
Citation: Guo, J.; Chai, H.; Zhang, Q.;

Zhao, H.; Chen, M.; Li, Y.; Li, Y. A

Framework of Grasp Detection and

Operation for Quadruped Robot with

a Manipulator. Drones 2024, 8, 208.

https://doi.org/10.3390/

drones8050208

Academic Editors: Jiacun Wang,

Eugenio Cesario, Guanjun Liu and

Jun Wang

Received: 11 April 2024

Revised: 13 May 2024

Accepted: 15 May 2024

Published: 19 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Framework of Grasp Detection and Operation for Quadruped
Robot with a Manipulator
Jiamin Guo 1,2 , Hui Chai 1,2,*, Qin Zhang 1,2,3, Haoning Zhao 1,2 , Meiyi Chen 1,2, Yueyang Li 3 and Yibin Li 1,2

1 Center for Robotics, School of Control Science and Engineering, Shandong University, Jinan 250061, China;
201814461@mail.sdu.edu.cn (J.G.); cse_zhangq@ujn.edu.cn (Q.Z.); zhaohaoning@mail.sdu.edu.cn (H.Z.);
202334902@mail.sdu.edu.cn (M.C.); liyb@sdu.edu.cn (Y.L.)

2 Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, China
3 School of Electrical Engineering, University of Jinan, Jinan 250022, China; cse_liyy@ujn.edu.cn
* Correspondence: chaimax@sdu.edu.cn

Abstract: Quadruped robots equipped with manipulators need fast and precise grasping and de-
tection algorithms for the transportation of disaster relief supplies. To address this, we developed
a framework for these robots, comprising a Grasp Detection Controller (GDC), a Joint Trajectory
Planner (JTP), a Leg Joint Controller (LJC), and a Manipulator Joint Controller (MJC). In the GDC,
we proposed a lightweight grasp detection CNN based on DenseBlock called DES-LGCNN, which
reduced algorithm complexity while maintaining accuracy by incorporating UP and DOWN mod-
ules with DenseBlock. For JTP, we optimized the model based on quadruped robot kinematics to
enhance wrist camera visibility in dynamic environments. We integrated the network and model
into our homemade robot control system and verified our framework through multiple experiments.
First, we evaluated the accuracy of the grasp detection algorithm using the Cornell and Jacquard
datasets. On the Jacquard dataset, we achieved a detection accuracy of 92.49% for grasp points within
6 ms. Second, we verified its visibility through simulation. Finally, we conducted dynamic scene
experiments which consisted of a dynamic target scenario (DTS), a dynamic base scenario (DBS), and
a dynamic target and base scenario (DTBS) using an SDU-150 physical robot. In all three scenarios,
the object was successfully grasped. The results demonstrate the effectiveness of our framework in
managing dynamic environments throughout task execution.

Keywords: quadruped robot; grasp detection; motion planning; deep learning

1. Introduction

Quadruped robots with manipulators combine the motion performance of quadruped
robots and the operational capability of manipulators [1–4], providing innovative so-
lutions for the transportation of supplies to rescue efforts in the environment after a
disaster [5–8], as shown in Figure 1. In these scenarios, the limited payload capac-
ity and dynamic environment place significant demands on the grasping ability of the
mounted manipulator.

