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Abstract: Intelligent transportation and advanced mobility techniques focus on helping operators
to efficiently manage navigation tasks in smart cities, enhancing cost efficiency, increasing security,
and reducing costs. Although this field has seen significant advances in developing large-scale
monitoring of smart cities, several challenges persist concerning the practical assignment of delivery
personnel to customer orders. To address this issue, we propose an architecture to optimize the task
assignment problem for delivery personnel. We propose the use of different cost functions obtained
with deterministic and machine learning techniques. In particular, we compared the performance
of linear and polynomial regression methods to construct different cost functions represented by
matrices with orders and delivery people information. Then, we applied the Hungarian optimization
algorithm to solve the assignment problem, which optimally assigns delivery personnel and orders.
The results demonstrate that when used to estimate distance information, linear regression can
reduce estimation errors by up to 568.52 km (1.51%) for our dataset compared to other methods. In
contrast, polynomial regression proves effective in constructing a superior cost function based on
time information, reducing estimation errors by up to 17,143.41 min (11.59%) compared to alternative
methods. The proposed approach aims to enhance delivery personnel allocation within the delivery
sector, thereby optimizing the efficiency of this process.

Keywords: smart delivery; machine learning; regression model; Hungarian optimization algorithm

1. Introduction

In the rapidly evolving landscape of smart transportation, e-commerce, and logistics,
the efficient management of delivery operations remains an indispensable determinant of
success for delivery businesses [1]. However, within this realm the convergence of smart
transportation and mobility further complicates the equation. Smart delivery processes are
confronted with a multitude of challenges, from the need to gather the appropriate data
from users on location, traffic, and mobility through sensors and the Internet of Things
(IoT) [2], to the complex task of managing inventory levels efficiently. Smart delivery tries
to find an appropriate method to engage users in sharing this information in order to
provide good solutions for large realistic instances along with a procedure that can be used
in real environments [3], aiming to meet increasingly demanding customer expectations
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for fast and reliable service. However, optimizing delivery routes presents a formidable
challenge, necessitating consideration of dynamic variables such as traffic patterns and
delivery windows. Moreover, the seamless facilitation of communication and tracking
throughout the delivery journey is essential for ensuring a smooth and transparent cus-
tomer experience [4,5]. These multifaceted challenges collectively underscore the pressing
need for innovative logistical solutions and strategies that harness the potential of smart
transportation and mobility technologies to maintain competitiveness in the ever-evolving
landscape of smart e-commerce and logistics.

In this context, using Artificial Intelligence (AI) techniques can present revolutionary
opportunities to improve traditional approaches related to delivery, logistics, and supply
chain management [6]. In particular, AI algorithms based on machine learning (ML),
deep learning (DL), and reinforcement learning (RL) offer significant potential to enhance
delivery processes and logistics. For example, ML algorithms can analyze vast amounts of
historical delivery data to identify patterns, optimize routing, and predict demand more
accurately, thereby improving the efficiency of delivery operations [6,7]. Moreover, DL
models work well at processing complex data types such as images and text, enabling tasks
such as automatic package sorting, vehicle recognition, and natural language processing
for customer inquiries [8]. On the other hand, RL algorithms can optimize decision-making
in dynamic environments by learning from interactions with the delivery environment,
leading to more adaptive and responsive delivery strategies [9]. These AI techniques
represent a possible solution to address delivery logistics challenges.

Optimization methods also play a crucial role in improving delivery problems and
logistics by efficiently allocating resources, optimizing routes, and minimizing costs [10].
Techniques such as linear programming, integer programming, and metaheuristic algo-
rithms enable businesses to address logistics and delivery challenges such as route optimiza-
tion and inventory management [11]. By mathematically modeling delivery constraints and
objectives, optimization methods can help businesses to make informed decisions, maxi-
mize resource utilization, and improve overall operational efficiency. These methods also
facilitate dynamic adjustments to changing conditions, ensuring adaptive and responsive
delivery strategies. Ultimately, optimization methods contribute to enhancing customer
satisfaction, reducing delivery times, and achieving cost savings in logistics operations [12].
Before exploring the solution proposed in this work, it is essential to summarize some
recent studies that have confronted the delivery problem and the application of artificial
intelligence in the area. The following subsection presents the state of the art regarding
this research.

