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Abstract: In this study we present a generic probabilistic risk assessment methodology to evaluate
the risk associated with flooding process of a pit. We use the bow-tie analysis to analyze the critical
events (we focus on slope failures) and the systemic risk assessment methodology to estimate the risk
for the population, for the environment and for the infrastructure. Furthermore, we perform a spatial
analysis of the risk by discretizing the affected area into squares, by estimating the risk in each one
and finally by creating the risk map. The methodology is implemented by specialized software that
has been created in a Matlab environment for the deduction of such risk assessments. The developed
methodology was applied in the area of the pit lake Most in Czech Republic.

Keywords: pit lakes; risk assessment; slope stability

1. Introduction

One of the most common uses of pit voids left by large scale mining operations, such
as surface lignite mining, is the formation of pit lakes by flooding pit voids after mine
closure. Pit lakes offer the opportunity to enhance the recreational or ecological benefits by
relandscaping and revegetating the shoreline, creating aquatic life and maintaining water
quality [1–3].

Pit voids are filled by artificial flooding or allowing the pit voids to fill naturally
through hydrological processes such as precipitation or groundwater infiltration. Pit flood-
ing, which is the most popular type of reclamation for open pits, induces groundwater
rebound with short- and long-time consequences, such as soil instabilities causing land-
slides and subsidence. To ensure the safe use of pit lakes by the public, it is necessary to
assess the risk of instability in these areas [4,5].

The main aim of this study is to develop a probabilistic risk assessment methodology
to evaluate the risks associated with the flooding process of the pit and particularly on
slope failure. The proposed methodology consists of two distinct phases. Initially, the risk
analysis and the risk assessment are performed, while in the second phase spatial analysis
of risk and creation of the related maps are implemented.

In the first phase, the bow-tie analysis is used to analyze the critical initiating event
(slope failure) and the systemic risk assessment method to estimate the risk for the popula-
tion, the environment and the infrastructure. The spatial analysis of the risk includes the
discretization of the area under study into squares, the estimation of the risk in each one
and the creation of the corresponding risk maps by using appropriate spatial interpolation
techniques. The methodology is implemented by specialized software that has been created
in a Matlab environment for rapid deduction and representation of such risk assessments.
The developed methodology was applied in the area of pit lake Most in the Czech Republic.
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2. Development of Probabilistic Risk Assessment (PRA) Methodology

The first step for every risk assessment methodology is to descriptively define the
boundary of the system under study. In this case, it includes the pit lake and the sur-
rounding area which could be affected. The proposed methodology consists of three parts
described below: hazard analysis by employing the bow-tie method, risk estimation by
using the systematic risk assessment methodology and then spatial analysis of the risk and
creation of the resulting maps.

2.1. Bow-Tie Analysis for Slope Failures

Bow-tie analysis is a risk analysis technique widely used in high-hazard industries
(e.g., chemical, oil–gas industry) and more recently in mining [6,7]. The central point of
a bow-tie diagram is the initiating critical event which represents the point in time when
there is a loss of control. The next step is to determine the causes of the initiating event and
the potential consequences of the event. For each cause, both the control measures and/or
barriers, which can reduce the probability of the initiating event occurring (preventive
measures), and the control measures which can be taken to reduce the severity of the
consequences of each initiating event (corrective measures) are then identified. One of the
particular strengths of the bow-tie method is that it provides an easily understood overview
of the risk controls linked to initiating events [8]. Thus, a bow-tie diagram combines a fault
and an event tree for the identification of causes, effects and consequences related to the
examined initiating critical event.

In this study, the developed bow-tie diagram (Figure 1) considers the slope failure
as the critical initiating event. The fault tree (left side of bow-tie diagram) examines the
causes, Ai, which can trigger the slope failure. These include both external causes (e.g.,
heavy rainfall, seismicity) and internal causes (e.g., soil erosion, water level variations). The
fault tree also includes the preventive measures, Pmi, such as the hydrological protection
measures and the consideration of the regional seismicity during design. The right part
of the bow-tie diagram contains the events with their effects, Ei, the corrective measures,
Pmi, and the consequence, Cij, of the effects on the j receptors. The considered receptors
were the population, the environment and the infrastructure. Three different scale slope
failures, characterized as major, medium and small [9] were considered and their effects
were examined.
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2.2. Systemic Risk Assessment (SRA) Methodology

Systemic Risk Assessment (SRA) uses the probability f of an initiating critical event,
the probabilities PEij of effect Ei on receptor j and the consequence Cij of effect Ei on receptor
j [10]. The risk Rij of effect Ei on j receptor is:

Rij = f PEijCij (1)

The probability PEi is calculated from the vulnerability Vij of receptor j on effect Ei
and the probability of failure of the corresponding protective measure PMi.

Rij = f PciVij Cij (2)

The risks Rj for receptor j and Ri for effect i are:

Rj = f
m

∑
i=1

PciVij Cij (3)

Ri = f
n

∑
i=1

PciVij Cij (4)

where: i = 1, 2, . . . , n are the effects and j = 1, 2, . . . m are the receptors. Equation (3) is
valid when effects Ei are mutually exclusive. Finally, the total risk R for all receptors and
effects is:

R =
m

∑
j=1

Rj (5)

The probability of slope failure f is deduced from the value of safety factor (SF) of the
pit slope [9].