When transporting supplies after a disaster, robots need to move over rugged terrain.
In order to ensure stability during movement, the robot’s own load needs to be minimized,
so it cannot be equipped with high-performance industrial computers which are usually
large and heavy. In this scenario, the location of the supplies may be outside the operating
space of the manipulator, and the robot needs to adjust its base posture to grasp the target.
In addition, adverse weather conditions such as aftershocks, strong winds, etc., may also
cause the supplies to move. Therefore, the grasping detection algorithm used in these
robots must be highly precise, fast, and have low algorithmic complexity. The development
of deep learning has made meeting these requirements possible [9]. Researchers have
conventionally relied on manually designing geometric features for grasping detection
algorithms, resulting in low detection accuracy and difficulty in dealing with unknown
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objects [10–13]. However, recent advances in deep learning algorithms have allowed the
use of sliding window models and common network structures [14–17] such as ResNet-
50 [18] to extract high-quality grasping features, resulting in improved detection accuracy.
Despite these improvements, some methods still suffer from resolution loss due to the scene
and produce dense predictions depending on the stride of the sliding window, estimated
aspect ratio, and angle of the box [10]. To address this issue, pixel-level networks have
been developed. Zeng et al. constructed a robotic pick-and-place system based on the
ResNet-101 network. The system takes a 640 × 480 RGBD image as input and generates a
densely labeled pixel-wise map of the same resolution [19]. However, the large structure
of the network limits real-time detection. To address this issue, Morrison et al. developed
lightweight grasping detection networks, GG-CNN and GG-CNN2, at the expense of
sacrificing detection accuracy [20]. Therefore, it is important to balance detection accuracy
while improving the speed of the grasp detection algorithm.

Figure 1. Legged robots equipped with manipulators combine the flexibility of legged robots and
the operation capability of the manipulator. Due to the challenges posed by mobile bases, complex
environments, and varied tasks, accurate detection and manipulation of objects requires sophisticated
techniques. This study focuses on solving these problems, as indicated in the red section.

In addition, the aforementioned deep learning-based grasping detection methods
typically rely on vision; therefore, it is important to maintain the target object in the FOV to
ensure the grasping detection methods have effective inputs [21]. One challenge faced by
quadruped robots with manipulators in outdoor environments is the limited field of view
(FOV) of the wrist cameras used for grasping detection, which means objects can leave the
FOV as the manipulator moves. The ability of a camera to maintain an object in its FOV
during the movement of the manipulator is called visibility. Although equipping robots
with an unmanned aerial vehicle to extend the FOV is a commonly used solution, it is expen-
sive [22]. To improve the visibility of the target object during the motion of the manipulator,
Chen et al. considered time delay factors in trajectory planning and tracking [23–25]. D.-H.
Park et al. proposed a method called position-based visual servoing that considers both the
visual and physical constraints of the manipulator to compute trajectories that converge to
a desired pose [26]. However, this method has not been validated in dynamic environments.
T. Shen et al. improved the visibility of a manipulator using manual teaching methods;
however, their approach lacks real-time performance and cannot be applied to dynamic
scenes [27]. Recent research has explored the use of reinforcement learning to adaptively
adjust the motion poses of the manipulator to ensure that the target object remains in
view [28]. However, these methods require extensive pretraining and powerful compu-
tational resources. To sum up, it is very crucial to develop a path-planning algorithm
that does not require additional sensors or devices and considers target visibility while
achieving high real-time performance.

To meet the requirements of grasping and detection algorithms for legged robots
equipped with manipulators and to enhance the the wrist camera’s visibility of target
objects during operations, our contributions are as follows:
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(1) We propose a lightweight grasping convolutional neural network (CNN) based on
DenseBlock (DES-LGCNN) to perform pixel-wise detection. Based on two self-made
modules (UP and DOWN modules), this algorithm is capable of balancing accuracy
and speed during grasp detection.

(2) We develop a high-visibility motion planning algorithm for manipulators that can
ensure the visibility of objects during motion in real time without adding other sensors.

(3) We integrate the proposed grasping detection algorithm and trajectory optimization
model into the control system of our independently developed quadruped robot with
a manipulator, which can be used in various environments.

This paper is structured as follows. Some preliminary concepts are described in
Section 2. We present the architecture of the framework in Section 3.1 and present the
improved methodology in detail in Sections 3.2 and 3.3. The experiments and results are
given in Section 4. Finally, we conclude the study in Section 5.

2. Preliminaries

The joint angles and link numbers of the quadrupedal robot equipped with a manip-
ulator are defined in Figure 2. Due to the robot’s four legs all having the same structure,
only the left front leg is labeled in Figure 2. Different numbered coordinate systems are
named {Oi}, where i represents the coordinate system number. {Oc} represents the camera
coordinate system. d, l, and α represent the lengths of the link.