1.1. Related Work

Over the past few years, task assignment approaches related to delivery problems
have gained significant attention from various researchers. For example, in [13], an em-
ulated food delivery service was modeled using a Markov decision process. This model
was improved with Q-learning and DDQN using a rule-based policy to maximize revenue
derived from served. The results showed that DDQN collects higher rewards compared to
other algorithms. In another study presented in [14], the solution to the scheduling problem
was addressed using real crowdsourced delivery platforms. The study proposed a machine
learning method combining simulation optimization for offline training with a neural
network. The obtained results presented a quality within 0.2–1.9% of a bespoke sample
average approximation method while being several orders of magnitude faster regarding
online solution generation. Furthermore, in [15] the authors presented an algorithm to
optimize food delivery processes by minimizing delivery time in road networks. Their
approach formulated the order assignment problem as a minimum-weight perfect match-
ing task on a bipartite graph. They then employed the best-first search graph method to
calculate the solution space efficiently. The authors used real data from Swiggy, the largest
food-delivery company in India. This approach introduced novel concepts such as order
batching and dynamic adaptation to vehicle locations to enhance the solution quality,
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and demonstrated its effectiveness in achieving a 30% reduction in delivery time. Other
works have emphasized the importance of minimizing the delivery time for customer
satisfaction [16]. The challenge in this respect involves order-to-vehicle assignment, order
batching, and vehicle movement adaptation. To address this, the authors proposed map-
ping the vehicle assignment problem to minimum-weight perfect matching on a bipartite
graph. To optimize efficiency, best-first search was utilized to construct a subgraph likely
to contain the minimum matching. Using the angular distance, this algorithm enhances
solution quality by considering graph batching and dynamic vehicle positions. Extensive
experiments on real food-delivery data from metropolitan cities demonstrated that this
approach presents substantial improvements over other strategies, including reductions in
food delivery time and waiting time at restaurants as well as increased orders delivered per
kilometer. In the work presented in [17], the authors addressed the challenge of online food
delivery, focusing on efficiently allocating orders to drivers and route planning. For order
assignment, a modified Kuhn–Hungarian (Munkres) algorithm is employed to optimize
matching between orders and drivers, while a machine learning classification model using
eXtreme Gradient Boosting (XGBoost) predicts order batching results to prevent inap-
propriate matches. Additionally, a rule-based route planning method generates viable
routes for drivers. Experiments conducted on real datasets from Meituan demonstrated
the effectiveness of the proposed algorithm in solving the online food delivery problem,
validating the performance of the classification model and the overall efficiency. In addi-
tion, tp address the on-time performance in last-mile delivery services, the study of [18]
designed a data-driven framework to model delivery performance and optimize order
assignments to drivers. The driver’s total delivery time was decomposed into uncertain
service time at customer locations and predictable travel time on roads. A prediction model
for delivery tour length was then developed, providing practical routing behaviors and
accurate predictions; the results showed the advantages of data-driven order assignment
models integrated with delivery tour prediction over classical vehicle routing problems.

Other studies have proposed solutions for areas outside the food delivery industry or
simple courier management while applying the same principles and methods. For example,
in [19], a two-echelon vehicle system was proposed for routing emergency mask deliveries
during the COVID-19 pandemic. A hybrid machine learning and heuristic optimization
method was proposed to address the delivery of medical masks. Deep learning combined
with heuristic optimization was used to predict regional delivery demand, obtaining a
reduced average weighted delivery time of up to 61%. In [20], the authors discussed an Au-
tonomous Mobility-on-Demand system, considered an eco-friendly urban transportation
service. It addresses the optimization of recharging, delivery, and repositioning tasks for
shared autonomous electric vehicles through a multi-agent multi-task dynamic dispatching
problem based on the Markov Decision Process. The decision-making process is divided
into three subprocesses, each of which transformed into a mathematical problem; recharg-
ing and delivery task assignments are modeled as maximum weight matching problems
of bipartite graphs, while repositioning task assignment is quantified as a maximum flow
problem. Algorithms such as Kuhn–Hungarian and Edmond–Karp are employed to solve
these problems and achieve optimal task allocation policies. In [21], a reward function
balancing order income with trip satisfaction was proposed along with a state-value func-
tion estimated by a backpropagation deep neural network to assess the matching degree
between vehicles and tasks. The results demonstrated significant improvements in total
revenue, user waiting time reduction, and trip satisfaction through various optimization
strategies, such as introducing task allocation repositioning and combining charging with
task repositioning.

Tables A1–A3 in Appendix A summarize the bibliographic review showing the ad-
dressed problem, the authors’ proposed solution, the disadvantages encountered, and the
obtained results. Task assignment problems represent a broad field of research that has seen
several developments with sundry results. In this context, the most common disadvantages
are the number of variables needed to obtain proper results and the applicability and the
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scalability of the solution in environments outside of those analyzed during development.
Due to the complexity and the number of factors present in urban environments, further
investigation of possible solutions focusing on new methods of analysis and considering
different sets of variables remains of interest, and has motivated this research.

1.2. Main Contribution

The motivation of this work was to use ML algorithms and the Hungarian optimization
algorithm in a single architecture to find a feasible method to improve the assignment
tasks between delivery people and orders. The synergy between ML and the Hungarian
algorithm enabled us to improve delivery operations, which might have a positive impact
on operational costs. The main contributions of this work can be summarized as follows:

• We build a dataset from the MAX Delivery company, headquartered in Barcelona, Spain.
The dataset comprises 7707 order records. Each record contains details regarding the
time and coordinates of delivery personnel assigned to specific customer orders.

