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Abstract: The detection and diagnosis of power quality (PQ) issues are critical topics in the electri-
cal power system’s generation, transmission, and distribution. Nonlinear loads, power electronic
converters, system malfunctions, and switching events are the most common causes of PQ issues.
The main purpose of this work is to use an artificial intelligence (AI) technique based on automatic
feature extraction to discover and identify PQ difficulties. The AI technique consists of a dedicated
architecture of the Long Short-Term Memory (LSTM) network, which is a special type of Recurrent
Neural Network (RNN).
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1. Introduction

In today’s world, power quality (PQ) is important for modern electric power utilities
and their consumers, especially when it comes to power quality disturbances, because of
the huge increase in nonlinear load, the increased use of sensitive electronic devices, and
the need to apply green power globally as well as increase renewable energy applications.
Power quality issues have become more crucial than ever [1]. Interruptions and other
disturbances are caused by greater usage of semiconductor devices, lighting controls, solid-
state switching devices, inverters, and protection and relaying equipment. Such issues
have become some of the most pressing concerns for engineers and decision-makers, as
frequent occurrences result in significant financial losses for power companies [2].

Detecting power quality issues is critical for improving power quality in electric power
systems and for making effective decisions about how to handle network disturbances. En-
gineers reading waveforms in the field is one method of identifying and classifying power
disruptions. Unfortunately, due to the amount of data sampled in current power systems,
manual recording is nearly impossible. Furthermore, more equipment failures in power
systems occurred because of PQ problems, as well as damage to its sensitive controllers. As
a result, the expense of addressing these issues is high in terms of finances, and it results in
time losses. Therefore, studying the waveforms of power quality disturbances is important
in order to detect and classify them successfully [3]. The power system must overcome
various power quality challenges; some of them make it operational, resulting in a blackout
of the network. The most significant challenges that the power system must overcome
include:voltage spikes, voltage fluctuations, voltage unbalance, voltage sag, voltages swell,
harmonic distortion, noise, very short interruptions, and long interruptions [4].

In order to evaluate the power quality and the disturbances that are experienced, it is
necessary to detect and classify these disturbances in time, precisely and correctly. To do
that, several signal processing methods, such as FT, ST, and WT, have offered sophisticated
mathematical algorithms that may detect power quality problems, and these algorithms
have shown substantial success in this field [3–5]. Classification techniques like ANN, SVM,
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and Fuzzy logic provide assistance to the detecting algorithm by testing, validating, and
training large amounts of signals. This helps to ensure that the selected algorithm is both
successful and efficient [6]. Long Short-Term Memory (LSTM) hasprovided a powerful
mathematical algorithm for the detection and classification of PQ problems in a power
system. LSTM isa developed version of Recurrent Neural Network (RNN). LSTM contains
neurons to perform computation (memory cells). These cells have weights and gates; the
gates are the defining characteristic of LSTM models. There are three gates within each cell:
theinput, forget, and output gates [7].

In this work, the PQ detection and classification system is presented in order to solve
part of the power system problems. The paper is divided into the following sections: a
description of power quality problems with their causes and effects. Next, a presentation
of the existing detection and classification methods is given, with a brief explanation
oftheiradvantages and drawbacks. Finally, the simulation results and their discussion are
given, with conclusions drawn.

2. Long Short-Term Memory (LSTM)
2.1. Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are networks with an internal network loop that
ensures information persistence. RNNs have been particularly developed to process
sequential data [8]. RNNs have complete connections between adjacent layers and nodes
within the same layer as illustrated in Figure 1. Furthermore, RNNs’ hidden units receive
feedback from prior states to current status. These properties are appropriate for dealing
with temporal–spatial data [9].
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Figure 1. Architecture of a recurrent neural network.

RNNs are referred to as recurrent because they do the same task for each element of
a sequence, with the outcome relying on previous estimates. Another way to conceive of
RNNs is that they have a “memory” that stores information about previous calculations [10].
As a result, RNNs can link earlier data to the current task. RNN is already being used
to solve a number of problems using an internal state (memory) to process a sequence of
inputs, including language modeling and translation, speech recognition, text recognition,
time series data, and autonomous driving systems to predict vehicle trajectories and assist
in avoiding accidents.

2.2. RNN Architecture

In Figure 2, (xt) denotes the current input of time step t, (ht) is the output of that time
step, and A denotes the network’s recurrently connected unit. The previous time step’s
output is passed on to the following time step as an extra input. If a dense layer is following,
the last concealed state (ht) is passed and processed to form (yt), or if a dense layer follows,
(ht) is passed and processed to form (yt).
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2.3. Long Short-Term Memory (LSTM)

Long Short-Term Memory networks are a developed version of the previously men-
tioned simple RNNs. Hochreiter and Schmidthuber first proposed them in 1997 [11], and
they have demonstrated accurate performance in modeling both long- and short-term
dependencies of sequential data [8]. In theory, they were created expressly for long-term
dependencies in order to overcome the vanishing/exploding gradient problem. Figure 3
shows the structure of a simple LSTM network for prediction, which includes a sequence
input layer, an LSTM layer, and a prediction (classification) output layer.
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2.4. LSTM Network Architecture

The LSTM architecture is based on the existence of a memory cell that is capable of
maintaining its state over time and has a nonlinear gating mechanism that controls the flow
of information into and out of the cell. The LSTM network is being utilized to create a more
complicated and deeper nonlinear neural network capable of demonstrating the effect of
long-term memory [12].

