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Abstract: Agricultural practices such as tilling, sowing, cropping, It’s duty but arvesting, and land-use
patterns in any agrarian economy depend on climate. Therefore, any adverse climatic conditions can
seriously affect the production or yield of crops. Increased temperature enhances the susceptibility of
crops to pests and various plant diseases. Weeds are also known to multiply rapidly and decrease
the nutritive value of soil, negatively affecting crop production. Our present study is designed to
address similar problems faced by the farming community in the South-24 Parganas district of West
Bengal, India, and suggest several probable technological solutions. Importantly, West Bengal is
included in one of the six agro-climatic zones. Major crops from this study site are rice, wheat, maize,
jute, green gram, black gram, pigeon pea, lentils, sugarcane, pulses, rapeseed, mustard, sesame,
linseed, and vegetables. Significantly, cultivable land area has decreased in comparison to the overall
crop area in this region. Reduced interest in agriculture, irrigation problems, increased profit in
the non-agricultural economy, and rapid conversion of agricultural land for commercial purposes
(construction of plots, hatcheries for fishing practices), along with uncertainties associated with
rainfall patterns and frequent cyclones, are matters of grave concern in this study area. Agricultural
scientists, researchers, environmentalists, local bodies, and government organizations are suggesting
alternatives to benefit farmers. Thus, precision agriculture or crop management is required to
recognize site-specific variables within agricultural lands and formulate strategies for improving
decision-making regarding crop sowing, appropriate use of herbicides, weedicides, and precision
irrigation, along with innovative harvesting technologies. Thus, the present paper provides a vision
for the farming community in our study area to overcome their traditional practices and adopt
different techniques of precision agriculture to increase flexibility, performance, accuracy, and cost-
effectiveness. Soil temperature, humidity, and moisture monitoring sensors could be beneficial.
Precision soil management, precision irrigation, crop disease management, weed management, and
harvesting technologies are the different modules considered for discussion in this paper. Machine
learning algorithms, such as decision tree, K-nearest neighbor (KNN), Gaussian naïve Bayes (GNB),
K-means clustering, artificial neural network (ANN), fuzzy logic system (FLS), and support vector
machine (SVM), could prove helpful for progressive farmers. The use of AI-powered weeding
machines, drones, and UAVs for rapid weed removal and the localized application of herbicides and
pesticides could also improve the accuracy and efficiency of agriculture. Utilizing drones fitted with
high-resolution cameras could help gather precision field images, proving to be quite helpful in crop
monitoring and crop health assessment. Unmanned driverless tractors and harvesting machines using
robotics integrated with data from GPS/GIS sensors or radars could also be considered an effective
and time-saving option. Thus, machine learning, along with innovative agricultural technologies,
could contribute to improving the livelihoods of the farming fraternity.
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1. Introduction

In the words of Mahatma Gandhi, “Agriculture is the soul of the Indian economy”;
therefore, one needs to understand the importance of agriculture for people’s livelihoods.
Among two-thirds of the Indian population, only one-half of the cropped area is covered
by irrigation. With the increase in food demand, there is an urgent need for scientists,
agricultural researchers, farmers, and governments to formulate new techniques to increase
production. Manual methods involving the use of trained manpower are quite challenging
in India due to a lack of awareness and the technological limitations of agricultural workers.
Despite being trained agricultural practitioners for generations, Indian farmers are still
quite conservative and reluctant to adapt to the changing face of agriculture. Machine
learning (ML) algorithms assist in analyzing massive volumes of data with great speed and
accuracy. ML thereby involves computational applications for modifying or adapting their
action for real-time application. It is classified broadly into two different categories: super-
vised and unsupervised learning. Significantly, the application of information technology,
or more specifically, data mining techniques, in the agricultural domain is targeted to fulfill
the goals of precision agriculture (PA). PA is a comprehensive system developed with the
aim of optimizing production quality, improving efficiency, and ultimately, conserving
energy and protecting the environment. Thereby, PA is designed to obtain increased yields
compared to traditional cultivation. The United Nations Environment Programme (UNEP)
and the Club of Rome report (1972) have been warning us continuously for decades about
serious consequences regarding increased temperatures due to global warming. The IPCC
has warned about an increase of 3.7–4.8 ◦C in global temperature by 2100 [1]. This would
probably lead to changes in crop patterns, ultimately affecting agricultural production or
yield rates [2]. Increased temperature is also associated with higher evapotranspiration,
leading to lower soil moisture. The agriculture sector is directly dependent on climatic
conditions, and higher temperature is associated with the multiplication of weeds and
the spread of various pests and plant diseases. This adversely affects nutritive value and
negatively influences the growth of saplings, ultimately leading to malnutrition and de-
creasing crop yield [3,4]. The Indian agricultural system is totally dependent on monsoons;
therefore, any irregularities associated with rainfall patterns leading to drought or floods
would definitely create a serious impact [5].