• We use the Haversine formula to accurately compute the distances between delivery
people and customer orders. This is essential for generating an assignment matrix to
solve the optimization problem related to order allocation.

• We propose two different supervised machine learning methods to estimate delivery
time and distance to each customer for each delivery person. This is crucial, as
the dataset only contains specific data points for completed deliveries and creating
the assignment matrix requires calculating potential delivery times for all delivery
person–customer combinations.

• We use the Hungarian algorithm with the cost matrices obtained from the Haversine
calculations, as well as the linear and polynomial regression methods. The Hungarian
optimization algorithm solves the task assignment problem, which optimally assigns
delivery people to customer orders. The algorithm efficiently determines the best
possible assignments by considering the costs associated with each assignment and
guarantees an optimal solution for this task.

• Finally, we compare the effectiveness of the Haversine calculations, linear regression,
and polynomial regression techniques after applying the Hungarian optimization
algorithm to solve the task assignment problem.

1.3. Outline

The remainder of this work is organized as follows: Section 2 introduces the materials
and methods used in the study; Section 3 provides a detailed account of the experimental
results; Section 4 addresses the analysis of the obtained results; finally, Section 5 offers
concluding remarks and insights drawn from the research.

2. Materials and Methods

In this work, we present a smart optimization architecture for the assignment of
delivery tasks, as shown in Figure 1. The proposed approach is based on ML algorithms
and optimization methods to improve the delivery assignment task. To this end, a huge
dataset associated with the MAX Delivery delivery company operating in Barcelona, Spain
was constructed. Then, a cost function is proposed by analyzing different heuristics and
ML algorithms. Two mathematical models, namely, linear regression and polynomial
regression, are studied to model distance and time metrics. After estimating the cost
functions, we solve the task assignment delivery problem using the Hungarian algorithm.
Finally, we compare, evaluate, and present the task assignment delivery results.
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Figure 1. Proposed architecture for enhancing delivery assignments through supervised machine
Learning regression techniques and the Hungarian algorithm.

2.1. Data Acquisition

For our data acquisition procedure, we used Python programming language to obtain
and process information from MAX Delivery, a company headquartered in Barcelona,
Spain. The dataset encompasses 7707 order records, each detailing the time and coordinates
of delivery personnel assigned to specific customer orders. This includes information on
both the delivery person and customer coordinates, along with the time taken for each
delivery. The data analyzed in this study were collected between 1 January 2023 and
22 June 2023, enabling us to compile a dataset comprising 7707 successful delivery orders.
To safeguard confidentiality, all consumer and delivery person names and specific details
were anonymized.

It is important to note that the dataset provides information solely on completed deliv-
eries and associated customer orders. However, to formulate a task assignment problem,
we require a cost function represented by an assignment matrix. This matrix contains
the potential cost for each delivery person to deliver to each customer. To construct this
assignment matrix, we propose utilizing two distinct methods: the Haversine formula and
supervised regression techniques. When employing the Haversine formula, we leverage
the coordinates of each delivery person and customer to precisely compute the distance
between their locations and thus complete the assignment matrix. It should be noted that
while the Haversine formula accurately calculates the distance between points, determining
the time is more complex due to the absence of speed, trajectory, and traffic information.
Consequently, any time calculations are estimations derived from known information in our
dataset using regression methods. Specifically, we utilized linear and polynomial regression
to estimate the missing data in the assignment matrices of distance and time, respectively.

The objective of creating the proposed assignment matrices, whether using calculated
or estimated data, is to optimally assign the nearest delivery person to each customer,
thereby ensuring efficient service delivery, as elaborated in the subsequent sections.

2.2. Haversine Formula for Estimating Cost Matrix

The main objective of this process is to estimate the distance between the delivery peo-
ple and the customer orders and to generate an assignment matrix to solve the optimization
problem related to the task assignment problem. To accomplish this, we calculated the
distances between the delivery people and the customer orders using the Haversine for-
mula [22–24]. This formula utilizes the latitude and longitude information of each member
of the delivery people’s fleet and the current batch of customers in order to calculate the
distance between each of them. The Haversine formula is based on spherical trigonometry
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and takes into account the curvature of the Earth. It involves several steps, such as applying
the Haversine formula (using radians), which computes the central angle (θ) between the
points using the differences in latitude and longitude, as indicated in Equation (1).

hav(θ) = sin2
(

∆lat
2

)
+ cos(lat1) · cos(lat2) · sin2

(
∆lon

2

)
(1)

The distance between the two points along the surface of the Earth is computed as

d = 2 · R · atan2
(√

hav(θ),
√

1 − hav(θ)
)

, (2)

where R is the Earth’s radius, approximately 6371 km.
The calculated distances are then used to obtain the matrix that represents the cost func-

tion used to solve the task assignment problem, which is composed of the distance between
each delivery man and each customer order, as illustrated in Figure 2. The matrix used
during the experiments is composed of 7707 possible deliveries and 7707 customer orders.

