.54% 1.2 42.8538 42.4327 0.99%
5 2 4 15% 1.47 4.50 14.74% 14.74% 377.595 362.952 4.03% 1.2 48.7047 49.3499 1.31%
5 2 5 15% 1.47 4.03 14.95% 14.93% 377.669 370.022 2.07% 1.2 43.0950 42.1248 2.30%
5 1 3 10% 2.31 4.06 9.99% 10.01% 374.161 373.848 0.08% 1.2 41.8840 42.1619 0.66%
5 1 4 10% 2.32 4.05 9.75% 9.73% 378.737 371.406 1.97% 1.2 42.7068 42.6622 0.10%
5 1 5 10% 2.32 4.06 9.74% 9.75% 375.552 378.126 0.68% 1.2 43.2554 42.3157 2.22%
5 2 4 10% 1.59 4.12 9.84% 9.84% 376.320 372.540 1.01% 1.2 44.0206 43.6339 0.89%
5 2 5 10% 1.59 4.01 9.96% 9.93% 378.703 367.040 3.18% 1.2 44.0304 43.0009 2.39%
6 1 3 10% 2.38 3.63 9.94% 9.94% 388.136 367.356 5.66% 1.5 6.4295 6.4782 0.75%
6 1 4 10% 2.38 3.63 9.96% 9.93% 386.227 367.750 5.02% 1.5 6.5638 6.5563 0.11%
6 1 5 10% 2.38 3.64 9.97% 9.95% 394.030 376.513 4.65% 1.5 6.6395 6.6466 0.11%
6 1 6 10% 2.38 3.64 9.96% 9.94% 387.306 379.715 2.00% 1.5 6.5732 6.6439 1.06%
6 2 4 10% 1.68 3.74 9.94% 9.98% 377.044 371.606 1.46% 1.5 6.8422 6.7470 1.41%
6 2 5 10% 1.69 3.62 9.70% 9.72% 391.299 377.701 3.60% 1.5 6.8597 7.0055 2.08%
6 2 6 10% 1.69 3.61 9.72% 9.70% 388.899 376.739 3.23% 1.5 6.9539 6.8811 1.06%
6 3 5 10% 1.28 3.89 9.77% 9.79% 383.502 368.495 4.07% 1.5 8.0894 8.1119 0.28%
6 3 6 10% 1.28 3.54 9.94% 9.93% 380.937 365.824 4.13% 1.5 7.1517 7.0933 0.82%

The first five rows on the table represent the execution of simulations with default
values set on the application interface, as in Figure 2. In the next five rows, the application
was executed only by changing the %S2

max parameter from 15% to 10%. The next nine
rows contained changes not only in %S2

max but also in n and λ. This approach enables the
analysis of whether alterations in one or more parameters affect the validity of its results.

Its results demonstrate a strong consistency with those obtained through the reference
code, i.e., %S2, ARL0, and ARL1 show notably similar values. For instance, the largest
percentage differences observed in the ∆ ARL0 and ∆ ARL1 columns were 5.66% and 2.77%,
respectively.

4.5. Example

To exemplify how the proposed application functions, the code was run using the
default values for inputs (the same values set in the interface fields shown in Figure 3).
After having calculated control limits as described in Section 3.2, the application is ready to
be used for process monitoring.

In this example, the simulations converged to the following values for control limits:
WY = 1; CLY = 3; and UCL = 4.07.

Although the application was designed with the purpose of allowing the user to start
monitoring via the attribute inspections, the following example is a simulation. Therefore,
as shown in Table 3, 25 random (out of control) samples of measurements were generated
and YDs were calculated from them. For samples where YD is between WY and CLY limits,
the variances were calculated (S2).
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Table 3. Example data.

