
Citation: Adeoye, D.O.; Gano, Z.S.;

Ahmed, O.U.; Shuwa, S.M.; Atta, A.Y.;

Iwarere, S.A.; Jubril, B.Y.; Daramola,

M.O. Synthesis and Characterisation

of Menthol-Based Hydrophobic Deep

Eutectic Solvents. Chem. Proc. 2023, 14,

98. https://doi.org/10.3390/

ecsoc-27-16334

Academic Editor: Julio A. Seijas

Published: 22 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Synthesis and Characterisation of Menthol-Based Hydrophobic
Deep Eutectic Solvents †

Deborah O. Adeoye 1,2,* , Zaharaddeen S. Gano 3, Omar U. Ahmed 4, Suleiman M. Shuwa 2, Abdulazeez Y. Atta 2,
Samuel A. Iwarere 5 , Baba Y. Jubril 2 and Michael O. Daramola 5

1 Nigerian Institute of Leather and Science Technology, Zaria P.M.B 1034, Kaduna State, Nigeria
2 Department of Chemical Engineering, Ahmadu Bello University, Zaria P.M.B 06, Kaduna State, Nigeria
3 National Research Institute for Chemical Technology, Zaria P.M.B 1052, Kaduna State, Nigeria
4 Department of Chemical and Petroleum Engineering, Bayero University, Kano P.M.B 3011, Kano State, Nigeria
5 Sustainable Energy and Environment Research Group, Department of Chemical Engineering, Faculty of

Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield,
Pretoria 0028, South Africa

* Correspondence: yawehst2006@gmail.com; Tel.: +234-9094726316
† Presented at the 27th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-27),

15–30 November 2023; Available online: https://ecsoc-27.sciforum.net/.

Abstract: Hydrophobic deep eutectic solvents (HDESs) have found applications in water purification
in recent years. The extent of their stability in aqueous media determines whether they are suitable
materials for water purification or if they end up constituting a greater pollution load to the water
they are to purify. This work sought to prepare HDESs from a monoterpene (menthol), and three
long-chain organic acids (octanoic acid, decanoic acid, and dodecanoic acid). The physicochemical
characteristics of the prepared HDESs were investigated. Thereafter, their moisture absorption
capacity and stability in an aqueous medium were determined to ascertain whether or not they were
hydrophobic as predicted.

Keywords: hydrophobic deep eutectic solvent; menthol; octanoic acid; decanoic acid; dodecanoic
acid; moisture absorption capacity

1. Introduction

Deep Eutectic Solvents (DESs) are alternative green solvents to ionic liquids. They
are easy to prepare, have high purity, and are low-cost [1,2] which gives them an edge
over ionic liquids. By definition, DESs are solvents composed of two or more components:
a hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) generally associated
via hydrogen bonding or complexation, which produces a liquid whose melting point is
lower than that of the individual components. This hydrogen bond interaction gives rise to
a unique chemical entity with a lower melting point than its precursors. Interestingly, some
DESs have been proven at a laboratory scale to be applicable in leather-manufacturing
processes such as chrome tanning, vegetable tanning, the plasticising/fatliquoring of
tanned leather, and the dyeing of plasticised leather [3]. In the open literature, many DESs
researched are hydrophilic and, therefore, unstable in an aqueous environment, limiting
their applications [4,5]. Due to its increasing number of applications, the concept of the
synthesis of DESs is currently a subject of growing interest. It has further led to a recent
investigation into the synthesis of hydrophobic deep eutectic solvents (HDESs).

The synthesis of HDESs can be achieved by using water-insoluble components. Prop-
erties such as density, viscosity, surface tension, and melting/freezing point depend on
the HDES structure, while moisture absorption capacity and thermal stability determine
the appropriate application options. This paper sought to investigate the fundamental
physicochemical properties of three (3) non-ionic HDESs prepared from monoterpene and
long-chain saturated organic acids.
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2. Materials and Methods
Hydrophobic Deep Eutectic Solvent Synthesis

Menthol (99% assay) was purchased from Molychem, and octanoic acid (99% assay),
decanoic acid (98% assay), and dodecanoic acid (99% assay) were from Loba Chemie.
Binary mixtures of monoterpene (menthol) and carboxylic acids (octanoic acid, decanoic
acid, and dodecanoic acid) were prepared by weighing each component using a Mettler
Toledo analytical weighing balance (ME 204E) and adding them into glass vessels (in
the molar ratios contained in Table 1). The solid mixtures were melted while stirring on
a magnetic stirrer hot plate at 80 ◦C until a homogeneous liquid mixture was obtained and
cooled to room temperature.