Figure 2. Sample of the cost matrix that represents the distance between each delivery per-
son and each customer order. The matrix we used is composed of 7707 possible deliveries and
7707 customer orders.

2.3. ML Algorithms to Determine the Cost Matrix

In addition to directly calculating distance with the Haversine formula, we propose
the use of distance and time estimations to build the cost matrix to be optimized. As we
only have specific data points for delivery persons who completed deliveries, and creating
the assignment cost matrix requires calculating the potential distance and travel time for
each delivery person to each customer, we utilize supervised regression-based learning
models to estimate distance and delivery time. We employ two different methods to obtain
an assignment matrix representing the cost function: linear regression and polynomial
regression. An example of the cost matrix obtained for travel time estimation can be
observed in Figure 3. We briefly explain each of the used regression methods below. It is
worth mentioning that the matrix used during the experiments is composed of 7707 possible
deliveries and 7707 customer orders.



Smart Cities 2024, 7 1115

Figure 3. Sample of the cost matrix representing the estimated delivery time between each delivery
person and each customer order. The time estimation was realized using the linear and polynomial
regression models.

2.3.1. Linear Regression

Linear regression is a supervised learning method used to model the relationship
between a dependent variable and one or more independent variables [25–27]. Linear
regression finds the line or hyperplane of best fit that minimizes the error between the
predicted values and the actual values in a dataset. To achieve this, various model param-
eters are iteratively updated to minimize a cost function, such as the Mean Square Error
(MSE) [25–27]. Gradient descent can be used to update the parameters and minimize the
cost function, as shown in Algorithm 1.

Algorithm 1 Gradient descent for solving linear regression [25–27]

1: Input: Training dataset with dependent variable y and independent variables
x1, x2, . . . , xn

2: Initialize parameters b0, b1, . . . , bn randomly for the linear regression model:
3: y = b0 + b1x1 + b2x2 + . . . + bnxn
4: Choose a learning rate α
5: Set the maximum number of iterations N
6: Repeat N iterations:
7: Compute predictions for all training examples:
8: hθ(x(i)) = b0 + b1x(i)1 + b2x(i)2 + . . . + bnx(i)n
9: Compute cost function that calculates the error between predicted and actual values:

10: J(θ) = 1
2m ∑m

i=1(hθ(x(i))− y(i))2

11: Update model parameters:
12: bj := bj − α 1

m ∑m
i=1(hθ(x(i))− y(i))x(i)j , for j = 0, 1, . . . , n

13: Check if N iterations were reached
14: Output: Model parameters b0, b1, . . . , bn optimized for the dataset

Note that J(θ) represents the cost function to be optimized, m is the number of training
examples, hθ(x(i)) represents the predicted value for the i-th training example, y(i) is the
actual value for the i-th training example, and α is the learning rate [25–27].

2.3.2. Polynomial Regression

Polynomial regression is a supervised learning method that extends linear regression
to model the relationship between a dependent variable and one or more independent
variables [27–29]. Instead of fitting a straight line or hyperplane, polynomial regression fits
a best-fitting curve or surface to the data. As with linear regression, polynomial regression
aims to minimize the error between the predicted values and the actual values in a dataset.
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To achieve this, various model parameters are iteratively updated to minimize a cost
function, such as the Mean Squared Error (MSE) [27–29]. We describe gradient descent
in Algorithm 2 for polynomial regression, which can be used to update the parameters
and minimize the cost function. This iterative optimization process allows polynomial
regression to capture more complex relationships between variables than linear regression.

Algorithm 2 Gradient descent for polynomial regression [27–29]

1: Input: Training dataset with dependent variable y and independent variables
x1, x2, . . . , xn

2: Initialize parameters b0, b1, . . . , bn randomly for the polynomial regression model :
3: y = b0 + b1x + b2x2 + . . . + bnxn

4: Choose a learning rate α
5: Set the maximum number of iterations N
6: Repeat N iterations:
7: Compute predictions for all training examples:
8: hθ(x(i)) = b0 + b1x(i) + b2(x(i))2 + . . . + bn(x(i))n

9: Compute cost function that calculates the error between predicted and actual values:
10: J(θ) = 1

2m ∑m
i=1(hθ(x(i))− y(i))2

11: Update model parameters:
12: bj := bj − α 1

m ∑m
i=1(hθ(x(i))− y(i))(x(i))j, for j = 0, 1, . . . , n

13: Check if N iterations were reached
14: Output: Model parameters b0, b1, . . . , bn optimized for the dataset

Note that y represents the dependent variable, x is the independent variable, b0, b1, b2, . . . , bn
are the coefficients of the polynomial model, and n is the degree of the polynomial. In this work,
we propose the use of a quadratic polynomial regression (degree 2).