PA, or, more specifically, crop management, involves identifying site-specific variables
within agricultural lands and devising strategies for improving crop sowing, along with
the proper application of herbicides, weedicides, precision irrigation, and other innovative
harvesting technologies. Technological advancement powered by several ML algorithms
could prove beneficial for improving the livelihood of farmers. Therefore, the present study
has been designed to explore the different applications of ML algorithms in a farming
community in the South 24-Parganas district of West Bengal, India.

2. Methodology

The study area of the South 24-Parganas district of West Bengal, India, extends between
22◦12′13′′ N–22◦46′55′′ N latitude and 87◦58′45′′ E–88◦22′10′′ E longitudes. Covering an
area of 9960 km2, this district is strategically surrounded by the Bay of Bengal at one end,
with the district of Kolkata and North 24-Parganas on the other side [6]. The temperature
varies between 16 and 34 ◦C, and the annual rainfall range is estimated to lie between 150
and 170 cm [7]. Importantly, most of the district is included in the saline coastal region with
mostly alluvial, fine, saline soil [8].

The step of implementing machine learning (ML) algorithms for predictive agriculture
involves data cleaning and preprocessing. In this case, it should be assumed that the dataset
has no missing values. The data should have normal distribution for all their features. The
outliners should be removed. When selecting the appropriate ML algorithm for a particular
attribute, the dataset is split into a training dataset and a testing dataset.

Thus, different ML algorithms were used for the investigation of various parameters
predicting agriculture productivity. K-nearest neighbor (KNN) [9] is a non-complex algo-
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rithm that can store all the available data and further classify new cases based on similarity
measures. The naïve Bayes classifier (NBC) is a probabilistic classifier model working on
the basis of assigning class labels to problem instances, which are represented as features
of vector values [10], where the class labels are drawn from a finite set. A decision tree
algorithm (DTA) is built using a labeled (training) dataset, and it forms the basis for clas-
sifying an unlabeled (testing) dataset for solving problems. The iterative dichotomizer 3
(ID3) algorithm is one of the most effective algorithms used to construct a decision tree [11].
The K-means clustering algorithm is an unsupervised learning algorithm. In this case, a set
of dataset items is provided containing certain features along with values of these features.
This algorithm operates by categorizing these items into k-groups or clusters based on
similarity [12]. Support vector machine (SVM) is the most popular supervised learning
algorithm, used for solving both classification as well as regression problems [13,14]. An
artificial neural network (ANN) is defined as an information processing model composed
of a large number of highly interconnected processing units (neurons) working in unison to
solve a specific problem [13,14]. Fuzzy logic systems (FLS) are recognized for generating ac-
ceptable but definite output in response to incomplete, ambiguous, distorted, or inaccurate
(fuzzy) input [15,16].

Soil moisture sensors, precipitation sensors, and temperature sensors for determining
the humidity and temperature profile of the agriculture field could help create a dataset.
On the basis of answers to “yes” or “no” questions, the decision tree would be split into
parts. Questions regarding the content of sodium, carbon, magnesium, nitrogen, potassium,
and phosphate in the soil would be answered, and the soil containing the above nutrients
in the best combination would prove beneficial. Accordingly, fertilizer would be selected
for increasing productivity. The KNN algorithm would be used to detect the greatest
“similarity” in the new case or dataset with the temperature and precipitation of the already
available dataset. The goal of the SVM algorithm is to create the best line or decision
boundary to segregate “n” dimensional space into classes so that one can easily assign the
new dataset regarding the diseased or healthy plant into the correct category. This could
benefit farmers and act as a reference manual for the future. The naïve Bayes probabilistic
classification algorithm would predict the best soil profile on the basis of probability. This
would segregate soil based on its loamy/clayey/saline/alluvial nature for a particular crop.
Determination of soil nature would enable farmers to decide on the application of a suitable
fertilizer. The use of fuzzy logic systems to devise approximate pest control and disease
management tools would benefit farmers. Thus, based on the results obtained from the FL
algorithm, proper detection and differential spraying of pesticides would be undertaken
for diseased crops. K-means clustering would benefit farmers by segregating the diseased
and healthy plants.

3. Discussion

Globally, the geometric rise in population has a direct influence on agriculture, stress-
ing the importance of newer and innovative technological advancements for sustaining
and improving agricultural practices. The induction of AI, including big data analytics,
robotics, IoT, sensors and cameras, drone technologies, and widespread internet coverage
on geographically dispersed fields are becoming indispensable in Indian farming. Tradi-
tional farming entails many uncertainties, along with problems due to weeds and pests,
soil degradation, and climate change.