LSTM networks have an input layer, an output layer, and a multitude of hidden layers
in between. The memory cell is built into the hidden layer. Each cell has three gates (input,
forget, and output) and a recurrent connection unit [13].

The LSTM architecture is depicted in Figure 4 as it unfolds over time. The LSTM cell
(denoted as A in Figure 4) on the left represents the previous time step, while the cell on
the right represents the next time step. The current time step is halfway through. The cell
contains three lines. It obtains the input (Xt) and the output from the previous time step
in the bottom left corner (the output from the previous layer is called the hidden state in
RNNs and is abbreviated as (ht−1). Before running into the four gates denoted as yellow
boxes in the drawing, the input (Xt) and the hidden state (ht−1) are concatenated. The cell’s
third input, which comes from the preceding cell, is represented by a straight arrow that
passes through the upper section of the cells. This is the cell state, which allows the LSTM
to remember long-term dependencies with a far lower risk of the vanishing and exploding
gradient problems that plague typical RNNs [14–17].
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3. Results and Discussions
3.1. Description of the Simulation Environment

MATLAB is used to generate several PQ signals, including interruptions, sag, harmonic
distortion, flicker, swell, surge, sag with harmonics, and swell with harmonics, in this
section. A comparative study to evaluate the LSTM performance in terms of the detection
and classification of these signals is performed. Each simulated waveform is made up
of voltage waves recorded at a rate of 64 samples per cycle. A total of 200 case studies
are created for each power quality problem by varying the voltage magnitude and the
beginning and finish time instants of each PQ problem. Simulated signals are blended with
random white noise with signal-to-noise ratios of 40 dB and 20 dB, respectively.

The signal-to-noise ratio (SNR) is a metric that compares the strength of a desired
signal to the strength of an additive white Gaussian noise as:

SNR =
Psignal
Pnoise

(1)

where P designates the power. Higher values of SNR generally mean a better specification
since this means more useful information (the signal) than unwanted data (the noise).

3.2. Proposed Methodology

As shown in Figure 5, the LSTM system is designed and built to perform detection
and classification using five parameters: amplitude, start time, end time, duration, and
THD percent, as well as two outputs: waveform class and harmonics indicator.
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3.3. Model Implementation and Training

In this section, the proposed model is trained by altering the voltage magnitude and
the start and finish time instants of each power quality problem; 200 case studies are
constructed for each PQ problem. Figure 6 shows the trained system.
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To detect and classify the problem waveforms, the LSTM has two outputs as follows:

• The first output of the LSTM function is for the waveform class, which is defined by
six sets. These sets are the interruption, sag, normal, flicker, swell, and surge. Any
output value, which does not belong to these sets, represents the distortion. The first
output of the LSTM network system can assume values between 0 and 3, as shown in
Table 1.

• The second output of the LSTM function is for harmonics indication, which is par-
titioned into two function sets. The labels of these sets are Pure and Harmonics, as
shown in Table 1.

Table 1. LSTM Network Outputs.

PQ Problem LSTM Output

First LSTM output

Interruption 0

Sag 0.5

Flicker 0.8

Normal sine wave 1

Swell 1.5

Surges 3

Second LSTM output

Pure 0

Harmonics 1
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3.4. Results and Discussions

Table 2 summarizes the performance of the LSTM technique following extensive
simulations. The percentage values indicated show how good LSTM is in terms of power
quality disturbance detection and classification.

Table 2. Summary of the Obtained results.

Events Pure Signal With SNR 40 With SNR 30 dB With Harmonics With Harmonics and SNR 30 dB

Normal case 99.4644 99.3551 98.9588 98.9044 95.9687

Sag 99.8875 99.5346 98.2528 99.5662 96.6155

Swell 99.9091 99.3293 97.3609 98.8372 96.7574

Interruption 99.9861 98.5413 97.4985 99.9553 96.1080

Surge 99.4821 97.8860 94.6241 / /

The totals 99.7458 99.5292 97.3790 99.3158 96.3674

The following remarks may be drawn from Table 2:

• The LSTM has performance values ranging from 96.3674% to 99.7458%.
• A value of 40 dB SNR and the harmonics do not have much of an effect on the detection

results, which shows the effectiveness of the LSTM model.
• An SNR of 30 dB is considered a high noise ratio even if the final accuracy was not

deduced higher than 3%.
• Merging the normal signal with PQ disturbances at an SNR of 30 dB and harmonics

gives an accuracy of around 96%.
• The worst-case PQ disturbances with harmonics and noises were clearly and success-

fully detected and classified, which proves the LSTM’s robustness.

4. Conclusions

The main objective of this work is to develop a Power Quality Detection and Clas-
sification using Long Short-Term Memory (LSTM). The method is able to identify and
classify several PQ problems (normal, sag, swell, surge, distortion, and interruption) in
both simple and complex power quality disturbances in the presence of random noise at
different values of the signal-to-noise ratio (SNR). The detection and classification using the
LSTM model aredesigned and implemented to perform with five input data parameters
(amplitude, start time, end time, duration, THD %) and two outcomes: the waveform class
and a harmonics content indicator.The detection and classification of PQ problems using
LSTM show the high accuracy of this model, even in the worst cases of adding harmonics
with 30-dB SNR simultaneously with PQ problemsignals. This proves the robustness of
the LSTM method, as the obtained classification rate was 96.3674%. Hence, the findings
of the present work prove that the LSTM network is a leading method in the world of PQ
detection and classification.
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