2.4. Hungarian Algorithm

To effectively assign orders to delivery people while maximizing assignment efficiency,
we use the Hungarian algorithm [15,30,31]. This method is a widely used optimization
algorithm for solving the assignment problem in bipartite graphs. It efficiently solves the
problem of finding the optimal assignment of tasks to agents based on cost values [15,30,31].
The Hungarian algorithm is highly efficient, with a time complexity that makes it suitable
for real-time and large-scale applications. Moreover, the algorithm guarantees an optimal
solution to the assignment problem, ensuring that the total cost or benefit is minimized or
maximized, depending on the objective function. The Hungarian algorithm operates on a
cost matrix representing the costs or benefits of assigning each task to each agent. Through
a series of matrix operations, including row and column reductions and assignments,
the algorithm efficiently identifies the optimal assignment.

The algorithm requires a cost matrix representing the costs or benefits associated with
assigning tasks to agents. This cost matrix is an n × n matrix, where n is the number of
tasks or agents, as can be observed in Equation (3):

c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

 (3)

where cij represents the cost of assigning task i to agent j.
The Hungarian algorithm starts by reducing each row of the cost matrix by subtracting

the minimum cost in that row from all the elements in the row. This ensures that at least
one zero is present in each row, as can be observed in Equation (4).

Minimize each row: rowi = rowi − min(rowi) (4)
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Similarly, each column of the cost matrix is reduced by subtracting the minimum cost
in that column from all the elements in the column. This ensures that at least one zero is
present in each column, as can be observed in Equation (5).

Minimize each column: columnj = columnj − min(columnj) (5)

After row and column reductions, the algorithm creates an assignment matrix, initially
filled with zeros, in which each zero represents an assignment of a task to an agent:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 (6)

where aij = 1 if task i is assigned to agent j and aij = 0.
The algorithm iterates through various steps of reducing rows and columns, updat-

ing the assignment matrix, and finding augmenting paths until optimality conditions are
met, ensuring that no more zeros can be chosen without violating the assignment con-
straints [15,30,31]. This means that each row and each column will contain exactly one zero
in the assignment matrix A. Finally, the Cost of Assignment C(A) that represents the total
cost of the assignment can be represented as stated in Equation (7).

C(A) =
n

∑
i=1

cij · aij (7)

This equation represents the core operations of the Hungarian algorithm, which
iteratively reduces costs, updates the assignment matrix, and finds the optimal assignment
by satisfying the optimal conditions.

3. Results

In this section, we first evaluate the results of the linear and polynomial regression
algorithms used to estimate the distance and delivery time of the delivery people, thereby
completing the cost matrices. Subsequently, we present and compare the various outcomes
obtained when solving optimization problems related to the assignment of delivery people
to each potential customer. The results are presented below.

3.1. Regression Results

The experimental findings presented in Table 1 depict the performance of the proposed
linear regression and polynomial regression techniques, which were trained to estimate
distances and times that were then used to fill the cost matrix representing the cost function.
In the case of distance estimation, polynomial regression outperforms linear regression,
yielding a lower mean squared error (MSE) of 2.6 m2 compared to 6.9 m2 for linear regres-
sion. This translates to a substantially lower Root Mean Squared Error (RMSE) of 4.5 m
for polynomial regression, indicating greater accuracy in predicting distances. Similarly,
for time estimation, polynomial regression achieves superior results, with an MSE of 59.6 s2

compared to 120.9 s2 for linear regression. Consequently, the RMSE for time estimation
with polynomial regression is notably lower at 7.7 s, showcasing its enhanced precision
in predicting time durations compared to the RMSE of 11.0 s for linear regression. These
results suggest that polynomial regression offers better predictive capabilities for both
distance and time estimation tasks compared to linear regression, demonstrating its efficacy
in capturing the underlying patterns and complexities of the proposed dataset.
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Table 1. Mean squared error and root mean squared error regarding distance estimation.

MSE RMSE

Distance estimation -
linear regression

6.9 m2 20.3 m

Distance estimation -
polynomial regression

2.6 m2 4.5 m

Time estimation -
linear regression

120.9 s2 11.0 s

Time estimation -
polynomial regression

59.6 s2 7.7 s

3.2. Task Assignment Problem Results

The results presented in Table 2 show the performance of the proposed methods in
estimating distances traveled by the delivery people after solving the task assignment
problem with the Hungarian algorithm. The Hungarian method yields an average distance
estimation of 4.55 km with a standard deviation of ±3.24 km, resulting in a total summa-
tion of 34,956.84 km. Interestingly, when combining linear regression with the Hungarian
method, the average estimation remains consistent at 4.55 km, with a slightly reduced
standard deviation of ±3.23 km, contributing to a marginally increased total summation
of 34,957.74 km. Conversely, employing polynomial regression in conjunction with the
Hungarian method leads to a slightly higher average distance estimation of 4.62 km ac-
companied by a larger standard deviation of ±4.49 km, resulting in a total summation of
35,526.26 km. These findings suggest that while both linear and polynomial regression
exhibit similar average distance estimations when combined with the Hungarian method,
polynomial regression introduces greater variability in distance estimations, as indicated
by its higher standard deviation. Notably, considering that less distance is better, the Hun-
garian method and the linear regression combined with the Hungarian method emerge as
the most effective approaches when distance estimation is used to solve the assignment
problem for the proposed dataset.

