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Abstract: Three robust algorithms for clustering multidimensional time series from the perspective
of underlying processes are proposed. The methods are robust extensions of a fuzzy C-means model
based on estimates of the quantile cross-spectral density. Robustness to the presence of anomalous
elements is achieved by using the so-called metric, noise and trimmed approaches. Analyses from
a wide simulation study indicate that the algorithms are substantially effective in coping with the
presence of outlying series, clearly outperforming alternative procedures. The usefulness of the
suggested methods is also highlighted by means of a specific application.
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1. Introduction

Clustering of time series is a pivotal problem in statistics with several applications [1,2].
Generally, the goal is to divide collection of unlabelled time series into uniform groups so
that intra-cluster similarity is maximized wheres the inter-cluster similarity is minimized.
Most of the current techniques deal with univariate time series (UTS), while clustering of
multidimensional time series (MTS) has received limited attention. This paper proposes
three robust clustering methods for MTS. All of them are aimed at neutralizing the effect of
outlying series while detecting the underlying grouping structure.

2. Robust Clustering Methods for Multivariate Time Series

Let {X t, t ∈ Z} = {(Xt,1, . . . , Xt,d), t ∈ Z} be a d-variate real-valued strictly stationary
stochastic process. Let Fj the marginal distribution function of Xt,j, j = 1, . . . , d, and let
qj(τ) = F−1

j (τ), τ ∈ [0, 1], the corresponding quantile function. Fixed l ∈ Z and an

arbitrary couple of quantile levels (τ, τ′) ∈ [0, 1]2, consider the cross-covariance of the
indicator functions I

{
Xt,j1 ≤ qj1(τ)

}
and I

{
Xt+l,j2 ≤ qj2(τ

′)
}

γj1,j2(l, τ, τ′) = Cov
(

I
{

Xt,j1 ≤ qj1(τ)
}

, I
{

Xt+l,j2 ≤ qj2(τ
′)
})

, (1)

for 1 ≤ j1, j2 ≤ d. Taking j1 = j2 = j, the function γj,j(l, τ, τ′), with (τ, τ′) ∈ [0, 1]2,
so-called quantile autocovariance function (QAF) of lag l, generalizes the traditional auto-
covariance function.

For the multivariate process {X t, t ∈ Z}, we can consider the d× d matrix Γ(l, τ, τ′) =(
γj1,j2(l, τ, τ′)

)
1≤j1,j2≤d, which simultaneously gives information about both the cross-

dependence (when j1 6= j2) and the serial dependence (since there is a lag l).
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Under appropriate summability conditions (mixing conditions), we can define the the
Fourier transform of the cross-covariances. In this regards, the quantile cross-spectral density
is given by

fj1,j2(ω, τ, τ′) = (1/2π)
∞

∑
l=−∞

γj1,j2(l, τ, τ′)e−ilω, (2)

for 1 ≤ j1, j2 ≤ d, ω ∈ R and τ, τ′ ∈ [0, 1]. Note that fj1,j2(ω, τ, τ′) is complex-valued.
The quantile cross-spectral density contains information about the general dependence

patterns of a given stochastic process. For a specific realization of the process, this quantity
can be consistently estimated by means of the so-called smoothed CCR-periodogram,
Ĝj1,j2

T,R (ω, τ, τ′), proposed by [3].
Based on previous remarks, a simple dissimilarity measure between two realizations

of the d-variate process (MTS) can be defined as follows. Given the i-th MTS, X(i)
t , consider

the set G(i) = {Ĝj1,j2
T,R (ω, τ, τ′), j1, j2 = 1, . . . , d, ω ∈ Ω, τ, τ′ ∈ T }, where Ω is the set of

Fourier frequencies and T = {0.1, 0.5, 0.9}. Let Ψ(i) be the vector formed by concatenating
the elements of the set G(i). The dissimilarity measure between the series X(1)

t and X(2)
t is

defined as the Euclidean distance between the complex vectors Ψ(1) and Ψ(2). We call this
dissimilarity dQCD.

The dissimilarity dQCD is used to develop three robust fuzzy clustering methods.
All of them assume that we want to group n MTS into C clusters, and are based on
the traditional fuzzy C-means clustering algorithm. They look for the set of centroids

Ψ = {Ψ(1), . . . , Ψ
(C)}, and the n× C matrix of fuzzy coefficients, U = (uic), i = 1, . . . , n,

c = 1, . . . , C, which define the solution of a given minimization problem. The quantity uic
represents the membership degree of the i-th MTS in the c-th cluster. The minimization
problem for the first method is the following:

min
Ψ,U

n

∑
i=1

C

∑
c=1

um
ic

[
1− exp

{
−β
∥∥∥Ψ(i) −Ψ

(c)
∥∥∥2

2

}]
w.r.t

C

∑
c=1

uic = 1 and uic ≥ 0,

where β is an hyperparameter that needs to be set in advance and m is a parameter which
determines the fuzziness of the partition, frequently called the fuziness parameter.