Figure 2. D-H model for manipulator and leg of robot. The structure of each leg is identical, and only
the front leg is labeled, whereas the indices for the other legs are incremented accordingly.

To describe the different joint angles of the robot, we define a symbol k
∗θ⊗, where ∗

represents the number of θ, ranging from 0 to 17, including the angles of the manipulator,
torso, and legs; k represents time; and ⊗ represents the attribute, such as min, max,
or reference.

3. Methodology

In order to improve the speed and accuracy of grasping detection and the adaptability
to dynamic environments when the quadrupedal robot equipped with a manipulator
performs the environmental task of transporting materials after disaster, three aspects of
grasp detection and operation framework, grasp detection algorithm and robot motion
planning algorithm are studied in this paper.
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3.1. Architecture of the Framework

The object detection and grasping framework (Figure 3a) consists of three independent
controllers: a Grasp Detection Controller (GDC) (Figure 3b), a Joint Trajectory Planner
(JTP) (Figure 3c), a Leg Joint Controller for the quadruped robot, and a Manipulator Joint
Controller. To achieve precise grasp detection and effective grasping of the target object,
we focused on the design of the GDC (Section 3.2) and JTP (Section 3.3). The input of the
entire framework is four-dimensional images and the target type. Communication between
different controllers is facilitated using the TCP/IP protocol.

Figure 3. Developed framework of grasp detection and operation for a quadruped robot with a
manipulator. (a) Entire framework of the system. (b) Framework of the GDC. (c) Framework of
the JTP.

The GDC is mainly responsible for grasp detection, as shown in Figure 3b. The YOLO
v5 algorithm is applied to obtain the position of the target object in {I}. Subsequently,
the image containing the object information is fed into a lightweight grasping CNN based
on DenseBlock (DES-LGCNN), which is developed to generate the grasping point g in {I}.
Next, g is transformed into Gr using the pinhole model for further analysis using the OC.
Gr denotes a six-dimensional representation Gr = [Xr, Yr, Zr, roll, yaw, pitch]. The details
of the DES-LGCNN algorithm and the method used to calculate the posture of the End-
Effector (EE) will be explained in Section 3.2. We use the OC to obtain the joint angle of the
robot at any given time and send it to the leg joint controller for the quadruped robot and
the manipulator joint controller (Figure 3c). In the first step in the JTP, the motion planner
receives Gr using the TCP/IP communication protocol. Afterward, the trajectory planning
task is divided into the trajectory planning task of the manipulator and the trajectory
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planning task of the base based on inverse kinematics (IK) and Equation (15). If the target
object is not within the manipulator’s workspace, we need to move the base to expand the
working space of the manipulator; otherwise, the base remains stationary. Additionally,
to ensure that the target object is within the camera’s FOV, we also need to optimize the
path using the proposed high-visibility motion planning algorithm (Section 3.3). Based on
the above methods, we derive the reference joint angle values for the base and manipulator
joint spaces. These joint angle values are sent to the quadruped robot’s leg joint controller
and the manipulator’s joint controller, respectively. The two controllers utilize a PID
algorithm. The two controllers execute tasks simultaneously and send real joint angles
values Θreal to the JTP while moving.

3.2. Lightweight Grasping Convolutional Neural Network Based on DenseBlock

This study introduces DES-LGCNN, a pixel-level neural network (see Figure 4) de-
signed to accurately detect grasp points by analyzing the probability of each pixel in the
input image being a grasp point. The network is inspired by GG-CNN, with the input
being an image of the target object and the outputs being a grasp quality map (GQM), a
grasp angle cosine map (GACM), a grasp angle sine map (GASM), and a grasp width map
(GWM) [20]. Three input image modes are available: depth image (D), color image (RGB),
and depth image + color image (RGBD). The output image size is consistent with that of the
input image. To reduce the number of network parameters and computational complexity,
we replaced the deconvolutional layer with our designed UP module, each consisting of
an upsampling layer and a convolutional layer. The specific design ideas are described
as follows.