Table 2. Comparison results of the proposed methods for solving the task assignment problem using
distance metrics at the cost matrix.

Method Average
(km)

Standard Deviation
(km)

Summation of Total Distance
(km)

Hungarian 4.55 ±3.24 34,956.84
Linear regression
+ Hungarian 4.55 ±3.23 34,957.74

Polynomial regression
+ Hungarian 4.62 ±4.49 35,526.26

As can be observed in Table 3, for the linear regression method the average time
estimation is 19.24 min, accompanied by a standard deviation of ±9.12 min, resulting
in a total summation of 147,891.23 min. Conversely, the polynomial regression method
yields a notably lower average time estimation of 17.01 min along with a reduced standard
deviation of ±5.25 min, contributing to a shorter total summation of 130,747.82 min. These
results indicate that polynomial regression offers more precise estimations with less vari-
ability compared to linear regression when solving the task assignment problem with the
Hungarian method.
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Table 3. Comparison results of the proposed methods for solving the task assignment problem using
time metrics at the cost matrix.

Average
(min)

Standard Deviation
(min)

Summation of Total Time
(min)

Linear Regression
+ Hungarian 19.24 ±9.12 147,891.23

Polynomial Regression
+ Hungarian 17.01 ±5.25 130,747.82

Finally, in Figures 4 and 5 we present a sample of the results of the automatic as-
signment of tasks using the Hungarian algorithm and the different methods of estimating
the cost function. As shown in Figure 4, the use of distance to construct the cost matrix
reveals that the best method is linear regression, with a total travel distance of 102.87 km.
This is closely followed by the Haversine method at 103.89 km and polynomial regres-
sion at 109.14 km. Conversely, Figure 5 illustrates that when time is utilized to formulate
the cost matrix, polynomial regression emerges as the best method, resulting in a total
travel time of 376.06 min. In contrast, the linear regression method yields a total time
of 424.87 min. To summarize, linear regression methods demonstrate superior perfor-
mance for our dataset when distance estimation is utilized, whereas polynomial regression
methods excel in scenarios where time estimation is paramount.

Figure 4. Distance calculation after optimization procedure for a sample of 21 delivery people. Total
distance using Haversine method is 103.89 km. Total distance using linear regression is 102.87 km.
Total distance using polynomial regression is 109.14 km.

Figure 5. Time calculation after optimization procedure for a sample of 21 delivery people. Total time
using linear regression is 424.87 min. Total time using linear regression is 376.06 min.

4. Discussion

In this section, we present a summary of the most important findings and future work
insights related to the development of this work.

• During the implementation of regression algorithms, it can be seen that polynomial
regression exceeds linear regression in distance and time estimation tasks. Considering
the RMSE, the polynomial regression reaches errors of 4.5 m and 7.7 s, while the linear
regression of only 20.3 m and 11 s. However, when applying regression methods
together with the Hungarian algorithm it can be noted that the results are similar for
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all methods. However, linear regression in this case obtains better results, obtaining
a total distance traveled from 34,957.74 km and the lowest standard deviation of
3.23 km. This indicates that even though polynomial regression presents less error
during training, this does not necessarily imply better functioning when applying it
when solving delivery assignment problems.

• The complexity of managing several orders for the automatic assignment of the deliv-
ery personnel is one of the inherent inefficiencies of the delivery process. To address
this difficulty, it is necessary to consider different scenarios. For example, it should
be considered in some way that different orders can be assigned to different distribu-
tors, and that the possibility of making an optimal delivery for a customer does not
necessarily mean that the entire set of deliveries can be done optimally. Fortunately,
optimal assignment algorithms such as the proposed Hungarian algorithm combined
with machine learning methods can reduce cost functions to solve optimization prob-
lems optimally.

• In this work, we consider Max Delivery, a company headquartered in Barcelona, Spain,
which delivers orders to customers within this country. This implies a limited scope to
this region for the distances of the orders. However, the distances of orders within this
country can be considerably high. For example, if the client is far from the starting
point (restaurant), the delivery may need to travel very far to reach the client. From the
point of view of developing an application, an economic compensation method for
the delivery man, who could make several deliveries within the time it takes to make
a distant delivery, should be considered. Another way to improve this process is to try
to apply areas by zones to ensure that distributors do not have to travel too far from
their home or work zone without receiving additional compensation.

• It is important to mention that consideration for future jobs can be provided as delivery
companies prioritize security and packages during transport through several measures.
These include comprehensive training programs for personnel, strict background
verification, regular vehicle maintenance, and the use of advanced monitoring systems
to monitor packages in real time. Secure delivery locations can be considered in the
cost function to avoid damage and reduce robberies as well as cost to the nearby
systems or security establishments in case of incidents.