Table 1. Composition of different hydrophobic deep eutectic solvents.

HBA HBD Abbreviation Mole Ratio Physical Appearance

Menthol
Octanoic acid MC8 1:1 Pale-yellow liquid
Decanoic acid MC10 1:1 Colourless liquid

Dodecanoic acid MC12 1:1 Golden-yellow liquid

3. Results and Discussion
3.1. Fourier Transform Infrared of HDESs

The hydrogen bond is the primary intermolecular interaction between terpenes and
organic acids in the formation of HDESs [6,7]. Fourier transform infrared (FTIR) spectra of
the different terpenes and organic acids and the resultant HDESs from their combinations
were determined to investigate and ascertain this interaction. Figure 1 shows a cascaded
spectra of menthol (M), octanoic acid (C8), and MC8. C8 served as the HBD with a char-
acteristic carbonyl stretching band (C=O) at 1707.1 cm−1, while M was the HBA with
a representative OH stretching band at 3242.8 cm−1. The spectrum for MC8 indicated a
shift in the OH band in menthol to 3377 cm−1, while the C=O band also reflected a shift in
its wavelength to 1710.8 cm−1. Both precursors had characteristic alkane C-H stretching
bands between 2840 and 3000 cm−1, which was also reflected in MC8. These shifts and
intensity changes reflect the impact of the hydrogen bond between the hydrogen in the
carboxyl moiety of the octanoic acid, and the oxygen in the OH of menthol, which resulted
in the formation of MC8.
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Figure 1. FTIR spectra for menthol, octanoic acid, and MC8 HDES.

Figure 2 represents spectra of menthol, decanoic acid (C1), and MC10 HDES. C10 being
the HBD showed a characteristic carbonyl stretching band (C=O) at 1692.2 cm−1, while
MC10 showed a shift in the OH band in menthol to 3406.8 cm−1 and a corresponding
shift in the C=O band to 1710.8 cm−1. The alkane C-H stretching bands reflecting the
HBD and HBA were maintained in the resulting HDESs (MC10). In Figure 3, the HBD for
MC12 was dodecanoic acid (C12) with an initial C=O band at 1692.2 cm−1. The menthol
OH band shifted from its initial wavelength to 3410.5 cm−1, while the C=O band in C12
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experienced a slight backward shift to 1710.8 cm−1 as reflected in MC12. The resulting
spectra in Figures 2–4 when compared with previous related works reflect similar shifts
at the OH band of monoterpene and at the CO bands of organic acids, which signifies the
interaction between the two components during the formation of HDESs [8–11].
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In FTIR, one of the factors that influence peak intensity is concentration. A shift in peak
position usually depicts an electron distribution in the molecular bond that has changed.
Therefore, the various peak shifts observed in the spectra of the HDESs can be attributed to
the intermolecular hydrogen bonding between the HBDs and HBAs.

3.2. Physicochemical Properties
3.2.1. Density

Density is a crucial property of solvents that greatly influences dissolution, reaction, and sep-
aration processes, determining their viability. From experimental data obtained and captured in
Figure 4, the density of all menthol-based HDESs ranged between 0.8493 and 0.8981 kg/L. All
HDESs revealed a linear decrease in density with a consistent increase in temperature. Accord-
ing to Francisco et al., densities of menthol-based HDESs were between 0.890 and 0.925 kg/L.
Hydrophobic deep eutectic solvents have been reported to possess lower densities than wa-
ter [12]. The density of a deep eutectic solvent reveals a temperature-dependent behaviour,
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which decreases linearly with increasing temperature [8,11–13]. Moreover, density depends
on the choice of hydrogen bond donor, and the molar ratio [14–18].