Figure 4. Architecture of DES-LGCNN. The left and right dashed rectangles represent the architecture
of DOWN_x_n and UP_x_n modules, respectively. In this figure, different colors represent different
network structures.

In conventional pixel-level neural networks, deconvolution is commonly used to
restore the size of the feature map obtained after feature extraction to the size of the input
image. The upsampling layer has the same ability as the convolutional layer. We define the
height × width × channels of the input for each layer of DES-LGCNN as Cin × Cin ×Win,
the output as Cout × Cout ×Wout, and the kernel as k× k. Without bias, the computational
complexity of deconvolution is as follows:

Cout × k2 × C2
in ×Win (1)
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The computational complexity for upsampling using the nearest neighbor algorithm
is as follows:

C2
out − C2

in (2)

Let Cout = Cin × n, where n is increased to the power of two. Equations (1) and (2) are
as follows:

Cout × k2 × Cin ×Win −
(

C2
out − C2

out /n2
)

=
C2

out
n2

(
k2 × Hin ×Win × n− n2 + 1

) (3)

Typically, k2 × Hin ×Win × n− n2 ≫ 1, making the use of an upsampling layer an
effective way to reduce network computation. However, upsampling can result in the
loss of information between intervals. We assume that the information about each pixel is
related to the surrounding pixels. We added a convolutional layer after the upsampling
layer to supplement the missing information. The value of each pixel pc in the new feature
map generated by the convolutional layer can be calculated as follows:

pc(µi, vj) =
k

∑
µ=1

k

∑
v=1

wu,v pu(µi + u− 1, vj + v− 1) (4)

where (µi, vj) represents the position of the pixel in the feature map, and pu denotes the
pixel of the feature map generated by the upsampling layer. wu,v denotes the weight of the
kernel at position (µ, v). This reflects the relationship between the current pixel of the new
feature map and the surrounding pixels of the pixel in the same position as the old feature
map, which can be used to reconstruct lost information. The computation of the bias-free
convolutional layer is as follows:

C2
out × k2 × Cin ×Wout (5)

Equation (1)/Equation (5) are calculated as follows:

Cin ×Win

Cout ×Wout
(6)

The design principle of Equation (6) < 1 can effectively reduce computation. Based on
this principle, we designed the Up_n_x layer shown in Figure 4, where x represents the
number of channels after the feature map passes through the module, and n indicates that
the output feature map is 1/n× 1/n of the original. To correspond with the UP module,
we designed the DOWN module, which consists of two convolutional layers and a max
pooling layer to reduce the feature map size and computation. This module is located
in the feature extraction part of the network, specifically the yellow part in front of the
Down_n_x network. Here, n indicates that the output feature map is 1/n× 1/n of the
original. In addition, to avoid the gradient explosion problem that may occur during the
forward propagation of the network, we included dense modules in the middle of the
network, as shown in the dark green part of Figure 4.

After evaluating different loss functions, we chose the mean squared error (MSE) as
the final loss function [20]:

argminMSE(Gi, Ĝi) (7)

where Gi denotes the network-generated grasp feature maps and Ĝi denotes the ground
truth in the i-th training.