Precision agriculture (PA) refers to merging all technologies for augmenting agricul-
tural productivity with input use efficiency [17,18]. Thus, PA can simply be defined as a
data-cum-technology-driven farming practice used to detect, analyze, and formulate effec-
tive measures to manage variations in field parameters. Indian agriculture is predominantly
managed by small and marginal farmers; further technological advancements associated
with the integration of a farmer’s knowledge with precision agricultural practices and
simulation modeling could prove beneficial for poor-performing patches in the farming
sector [19].
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Management-oriented modeling (MOM) uses a set of alternative management tech-
niques including using a simulator to evaluate each alternative and an evaluator to deter-
mine which alternative satisfies the user-weighed multiple criteria. MOM also employs
“hill-climbing”, a strategic search method that works on the principle of “best–first” as
a tactical search method to determine the shortest path from start nodes to reach the
goals [20].

Precision crop management (PCM) is a popular agricultural system devised to target
crops and inputs in accordance with field requirements in order to increase profitability [21].
Cropping alternatives are selected based on the timing, intensity, and predictability of
drought conditions [22]. A well-planned crop prediction methodology is targeted to
protect the suitable crops by sensing several parameters (soil type, pH, nitrogen, phosphate,
potassium, organic carbon, calcium, magnesium, sulfur, manganese, copper, and iron)
along with temperature, rainfall, and humidity [23]. A similar result in the present study
using a decision tree algorithm would help to predict the presence of sodium, carbon, iron,
sulfur, nitrogen and its oxides, potassium, phosphates, and magnesium in the soil profile
across agricultural fields.

Support system (SRC-DSS) follows three steps: knowledge gain, planning a concep-
tualized design followed by system implementation [24]. Additionally, soil texture (sand,
clay, and silt content) can be predicted based on pre-existing coarse-resolution soil maps
combined with hydrological parameters derived from a digital elevation model (DEM)
working using ANN [25]. ANN is also reported to provide above 90% success in predicting
crop nutritional problems [26]. Remote sensing devices associated with a higher-order
neural network can be used to investigate and characterize the dynamics of soil moisture
control [27]. Robots are innovative computer-controlled speed-sowing machines equipped
with a pair of video cameras along with global positioning sensors. Thus, robotics have
reported an 80% success rate in harvesting [28].

The principle of precision irrigation management (PIM) employs the most popular
irrigation tools, i.e., Arduino and Raspberry Pi. Further, Zigbee has been employed success-
fully to communicate the measured parameters, i.e., soil temperature, humidity, radiation,
and air temperature. This also includes a web server along with IoT-controlled water
pumps [29]. Thus, water management involving water quality and irrigation is an essential
component in crop management systems. Machine learning has also benefitted differ-
ent areas of irrigation, i.e., crop yield prediction, crop disease identification, crop weed
detection, and livestock welfare [29]. The most popular tools of ML algorithms applied
for the benefit of the irrigation sector include linear logistic regression (LR), classification
and regression tree (CART), K-nearest neighbor (KNN), Gaussian naïve Bayes (GNB), and
support vector machine (SVM). Farmers’ knowledge and potential were tapped to utilize
an FL-based model system to identify suitable crops based on land suitability maps [16].
Researchers have recommended using the ANN method to estimate the soil moisture
content in paddy [30].

According to the temperature sensor used at the study site, the recorded temperature
value varied from a low of 5 ◦C to a high of 48 ◦C. However, the values remained between
20 and 30 ◦C for most of the year. The precipitation sensor recorded rainfall between 100 cm
during drier conditions and a maximum of 300 cm during monsoons at the study site.

Significantly, a reduction in productivity per unit area and a decrease in natural re-
sources associated with growing threats from global warming and climate change lead to
reduced farm income. In such cases, precision crop management is required to recognize
site-specific variables within agricultural lands and to design management strategies for
improving decision-making capabilities. Importantly, progressive farmers are quite aware
of the variation in crop yield as per previous experiences [31]. Instead of manually selecting
a field for crop plantation purposes, farmers have the option of utilizing GPS/GIS data.
Soil preparation techniques using specific sensors for monitoring temperature, humidity,
or volatile matter could be employed. Instead of leveling land using bullocks and tractors,
high-quality laser-guided precision land levelers could be a much better option. Automatic
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tools such as precision drills, seed drills, air seeders, and broadcast seeders can be quite
effective compared to manual seeding and planting [31]. Automated and controlled fertiga-
tion systems powered by IoT are being successfully employed for irrigation purposes [32].
ML technologies can be employed for the creation of chatbots [33] for communication
with farmers, providing them with relevant suggestions about modern agricultural tech-
nologies. Unmanned aerial vehicles (UAVs) are capable of monitoring, taking pictures of,
and collecting data about a particular location. By maneuvering over a large area, UAVs
create new avenues for increasing crop yield through spraying, counting crops, detecting
any abnormalities, etc. ML technologies also assist in detecting movement and predicting
the activities of UAVs. Driverless, unmanned tractors and machine-driven harvesting
technologies can be possible through the use of robots. Instead of conventional harvesting
techniques, robotic arms can be highly efficient and time-saving [31]. Robotic arms assist
in harvesting by interpreting the ripening state of the crops. Data from GPS/GIS, radars,
and sensors could be successfully sorted out using ML to locate any obstacle and decide on
the application of farm input [34]. Automated irrigation, along with conventional weather
forecasting, can be useful for water resource management. Such ML-based technologies
could prove beneficial for maintaining the level of water and nutrients in soil [31].