The exponential distance is used in the previous model because it is capable of neu-
tralizing the effect of outlying series by spreading out their membership degrees between
the different clusters [4].

The second robust procedure follows the noise cluster approach, and takes into account
the following minimization problem:

min
Ψ,U

n

∑
i=1

C−1

∑
c=1

um
ic

∥∥∥Ψ(i) −Ψ
(c)
∥∥∥2

2
+

n

∑
i=1

δ2

(
1−

C−1

∑
c=1

uic

)m

w.r.t.
C

∑
c=1

uic = 1 and uic ≥ 0,

where δ > 0 is the a parameter known as the noise distance, which has to be specified
in advance.

The previous model includes C groups, but only (C− 1) are “real” clusters. The noise
cluster is artificially created for outlier identification purposes. The aim is to locate the
outliers and place them in the noise cluster, which is represented by a fictitious prototype
that has a constant distance from every MTS (the noise distance, δ).

The third technique can be expressed by means of the minimization problem:

min
Y ,U

H(α)

∑
i=1

C

∑
c=1

um
ic

∥∥∥Ψ(i) −Ψ
(c)
∥∥∥2

w.r.t.
C

∑
c=1

uic = 1 and uic ≥ 0.
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where Y ranges on all the subsets of Ψ = {Ψ(1), . . . , Ψ(n)} of size H(α) = bn(1− α)c. The
model attains its robustness by removing a certain proportion of the series and requires the
specification of the fraction α of the data to be trimmed.

The three previously presented robust models have been analysed by means of a
broad simulation study containing a wide variety of generating processes. Two alternative
dissimilarities were taken into account for comparison purposes [5,6]. In all cases, the three
proposed algorithms outperformed the competitors.

3. Application to real data

The three techniques proposed in Section 2 were applied to perform clustering in a
real MTS database. Specifically, we considered daily stock returns and trading volume of
the top 20 companies of the S&P 500 index, thus obtaining 20 bivariate MTS. Table 1 shows
the membership degrees of the series concerning the trimmed approach.

Table 1. Membership degrees for the top 20 companies in the S&P 500 index by considering the
trimmed approach and a 6-cluster partition.

Company C1 C2 C3 C4 C5 C6

AAPL 0.083 0.146 0.299 0.365 0.066 0.041
MSFT 0.107 0.049 0.213 0.356 0.099 0.176

AMZN 0.865 0.017 0.051 0.032 0.010 0.025
GOOGL 0.682 0.032 0.092 0.128 0.025 0.040
GOOG 0.902 0.010 0.031 0.028 0.008 0.022

FB 0.002 0.983 0.006 0.004 0.003 0.002
TSLA 0.023 0.012 0.056 0.885 0.013 0.010

BRK.B - - - - - -
V 0.004 0.014 0.015 0.017 0.941 0.009

JNJ 0.004 0.015 0.019 0.013 0.937 0.013
WMT - - - - - -
JPM 0.002 0.001 0.003 0.003 0.002 0.989
MA 0.005 0.006 0.968 0.010 0.005 0.006
PG 0.015 0.012 0.028 0.016 0.019 0.909

UNH 0.006 0.924 0.026 0.013 0.022 0.008
DIS 0.020 0.038 0.772 0.099 0.042 0.030

NVDA 0.025 0.020 0.085 0.804 0.043 0.024
HD - - - - - -

PYPL 0.155 0.301 0.297 0.115 0.057 0.075
BAC 0.076 0.086 0.225 0.067 0.060 0.485

The symbols in bold correspond to the companies which were trimmed away, Berk-
shire Hathaway (BRK.B), Walmart (WMT) and Home Depot (HD). Similar clustering
solutions were obtained with the remaining two methods.

4. Conclusions

This work proposes three robust methods to perform fuzzy clustering of MTS. They
are based on the so-called exponential, noise and trimmed ideas. Each approach attains
robustness to outlying series in a different way. The three procedures have been presented
and assessed through a wide simulation study, substantially outperforming alternative ap-
proaches. A real data application has been also carried out in order to show the usefulness
of the presented techniques.
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