After passing through the DES-LGCNN network, we need to convert the output GQM,
GASM, GACM, and GWM into values that can be parsed using the OC. The position of the
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grasp point (µg, vg) and the grasping angle θg of the grasp point in the image coordinate
system are calculated as follows:(

µg, vg
)
= Find (max(QM(µ, v))) (8)

θg =
1
2

arctan

(
sin
(
2ASM

(
µg, vg

))
sin
(
2ACM

(
µg, vg

))) (9)

On the basis of Equations (8) and (9), the grasping representation in the image coor-
dinate system can be obtained. We use the five-dimensional model developed by [14] to
represent a grasp point g as follows:

g =
{

µg, vg, θg, h, w
}

(10)

where h and w represent the height and width of the jaw, respectively. After g is obtained,
the pinhole model is used to transform it from the image coordinate system to obtain the
position of pg = (pgx, pgy, pgz) in {Oc}:

pgz

 µg
vg
1

 =

 fx 0 µ0
0 fy v0
0 0 1

 pgx
pgy
pgz

 (11)

where fx , fy , µ0, and v0 represent the camera parameters. In addition, to achieve
the grasping task, the position and orientation of the EE should be considered. Let
Gr = [Xr, Yr, Zr, θgr, θgy, θgp, W] define a grasp in manipulator base coordinates systems;
the grasp is determined by the EE’s pose, such as the position of the grasp (Xr, Yr, Zr),
the roll of the gripper θgr, the yaw of the gripper θgy, the pitch of the gripper θgp, and
the gripper width W. Since the gripper we used only has two statuses (open and width),
the width is equal to the maximum opening width of the gripper. We can apply the
following transformation to convert the grasping representation in {Oc} to {O0}:

[Xr, Yr, Zr]
T = 0T5

(
5Tc pg

)
(12)

where 5Tc denotes the transformation matrix from {Oc} into {O5}. 0T5 denotes the transfor-
mation matrix from {O5} into {O0}. [Xr, Yr, Zr] represents the position of the grasp point
in {O0}. θgr is equal to θg. θgp can be set to a fixed value. θgy can be calculated as

θgy = arctan2(Yr, Xr) (13)

The target state of the manipulator is defined as Θgoal =
(

0θg, 1θg, · · · , 4θg
)
. Based on

IK, it can be calculated as
Θgoal = IK(Gr) (14)

3.3. High-Visibility Motion Planning Module

High-visibility motion planning refers to the capability of a mobile manipulator to
strategically adjust and broaden its FOV by manipulating the pose of its manipulator to
ensure that an object is within the FOV. The algorithm of the high-visibility motion planning
module is shown in Algorithm 1.

Because quadruped robots are capable of movement, we only need to consider cases
in which the Gr is outside the manipulator’s workspace in the Z direction. In steps 1–3,
when the target object is located within the dexterity space of the manipulator, the target
state

(
0θg, 1θg, · · · , 4θg

)
of the manipulator can be obtained through inverse kinematics.

The current state (0θreal , 1θreal , · · · , 4θreal) of the manipulator can be obtained using the
encoder. On the basis of linear interpolation, the motion path of the manipulator can be
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obtained. Assuming that the interpolated motion path of the manipulator has α points and
the time set for each point is denoted as K, for k ∈ [0, n], we obtain

k
i θref =

(
iθg − iθreal

)
/α× k + iθg (15)

Based on Equation (15), the motion trajectory of the manipulator can be obtained as
ζ =

{[
0
0θre f , · · · , 0

4θre f

]
, · · · ,

[
n
0 θre f , · · · , n

4 θre f

]}
. When the manipulator travels approx-

imately one-tenth of its trajectory, it undergoes a replanning process. The number of
waypoints is fixed each time the replanning process is performed. As the manipulator
approaches the target, the angular velocity of each joint decreases to protect both the
manipulator and the target object.

Algorithm 1 High-visibility motion planning algorithm

1: Θgoal ← IK(Gr)
2: ζ ← Equation (15)
3: Calculate the distance between the object and the camera d← d(Θgoal , (xc, yc, zc))
4: while (k = 0 . . . n) do
5: if d ≥ dmin then
6: θ ←Equation (16)
7: if θ ≥ FOV then
8: [k0θ′re f , · · · , k

4θre f ]
′ ← Equation (22)

9: return [k0θ′re f , · · · , k
4θre f ]

′

10: else
11: return [k0θre f , · · · , k

4θre f ]
12: end if
13: else
14: if k = n then
15: close jaw
16: break
17: else
18: return [k0θre f , · · · , k