AI can be effectively utilized for crop disease management [21]. With AI, a farmer can
efficiently control crop diseases by successfully adopting an integrated disease management
and control system encompassing physical, chemical, and biological measures [35]. Rule
promotion using fuzzy logic (FL) along with webGIS is required to predict intelligent
interferences for crop disease management. A text-to-speech converter (TTS) is capable
of creating a text-to-talking user interface. Additionally, web-based FL, along with a web-
based intelligent disease diagnostic system (WIDDS), predicts and responds swiftly to
any type of crop disease with sufficient accuracy. However, being a web-based system,
limited internet connectivity can compromise its effectiveness [36]. Although ANN and
GIS provide 95% accuracy in crop disease management, limited accessibility to the internet
among rural folks may be challenging at times [37]. However, web-based expert systems
provide excellent performance in some instances [15]. Some researchers have proposed a
FL-based intelligent technique to predict crop disease based on leaf wetness duration [38].
Further work has proposed a FL-based method and integrated it with image processing to
predict the percentage of leaf damage [39]. Additionally, in disease management, ANN
was coupled with image processing to detect disease in seedlings [40].

An intensive AI-based weed management system has been designed to minimize
the harmful effect of weeds on crops [21]. Unmanned aerial vehicles (UAVs) have been
employed successfully in several instances to monitor weeds [41]. The crop row algorithm
classifies, distinguishes, and segregates weed and crop pixels. Online weed detection
using digital image analysis employing drones (UAVs), computer-based decision, and
global positioning system (GPS) -controlled patch spraying [42] are also quite effective.
Optimization using invasive weed optimization (IWO) along with ANN is cost-effective
and increases performance [43]. Employing mechanical weed control using robotics and
sensor machine learning (sensor ML) is known to be time-saving and also removes resistant
weeds [44]. Although it requires big data and high usage expertise, the Saloma expert
system, designed for evaluation, prediction, and weed management, has a high adaption
rate and impressive prediction levels [45].

Ultimately, predicting and estimating crop yields are serious issues for designing
market estimates and, subsequently, preparing crop cost estimations. Researchers utilized
ANN and employed a backpropagation learning algorithm to predict crop yield from
soil parameters [46]. Thus, [47] successfully harnessed the possibilities of crop yield by
estimating profitability while reducing environmental impact by decreasing the use of
fertilizers. Detection of different crop diseases, i.e., blight, rot, mildew, wilt, leaf spot,
Scotch scab disease of potato, and mold, using the FL algorithm, could prove beneficial for
the farming community in the study area. Subsequent application of pesticides (methyl
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parathion, imidaeloprid, phorate) in proper composition in the study area could prove
immensely beneficial.

Exploring different opportunities associated with the application of robotics in the
agriculture sector is worth mentioning [48]. Utilization of the benefits associated with IoT
by the farming community is also noteworthy. By overcoming any constraints associated
with the availability of the internet, a farmer can provide timely data regarding crop sowing,
flowering, ripening, and harvesting. Using soil or moisture sensors, temperature sensors,
pH sensors, CO2 sensors, and wind speed detection sensors associated with UAVs or drones
could prove effective for monitoring soil, topographic, and climatic parameters required
for the proper management of crops. This could lead to improvements in crop productivity,
leading to advancements in the food sector. Automatic robots could also help harvest crops
at a higher volume and faster rate than human laborers. Green seeker sensors assess the
demands of plants and determine the amount of fertilizer to be applied and the pesticides
required. The modern countryside is also developing sensor-based small electric motors
that are remotely controlled. These small agricultural robots successfully differentiate
between crops and weeds using AI by performing camera imaging and high-precision
spraying. Precision spraying helps to overcome the harmful effects of blanket spraying
of pesticides, weedicides, or insecticides. A detailed 3D map of the farmland, its terrain,
irrigation, and soil viability is developed by a drone. Additionally, soil N2 level monitoring
can be conducted by a drone. Aerial spraying of pods with seeds and plant nutrients
directly into the soil can also be performed by a drone [49].
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