• The delivery industry faces important ethical and environmental challenges, including
transport carbon emissions, excessive waste, concerns about labor practices, data pri-
vacy problems, and community impacts such as traffic congestion and noise pollution.
To address these challenges, in future works it would be possible to consider those
parameters within the cost functions to be reduced for the assignment of deliveries.
Additionally, it is important to consider that delivery companies might adopt sus-
tainable practices such as the use of electric vehicles and recyclable containers. It
is important to implement solid data protection measures to prevent vehicles with
their orders from interceptions in the event that a cybersecurity problem is suffered
in applications.

• Future work could consider issues related to customer satisfaction and behavior, as
these directly affect purchases that are distributed via delivery. Late or damaged
deliveries can lead to frustration and dissatisfaction, making the optimization of
delivery processes to guarantee precision, speed, and reliability essential. Future work
could investigate ways to estimate customer satisfaction based on the implementation
of a system that generates efficient routes. In addition, flexible delivery options such as
scheduled deliveries can be provided to improve customer satisfaction and optimize
the allocation algorithm in a scheduled manner.

• Changes in technology and consumer behavior can have a deep impact on the delivery
industry. The automatic assignment system could learn or adapt to these changes
automatically. In this context, machine learning algorithms such as reinforcement
learning could be analyzed in the future to evaluate their possible benefits to solving
delivery problems adaptively in the time domain.
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• In future works, the following considerations must be taken in order to predict and
address possible delays in IA delivery. It is important to analyze large amounts of
data from various sources, including historical delivery data, traffic patterns, weather
forecasts, and road conditions. In this way, possible real-time delays can be fore-
cast in order to dynamically adapt the delivery routes using AI algorithms together
with optimization.

• The selection of monitoring technology for delivery and tracking of packages can
significantly affect the cost function to be optimized by the task allocation algorithm.
For example, bar scanning, radio frequency identification (RFID), and global posi-
tioning system (GPS) can offer real-time monitoring with different advantages and
limitations. In future works, the strengths and weaknesses of the use of each of these
technologies or the fusion of their information could be evaluated to consider them
for application in an optimization algorithm for task assignment such as the one in
this work.

• In future works, we will evaluate the use of an Open-Source Routing Machine (OSRM),
which is a high-performance routing engine for various transportation tasks such
as driving. This source of information could be very interesting in future works,
as it can help to improve the cost matrix used to solve the task assignment prob-
lem. We will evaluate and compare the use of OSRM with the performance of the
proposed approach.

5. Conclusions

In this work, we propose a smart delivery system to optimize the task assignment
problem for delivery personnel with pending orders. The proposed approach utilizes
the Hungarian algorithm and various cost functions obtained through deterministic and
machine learning techniques. Linear and polynomial regression methods are compared to
construct different cost functions represented by matrices with orders and delivery informa-
tion. Empirical findings disclosed that linear regression models reduced estimation errors
in distance estimation by up to 568.52 km (1.51%) compared to other methods, while poly-
nomial regression models reduced errors in time estimation by up to 17,143.41 min (11.59%).
The proposed smart delivery system aims to enhance delivery personnel allocation within
the delivery sector, thereby optimizing efficiency.
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Appendix A

In Tables A1–A3, we summarize the bibliographic review showing the addressed
problem, their proposed solution, the disadvantages encountered, and the obtained results.

Table A1. Comparative analysis among the state of the art—Part 1.

Ref. Problem Methodology Description Disadvantages Results

[13]

Food delivery service
improved with
Q-learning and
DDQN using
rule-based policy.

Emulated food delivery
service was modeled using
a Markov decision process.
Q-learning and DDQN
were employed to
maximize revenue derived
from served requests
within a limited number of
couriers over a period
of time.

Limited scope of the state
space, focusing on courier
and order location
information without
incorporating additional
relevant attributes,
limiting generalizability
to larger-scale operations.

DDQN algorithm collects
more reward compared to
other algorithms.

[14]
Scheduling problem
in crowdsourced
delivery platforms.

Machine learning method
that combines simulation
optimization for off-line
training and a neural
network. Real-world data
provided by a
crowdsourced delivery
platform were used.

Complex implementation
with difficult data
requirements, scalability
challenges and use of
personal data.

Solution quality within
0.2–1.9% of a bespoke
sample average
approximation method,
while being several orders
of magnitude faster
regarding online solution
generation.

[19]

Two-echelon vehicle
routing for emergency
mask delivery during
COVID-19.

A hybrid machine learning
and heuristic optimization
method was proposed to
address the delivery of
medical masks problem.
Deep learning combined
with heuristics
optimization was used to
predict regional
delivery demand.

Not considering vehicle
refueling or recharging,
problematic for electric
vehicles in short- and
medium-distance delivery.

The average weighted
delivery time was
reduced up to 61%.

[18]

Enhancing on-time
performance in
last-mile delivery
services.