4θre f ]
19: end if
20: end if
21: end while

In steps 5 and 6, we use a threshold value dmin to determine whether the EE is close to
the object. If the distance between the target object and the EE is too close, only a part of
the object will be visible in the FOV, and effective information cannot be extracted. In this
case, we proceed directly to steps 14–19. In this section, the manipulator moves according
to ζ and closes the jaw when the target position is reached. However, if d ≥ dmin, we
use steps 6–12 to determine whether the current trajectory point [k0θre f , · · · , k

nθre f ] should
be optimized.

The angle between the vector pointing from the camera’s position to the target object’s
center of mass n⃗zc and the line of sight n⃗co is defined as θ. In {Oc}, this angle can be
calculated as follows:

θ = arccos
(

n⃗zc(k) · n⃗co(k)
|⃗nzc(k)||⃗nco(k)|

)
(16)

where n⃗zc denotes the unit vector (0,0, −1), which is in the opposite direction of the Z-axis
of the wrist camera coordinate system. n⃗co = Gr − Pc, where Pc = (xc(t), yc(t), zc(t))
represents the position of the camera in {O5}. A schematic for solving θ is shown
in Figure 5.
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Figure 5. Schematic for solving θ.

If the target is not within the FOV, the trajectory must be adjusted (steps 7–9). Other-
wise, the trajectory point in ζ is executed directly (steps 10–12). To ensure that the target is
as close to the center of the FOV as possible, it is necessary to satisfy

min J(⃗nzc(k), n⃗co(k)) = 1− n⃗zc(k) · n⃗co(k)
|⃗nzc(k)||⃗nco(k)|

s.t. k ≥ 0
(17)

Typically, to prevent the manipulator from moving back and forth because of the
adjustment of the camera view, we add the following constraint:

zc ≤ zc(t) (18)

Based on IK:
xc = a2 × cos1 θ cos2 θ + a3 cos1 θ cos(2θ +3 θ)

+ d5 cos(1θ) cos(2θ +3 θ +4 θ)
(19)

yc = a2 × sin1 θ cos2 θ + a3 sin1 θ cos(2θ +3 θ)

+ d5 sin(1θ) cos(2θ +3 θ +4 θ)
(20)

zc = a2 × sin2 θ + d1 + a3 × sin(2θ +3 θ)

+ d5 × sin(2θ +3 θ +4 θ)
(21)

Add Equation (18) to Equation (21) into Equation (17):

min J(1θ(k), 2θ(k), 3θ(k), 4θ(k))

s.t.


AΘ′ − bmin ≥ 0
−AΘ′ + bmax ≥ 0
a2 × sin 2θ + d1 + a3 × sin(2θ + 3θ)
+d5 × sin(2θ + 3θ + 4θ) ≤ zc(t)
k ≥ 0

(22)

In Equation (22), A represents the identity matrix. Θ′, bmin and bmax are

Θ′ = [1θ, 2θ, 3θ, 4θ]T

bmin = [1θmin, 2θmin, 3θmin, 4θmin]
T

bmax = [1θmax, 2θmax, 3θmax, 4θmax]
T

(23)

In addition, because −1 ≤ n⃗zc(k)·⃗nco(k)
|⃗nzc(k)||⃗nco(k)| ≤ 1, it follows that J ∈ [0, 2]. Therefore,

J must have a minimum value, which can be solved using the Sequential Least Squares
Programming (SLSQP) algorithm.
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The main idea of calculating the base trajectory is to move the base in such a way that
the grasping point is positioned at a specific position in manipulator’s base coordinate
system where the object is within the manipulator’s dexterous workspace. When the target
is outside the workspace of the manipulator, it is necessary to adjust the distance between
the robot’s hip joint and the ground. To reduce the number of variables required to solve
the optimization algorithm, the base movement does not expand the FOV of the camera.
Take the left front leg as an example. Assuming that the robot’s foot coordinate system is
flush with the ground in the vertical direction, we define the robot’s left hip joint in the
foot coordinate system as (Xlt(t), Ylt(t), Zlt(t)). In the vertical direction, the edge of the
dexterous workspace of the manipulator is defined as Zmax. ∆Zlt(t) = Zmax − Zr, with
the the reference value Zref = Zlt(t) − ∆Zlt(t). According to forward kinematics (FK),
the desired angle values for the left front leg are

