
Citation: Colville, M.; Kerr, E.; Nikam,

S. A Review of the Image Classification

Models Used for the Prediction of Bed

Defects in the Selective Laser

Sintering Process. Eng. Proc. 2024, 65,

3. https://doi.org/10.3390/

engproc2024065003

Academic Editor: Paddy McGowan

Published: 27 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

A Review of the Image Classification Models Used for the
Prediction of Bed Defects in the Selective Laser Sintering Process †

Matthew Colville 1, Emmett Kerr 1,2 and Sagar Nikam 1,*

1 School of Computing, Engineering and Intelligent Systems, Ulster University—Magee Campus, Northland
Road, Derry/Londonderry BT48 7JL, UK; colville-m@ulster.ac.uk (M.C.); emmett.kerr@atu.ie (E.K.)

2 Department of Electronic and Mechanical Engineering, Atlantic Technological University Donegal, Port Road,
F92 FC93 Letterkenny, Donegal, Ireland

* Correspondence: s.nikam@ulster.ac.uk; Tel.: +44-2871675015
† Presented at the 39th International Manufacturing Conference, Derry/Londonderry, UK, 24–25 August 2023.

Abstract: Defects formed during the spreading of powder, known as powder bed defects, are a major
issue in additive manufacturing processes. Deep learning (DL)-based image classification models can
be utilised to detect defects caused by the powder spreading process. The aim of this research was to
review and compare the performance of the EfficientNet_v2 deep learning image classification model
against the commonly used VGG-16 model on a selective laser sintering powder bed defects (SLS
PBDs) dataset. It was observed that the EfficientNet_v2 model achieved higher performance than the
commonly used VGG-16 model, with a defect prediction accuracy of 97.54% and model sensitivity
of 96.3%.
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1. Introduction

The quality of the final desired product manufactured via selective laser sintering
(SLS) is determined not only by a sufficient level of fusion between the powder layers but
also the quality of the powder bed spread by the recoater blade. This is because the defects
become an integral part of the product which can lead to a decrease in part quality [1].

Deep learning (DL) image recognition models are capable of analysing the physical
world by measuring the differences in colour shades and estimating the spatial relations
between different physical objects [2]. However, creating a DL model from scratch requires
an extensive, labelled dataset and is computationally intensive. To reduce computational
costs, a pre-trained model can be used, leveraging the progress it has made on a different
task. This is called transfer learning [3].

The aim of this research was to compare the performance of DL models for the
prediction of defects in the selective laser sintering powder bed Defects (SLS PBDs) dataset
captured and published by Westphal et al. [4]. The objectives were as follows:

• To replicate and apply the commonly used VGG-16 on the SLS PBDs dataset [4].
• To build and test an Efficientnet_v2 [5] model on the same dataset.
• To compare the accuracy and sensitivity of the VGG-16 and Efficientnet_v2 models.
• Based on the comparison, identify any improvements in using the Efficientnet_v2

model for defect detection.

2. Method

Two pre-trained models, VGG-16 and EfficientNet_v2 network architectures, were
used in this research. The SLS PBDs dataset [4] was used to train, validate and test the two
aforementioned architectures.
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2.1. Dataset and Pre-Processing

The powder bed images were captured with a resolution of 640 × 480 pixels. This
generated 9426 powder bed images. Some images were captured under poor lighting
conditions, resulting in 912 images being manually removed by the authors of the dataset.
The dataset was manually labelled into two categories for binary classification: OK and
DEF [4]. The OK class with 7808 images was populated with images that had no PBDs, and
the DEF class with 706 images contained images where the powder bed had defects such
as clumps, foreign bodies, etc. Figure 1a shows an image before and Figure 1b shows an
image after pre-processing.
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Figure 1. (a) Image before pre-processing and (b) image after pre-processing [4] (the image published
by Westphal and Seitz is licensed under CC BY 4.0 DEED).