The estimation of vulnerability Vij of each receptor j on effect Ei is based on its distance
from slope failure location and is calculated by using the inverted logistic S curve:

V =
1

a + be−cdr
(6)

where, a, b and c are the parameters of the inverted logistic S curve and dr is the relative
distance (explained below in Section 2.3).

For the estimation of the consequences Cij on population, environment and infrastruc-
ture a five-level scale, shown in Table 1, is used [10].

2.3. Spatial Analysis and Cretaion of Risk Map

For the spatial analysis of the risk and the creation of the risk maps, firstly the affected
area A is determined. As shown in Figure 2 this area is defined by boundaries L1 and L2,
indicating, respectively, the shoreline of the lake and the external limit of the surrounding
area which is affected by slope failures. The area A is discretized into small squares and for
each square the minimum distances d1 and d2 from boundaries L1 and L2, respectively, are
estimated (Figure 2). Then the relative distance dr = d1/(d1 + d2) is calculated.
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Table 1. Five level consequence scale [10].

Class Linear Scale [-] Logarithmic Scale [€] Description

1 0.0–0.2 <104 Low (Negligible impact to humans, to
infrastructure and to environment)

2 0.2–0.4 104–105 Serious (Injuries, limited damages to infrastructure
and to environment)

3 0.4–0.6 105–106 Very serious (Injuries with permanent disability,
damages to infrastructure and to environment)

4 0.6–0.8 106–107 Severe (Limited fatalities, severe damages to
infrastructure and to environment)

5 0.8–1.0 >107
Catastrophic (Multiple fatalities, large-scale and

severe damages to infrastructure and
to environment)
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Figure 2. Boundaries, geotechnical domains and discretization of pit lake and affected area.

Consequently, area A is divided into domains, Sk, where each domain Sk encompasses
adjacent subareas with similar geotechnical characteristics. The safety factor SF of the
slopes of each domain is estimated, as well as the corresponding probability of failure
fk. The probability, fk, is assigned to all squares belonging to domain Sk. In addition,
the vulnerability for each square is calculated by using Equation (6) and finally the risk
Equation (5). The resulting risk maps are then created by using spatial interpolation
techniques.

3. Application of PRA Methodology in the Most Pit Lake

Lake Most is situated in the central part of the Most Basin, approximately 2 km to
the north from the city Most (Czech Republic). The water reservoir was formed in the
endorheic depression of the former mining locations of the large mine Most—Ležáky and
minor quarries Richard, Bedřich, Evžen—Ležáky II, Jan, Segen Gottes, Mariahilf. Flooding
started in October 2008 and finished in September 2014. The surface level of the lake is
199 m above sea level (±60 cm), and its maximum depth is 75 m. Lake Most covers an area
of 309.09 ha with a perimeter of 8956 m, while the lake’s catchment area is 1050 ha. The map
of Lake Most is shown in Figure 3a,b. The internal dump of the former Most mine forms
the southern and eastern slopes of the lake, while the mine benches form the northern and
western slopes. The main instabilities, such as slope failure and subsidence, are expected in
the northern part due to dumping material and additionally to more steep slopes.
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Figure 3. (a) Location of Lake Most in Czech Republic; (b) map of Lake Most (Google earth).

For the application of developed PRA methodology in Lake Most, firstly a zone
of 400 m wide around the lake was selected to define the affected area A. Area A was
discretized into small squares 20 × 20 m2 and for every square the relative distance, dr, and
consequently the vulnerability was calculated (Figure 4b). Based on geotechnical criteria
the area, A, was divided into four geotechnical domains. For each domain the safety factor
and the resulting probability of failure, as indicated in Figure 4a, were estimated. Finally,
the risk was estimated for each square, assuming that the corrective measures are not
applied. For the assignment of the consequences the linear scale of Table 1 was used. The
resulting risk map is shown in Figure 5.
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Figure 4. (a) Probability of failure versus safety factor; (b) inverted logistic S curve for the estimation
of vulnerability from the relative distance dr.
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The risk map indicates that the area with the higher risk in Lake Most is the third
geotechnical domain (northern part) due to dump material and steeper slopes. In this
domain, humans, infrastructure and the environment are more prone to risk within a
zone of 100–125 m from the shoreline. This zone is limited to 75 m for the eastern and
southern part of the lake (first and second domain) and to 25–50 m for the western part
(fourth domain).

4. Conclusions

The developed generic methodology for the assessment of risks related to slope failures
of pit lakes was proven helpful since it allows comprehensively analysis of the hazards and
estimating the associated risk. The spatial analysis of risk and the created risk maps allow
the identification of high risk locations in the examined area. Moreover, the methodology
allows the reassessment of risk considering protective and corrective measures in order to
evaluate the effect of measures on risk mitigation. The risk assessment performed in Lake
Most, without considering any corrective measures, indicated that the northern part of the
lake has the highest risk for all receptors.
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