6θref = arccos

 l2
1 +

(
l0 − Xre f

)2
+ Xlt(t)2 − l2

2

2l1

√(
l0 − Zre f

)2
+ x2

− arctan

(
Xlh(t)
−l0 + Xre f

)
(24)

7θref = arccos

 l2
1 + l2

2 −
(

l0 − Xre f

)2
− Xlt(t)2

2l1l2

− π (25)

The real angles {6θreal, 7θreal} of the legs are read using the encoder, and the method of
solving the trajectory points of the robot’s leg motion is the same as that in Equation (15).

4. Experiments
4.1. Experimental Environment
4.1.1. Network Training and Testing

The personal computer LEGION Y7000 (Lenovo, Beijing, China) is used to train and
test the DES-LGCNN algorithm. The hardware system of this personal computer includes
an Intel Core I7-10875H CPU (Intel®, Santa Clara, CA, USA), 32 GB RAM, and an NVIDIA
GeForce RTX 2060 graphics card (NVIDIA, Santa Clara, CA, USA). The software system
mainly includes Ubuntu 18.04, NVIDIA 472.19 graphics card driver, CUDA 11.0, CUDNN
V8.0.5, and PyTorch 1.10.0.

4.1.2. Simulation Environment

The simulation platform is constructed on the basis of Webots 2021a. As shown in
the left part of Figure 6, we built a five-degree-of-freedom manipulator in the simulation
environment. The gripper has two fingers, with the maximum opening and closing reaching
300 mm. In particular, a depth camera for grasping detection is installed on the EE and is
placed 15 cm away from the X-axis of the EE. This will ensure that the vision of the camera
effectively covers the workspace of the manipulator and avoids its occlusion.

4.1.3. Physical Prototype

The parameters of the self-made hydraulic manipulator are consistent with those of
the simulation environment. The object recognition and grasp detection modules are also
deployed in LEGION Y7000 with the same hardware as that described in Section 4.1.1.
The Compact-RIO 9039 controller (NI, Austin, TX, USA) is used to control the motion
of the manipulator. A local area network is constructed between LEGION Y7000 and
the Compact-RIO 9039 controller, and the TCP/IP protocol is used for communication.
The experimental environment of the manipulator is shown on the right side of Figure 6.

To evaluate the performance of our algorithm on a quadruped robot, we used the
SDU-150 quadruped robot as the chassis and equipped it with our own manipulator.
The parameters of the robot is shown Table 1. The robot’s base comprises 12 hydraulic
servo valves, 12 force sensors, and 12 displacement sensors. Among these, the hydraulic
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servo valves control the movement of the robot’s legs, the displacement sensors obtain
actual motion parameters of each joint in the legs, and the force sensors facilitate force
control and feedback for each joint. The manipulator consists of one force sensor (mounted
at the EE), five hydraulic servo valves, and five encoders. The hydraulic servo valves are
responsible for controlling the manipulator’s motion. Force sensors are employed for force
control and feedback regarding the manipulator’s load. Encoders are utilized to read the
actual joint angles, and via inverse kinematics, the EE position can be determined. All the
aforementioned data are output through the SDU-150’s logging module at a frequency of
100 Hz.

The robot’s controller is a self-made servo controller with high shock resistance.
The robot and manipulator share the same upper computer, a LEGION Thinkpad, with the
manipulator controller. The quadruped robot equipped with a manipulator is shown
in the middle of Figure 6. The upper computer communicates with LEGION Y7000
through the TCP/IP protocol. The hardware and software are described in the bottom half
of Figure 6.