After labelling, a dataset imbalance was observed. The level of class imbalance can be
calculated by using the imbalance ratio (IR) [4]. For the initial dataset, the calculated IR
was 11.06, while the ideal ratio is 1. Therefore, random undersampling (RUS) and random
oversampling (ROS) methods were used to reduce the dataset imbalance. Using RUS,
5808 images were removed from the OK class. Using ROS, 1294 images were randomly
duplicated and added to the DEF class [4]. The balanced dataset contained a total of
4000 images: 2000 in the OK class and 2000 in the DEF class. The resulting IR ratio was 1 in
this instance. The dataset was then split using a train/validation/test ratio of 50:25:25. This
was carried out so that model validation and testing could be completed on unseen data.

2.2. Modelling, Hyperparameters and Performance Metrics

In this research, VGG-16 and Efficientnet_v2 DL models were evaluated. The model
training process was divided into two stages. The first stage was an initial training stage
using the pre-trained models. During the second stage, both models were fine-tuned to
improve performance. To fine-tune the models, they were trained again using a learning
rate reduced by a factor of 50, and all model layers were unfrozen. This process has the
effect of further improving model performance. Table 1 shows the values set for the hyper-
parameters of the DL models used in this study. These values were taken from the original
VGG-16 defect detection paper written by Westphal et al. [4]. This was carried out to ensure
that a fair comparison could be made between the VGG-16 and EfficientNet_v2 models.

Table 1. Model hyperparameters [4].

Cost Function Learning Rate Optimiser Epochs Batch Size Lr Decay Early Stoppage

Binary
cross-entropy 0.001 Adam

ß1 = 0.9 ß2 = 0.999 120 16 Patience = 5 Patience = 20
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3. Results
3.1. Model Accuracy and Sensitivity

Figure 2 depicts an accuracy graph for VGG-16 and EfficientNet_v2 model training
during the fine-tuning process.
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3.2. Confusion Matrix

Table 2 shows a confusion matrix for the VGG-16 and Efficientnet_v2 models.

Table 2. Confusion matrix.

Predicted Values

VGG-16 EfficientNet_v2

OK DEF OK DEF

OK 460 20 OK 479 7

DEF 38 478 DEF 19 491

4. Discussion

Figure 2 shows that there was a large amount of volatility in the test accuracy of the
VGG-16 model at the beginning epochs of model training. This could possibly be due to a
large model size relative to the amount of data to train the model on [6]. On the other hand,
comparing training and testing accuracy for the EfficientNet_v2 model, it was observed that
the test accuracy was significantly higher than the training accuracy. This could be because
the EfficientNet_v2 model uses dropout [5], while the VGG-16 model does not. Dropout
disables neurons during training to make it artificially harder for the network, which can
increase model performance [5]. This artificial increase in training difficulty would cause a
decrease in training accuracy when compared to the testing accuracy. From the model’s
performance on the test dataset, it was observed that the VGG-16 model had an accuracy
of 95.8%. In comparison, the EfficientNet_v2 model achieved a higher accuracy of 97.54%.
Model sensitivity is a particularly important performance metric in defect detection due to
the large importance placed on avoiding false negative predictions. The sensitivity of the
VGG-16 model was 93.9% compared to the sensitivity of 96.3% achieved by EfficientNet_v2.
From Table 2, it can be observed that 20 erroneous false negative predictions were made by
VGG-16, while for EfficientNet_v2, this was only 7.

5. Conclusions

This research aimed to test the performance of the proposed Efficientnet_v2 model
against the commonly used VGG-16 model on the SLS PBDs dataset. The EfficientNet_v2
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model and the VGG-16 model were trained, validated and tested using the hyperparame-
ters published in the original research by Westphal et al. [4]. The proposed EfficientNet_v2
model achieved greater performance with a classification accuracy of 97.54% and model
sensitivity of 96.3% when compared to the VGG-16 performance results. Also, the Effi-
cientNet_v2 model made fewer erroneous false negative predictions when compared to
VGG-16.
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