X1 X2 X3 X4 X5 YD S2

1 −0.068 −1.419 0.512 1.599 −1.242 0 -
2 −2.434 0.416 −0.550 −0.157 2.045 1 2.628
3 −0.595 −2.908 −2.326 −0.192 −0.627 2 1.453
4 0.964 2.562 −0.595 −0.552 0.193 1 1.716
5 −1.033 −0.648 −0.040 −0.714 1.571 0 -
6 −0.604 0.862 1.348 0.560 1.623 0 -
7 0.362 0.478 2.527 2.959 1.228 2 1.399
8 0.250 −3.543 −1.195 0.386 −0.528 1 2.546
9 −0.399 0.227 −0.220 2.194 1.783 1 1.420

10 1.010 −0.340 0.551 −0.488 1.335 0 -
11 1.177 0.091 1.738 −1.572 0.261 0 -
12 −2.305 0.427 −0.083 0.396 −0.686 1 1.279
13 −1.511 2.279 −1.349 −0.571 −0.322 1 2.323
14 −1.945 −0.888 1.219 1.238 1.557 0 -
15 −2.502 −0.879 −1.618 −0.047 1.013 1 1.857
16 0.327 0.213 0.075 −0.544 −2.475 1 1.356
17 1.332 −1.233 −1.886 −2.049 0.597 0 -
18 0.577 −0.307 0.463 0.723 −0.726 0 -
19 0.554 −0.112 2.413 0.950 0.743 1 0.865
20 −0.954 2.335 −1.239 −0.935 −0.466 1 2.168
21 −2.057 −1.459 −1.045 0.483 0.569 0 -
22 −0.364 −1.582 0.092 −0.601 0.154 0 -
23 −3.362 1.516 0.590 −2.660 0.043 2 4.506
24 −1.749 −1.797 0.928 −0.830 −0.913 0 -
25 −2.969 −1.621 −2.386 −1.518 0.492 2 1.719

Figure 5 shows how the interface plots data from Table 3. As aforementioned, the
YDs of all samples are plotted as circular points, and S2 are plotted as non-circular points
whenever necessary.
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The first sample highlighted in the chart is a case where YD ≤ WY and S2 does not
need to be calculated thereof (as shown in Table 3), thus not being plotted in the chart (as
in Figure 5).

The twentieth sample, also highlighted in the chart, is a case where CLY < YD ≤ WY.
Thereby, S2 is calculated and plotted, since S2 ≤ UCL, and the variance is plotted in black
in this example.
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Similarly, the twenty-third sample, also circled in the chart, is a case where YD is
also within the range of attribute control limits, and the variance is calculated and plotted.
However, S2 > UCL and the chart signals plotting the variance are in red.

Likewise, in cases where YD > CLY, the chart signals that the process is out of control,
and YD is plotted in red.

5. Conclusions

In this study, an interface was developed to generate and display control limits for
the B-ATTRIVAR SS S2 chart, enabling the real-time monitoring of process variance. It
was achieved through inputting process data and user-defined requirements, and the
program uses these data to compute the control limits and render a chart showing them
and sample data. Once users have their process data, they can input it and use the control
chart to monitor process variability. Although the application has not been tested in actual
processes, its results have been validated in this study through comparisons with reference
values, thus revealing low percentage deviations.

As an opportunity for improvement and further research, it is imperative to explore
methods to reduce its execution time. Due to multiple iterations aimed at generating more
precise results, the program might last a significantly long execution time depending on
the device on which it is run. One potential approach to face this challenge is leveraging
artificial intelligence tailored for optimizing code performance.

Furthermore, investigating the feasibility of adapting the application to integrate it
with business and industrial systems, such as manufacturing execution systems (MES),
could enhance its versatility and potential for automation across various industrial applica-
tions, including real-time production monitoring and control.

Moreover, future research should analyze the influence of variations in input param-
eters on results, in addition to conducting extensive studies and interface development
aimed to consider the application of the proposed control strategy using estimated parame-
ters, thereby extending its applicability. Furthermore, exploring methods for theoretically
and mathematically deriving the ARLs and control limits of the proposed strategy would
be of significant interest.
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