3.2.2. Viscosity

Viscosities of the prepared HDESs were observed to be temperature-dependent. They
decreased linearly with corresponding temperature increases. In Figure 5, the viscosity
profile of menthol-based HDESs increased from MC8 to MC12, i.e., MC8 < MC10 < MC12,
and was between 9 and 18 mPa.s. The results above align with results obtained from
previous work [12]. Also, from the results obtained, it was observed that an increase in the
alkyl chain of the carboxylic acid (HBD) resulted in the corresponding rise in the viscosities
of the HDESs. Noteworthy is the extraordinarily low viscosities (<20 mPa.s) of HDESs
based on fatty acids combined with menthol and thymol. These overcame one of the
significant drawbacks of hydrophilic DES, where, for example, a viscosity of 859.45 mPa.s
was attained for ChCl: urea (1:2) [13].
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The viscosity of a eutectic mixture is affected by the nature of its components [11,14],
their molar ratio [16], the temperature [8,19–24], and the water content [10,11,18,24,25]

3.2.3. Surface Tension

Surface tension is an essential property since it is highly dependent on the intensity of
the intermolecular forces taking place between the hydrogen bond donor and the hydrogen
bond acceptor. It also determines the suitability of HDESs in interfacial processes in which
mass transfer occurs. In Figure 6, the surface tension of MC8, MC10, and MC12 was within
24.0–28.5 mN/m. The surface tension of the HDESs was also temperature-dependent
as it decreased with increasing temperature. Studies have shown that surface tension
decreases linearly with increasing temperature [9,19,26]. The surface tension of all HDESs
was observed to be <30 mN/m, and, as exemplified in previous works, decreased with
increasing temperature.
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3.3. Hydrophobicity Test

Figure 7 shows the image of the HDESs immediately after agitation. An oil-in-water
emulsion-like mixture was observed. The samples were left for 24 h to see if the emulsion
formed any phase separation. After 24 h, clear and distinctive phase separation was noticed
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with water (the denser phase) seen at the bottom of the bottle and the HDESs (the less
dense phase) on top, as seen in Figure 8.
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Figure 9 is a chart indicating the moisture content determined in each HDES after
its interaction with water for 24 h. The HDESs MC8, MC10, and MC12 had the following
moisture contents: 5.26%, 3.54%, and 2.64%, respectively. It could be seen that thymol-based
HDESs had less moisture absorption capacity than their menthol-based counterparts did. It
was also reported by Florindo et al. that an increase in the alkyl chain of the HBDs resulted
in the increased hydrophobicity of the HDESs [12].
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It is highly recommended to determine the chemical stability of deep eutectic solvents
that find applications in aqueous environments to ascertain that there is no contamination
of the water phase with the DES and no loss of the DES structure due to water absorption.
The ability of an HDES to maintain its structure and not lose its integrity in the presence of
water is of enormous importance.

4. Conclusions

Three hydrophobic deep eutectic solvents from menthol and long-chain organic acids
were successfully prepared, all in a ratio of 1:1. All were liquids at room temperature, with
MC8 having a pale-yellow colour, MC10 being colourless, and MC12 having a golden-yellow
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colour. The prepared HDESs were characterized using FTIR, and the spectra revealed
remarkable shifts in the O-H stretching bands and C=O stretching bands of the HDESs
compared with those of their precursors. The changes in the OH stretching bands and
C=O stretching bands resulted from the intermolecular hydrogen bond formed between
the starting materials to give HDESs.

Also, physicochemical analysis was carried out on the synthesized HDESs, which
revealed their excellent characteristics. This better informs researchers on their best areas of
application, potentially in the removal of recalcitrant aromatic contaminants in wastewater.
The density of menthol-based HDESs was found to be between 0.890 and 0.925kg/L. All
densities were found to decrease with an increase in temperature. The viscosity of the
HDESs was found to be <20 mPa.s and decreased with an increase in temperature. Similarly,
to viscosity, the surface tension of HDESs also reduced with an increase in temperature and
was observed to be <30 mN/m. Finally, the extent of moisture absorption into the matrix of
the HDESs was determined to be between 2.64 and 5.26%. It was observed that the degree
of hydrophobicity increased with an increase in the alkyl chain of the organic acids (HBDs).
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