A data-driven framework
to model delivery
performance and optimize
order assignments to
drivers. Total delivery time
was decomposed into
uncertain service time at
customer locations and
predictable travel time.
A prediction model for
delivery tour length was
then developed.

Lacks discussion on
potential limitations of
implementing
data-driven optimization
strategies in last-mile
delivery services.

Advantages of
data-driven order
assignment models
integrated with delivery
tour prediction over
classical vehicle routing
problems. Method
Average mean square
error (MSE): LASSO
(0.314), Ridge regression
(0.317), SVR (0.295),
Random forest (0.304).



Smart Cities 2024, 7 1123

Table A2. Comparative analysis among among the state of the art—Part 2.

Ref. Problem Methodology Description Disadvantages Results

[5]

Optimization under
uncertainty in the
context of last-mile
delivery and
third-party logistics,
concentrated on
solving the variable
cost and size
bin packing.

Metaheuristic algorithms
were used to optimize
decision-making in
logistics, and machine
learning enhanced
decisions by learning from
data patterns, making
predictions, and offering
recommendations in
logistics operations.

Limited discussion
on the scalability and
generalizability
of the proposed
machine learning
optimization approach.

Progressive Hedging
and Machine Learning
approaches generate
closely aligned first-
stage solutions with
minor variations in
their outcomes.

[9]
Impact of the limited
available resources in
the meal delivery.

Implemented a Markov
decision process and
employed deep
reinforcement learning
with eight Deep
Q-Networks
(DQN) algorithms.

Exclusion of different
characteristics of couriers,
such as varying delivery
speeds or behaviors,
which may impact the
real-world applicability.

Increasing the number of
couriers in a delivery
system results in higher
rewards and fewer
rejected orders.

[10]

Mixed-integer
programming
formulation for drone
vehicle routing
(VRPD) by assigning
clients to drone-
truck pairs.

An ant colony
optimization (ACO)
algorithm was developed.

Do not delve deeply into
the real-world
implementation
challenges and regulatory
hurdles of integrating
drones into existing
delivery systems.

The ACO algorithm
outperformed classic VRP
by achieving cost savings
of more than 30% for
large instances.

[12] Enhance
customer satisfaction

Employed the LSTM to
predict future levels of
customer satisfaction.

Do not address scalability
challenges,
implementation barriers,
or real-world case studies
to demonstrate the
effectiveness of the
proposed approach.

A smart contract was
designed to provide
compensation and/or
refunds to customers
when their satisfaction
with the delivery services
was low.

[15]

Assigning food
orders to delivery
vehicles to minimizes
delivery time.

The algorithm
FOODMATCH was
designed to tackle vehicle
assignment by treating it as
a minimum weight perfect
matching problem on a
bipartite graph.

The generalizability
of the findings to other
regions or platforms may
be limited.

Achieving a
30% reduction in
delivery time.

Table A3. Comparative analysis among among the state of the art—Part 3.

Ref. Problem Methodology Description Disadvantages Results

[20]

Optimize recharging,
delivering,
and repositioning task
assignments for
electric vehicles.

Modeled as a multi-agent
multi-task dynamic
dispatching problem using
a Markov Decision Process.

Lack of comparative
analysis with existing
methods could limit the
assessment of the novelty
and effectiveness.

Total revenue up by
33.2%; Task allocation
repositioning raised total
revenue by 50.0%;
Re-estimated state value
function boosted total
revenue by 2.8%.
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Table A3. Cont.

Ref. Problem Methodology Description Disadvantages Results

[21]

Income guarantees
for delivery agents,
minimize costs
and ensure
customer satisfaction.

The WORK4FOOD
algorithm was designed
and implemented, utilizing
minimum weight bipartite
matching and Gaussian
process regression to
assess the demand-
supply dynamics.

Do not address the
potential challenges or
barriers to implementing
WORK4FOOD in existing
food delivery platforms.

Reduced platform costs
by up to 25% compared to
solutions like
FOODMATCH and
FAIRFOODY, achieving a
balance between cost,
delivery times,
and fairness.

[16]

Delivery
assignment based
on order-to-vehicle,
order batching, and
vehicle movements.

Papping the vehicle
assignment problem to
minimum weight perfect
matching. Best-first search
utilized to construct a
subgraph likely to contain
the minimum matching.

Limited discussion
on the environmental
impact of increased food
delivery services and
vehicle usage.

Reduced food
delivery time, waiting
time at restaurants,
and increased orders
delivered per kilometer.

[17]
Efficient allocation of
orders to drivers and
route planning.

Modified Kuhn-Hungarian
(Munkres) algorithm for
orders-drivers matching.
Machine learning to
predict order batching.
Plus, rule-based route
planning for viable routes
for drivers.

Lack of realistic
constraints for the online
food delivery problem,
such as the uncertainty of
travel time and dynamic
arrival of orders.

Satisfying performance of
the classification model
on real datasets and
effectiveness of the
proposed algorithm for
solving the OFDP.
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