Figure 6. Setup for simulation and real-world experiment. This figure describes the simulation envi-
ronment, the experimental environment in the real world for our five-degree-of-freedom hydraulic
manipulator, the SDU-150 quadruped robot equipped with a manipulator, and the hardware and
software of the control system.
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Table 1. The parameters of SDU-150 equipped with a manipulator.

Parameters Value

length 1420 mm
width 693 mm
height 700 mm
weight 240 kg

climbing slope 25◦

obstacle crossing 250 mm
max speed 1.8 m/s

manipulator load 30 kg

4.2. Validation of DES-LGCNN

The Cornell and Jacquard datasets are commonly used to evaluate grasp detection
algorithms. We selected these two datasets for comparative experiments and used accuracy
and speed as evaluation indices. For a fair comparison with other studies, when the
intersection-over-union score is greater than 25% and the angle error is less than 30◦,
the grasp is considered correct.

During the training process, we use 80% of each dataset as a training set and the
remaining 20% as a test set. The number of epochs is set to 400. The learning rate is set
to a gradient descent with step decay. The initial learning rate is 0.01 and decreases by
1/10 every 100 epochs. During the training process, we recorded the variations in the loss
function under different conditions, primarily involving the two datasets with inputs of D,
RGB, and RGBD images. The datasets were classified using two methods, image-wise split
(IW) and object-wise split (OW), resulting in six scenarios, as shown in Figure 7. As shown
in the figure, in the aforementioned six scenarios, the loss function converges rapidly.
After approximately 20 batches, the loss functions in all scenarios converge to values
close to 0.

Figure 7. Change in loss function during training.

Figure 8 shows part of our experimental results. The results show that our network
can effectively detect grasping points. A comparison of the experimental results is shown
in Tables 2 and 3. Table 2 shows the experimental results for the Cornell dataset in terms of
grasping accuracy, network size, and calculated speeds of different algorithms. In Table 2,
when the input is RGBD images, our network has the highest accuracy and the fastest de-
tection speed. The accuracy is 92.49% for IW and 92.39% for OW, and the detection speed is
6 ms. When RGB images are used for recognition, the IW and OW accuracies of GraspNet
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are slightly higher than those of our network, but the detection speed is slower. Our
network has lower accuracy when only D information is used. In addition, the classification
method of the dataset has little influence on accuracy.

Table 2. Comparison of grasp dataset parameters on Cornell dataset.

Approach IW (%) OW (%) Speed (ms)

SAE [14] 73.9 75.66 1350
Alxnet, MultiGrasp [29] 88.0 87.1 76
Two-stage closed-loop [30] 85.3 - 140
GG-CNN [20] 73.0 69.0 19
GraspNet [31] 90.2 90.6 24
ResNet-50x2 [32] 89.2 88.9 103
ours-RGB 90.59 89.89 6
ours-D 80.48 81.26 5.5
ours-RGBD 92.49 92.39 6

Table 3. Comparison of grasp dataset parameters on Jacquard dataset.

Approach IW (%) OW (%) Speed (ms)

FCGN(ResNet-50) [17] 89.83 89.26 28
GG-CNN2 [20] 84 83 19
New DNN [33] 85.74 - -
ours-RGB 86 88.64 6
ours-D 91.39 91.08 5.5
ours-RGBD 92.22 92.35 6

Table 3 shows the experimental results for the Jacquard dataset in terms of the accuracy
of the different algorithms. Our algorithm achieves the highest accuracy of 92.22% when
the input is RGBD images. In contrast to the performance on the Cornell dataset, when the
network uses only D information, the accuracy is not significantly lower than when using
RGBD information. It is possible that the Jacquard dataset has a larger scale, which can
provide the network with more depth information. However, when only RGB information
is used, our algorithm performs moderately well.

Figure 8. Detection result of DES-LGCNN. Columns 1 to 4 represent grasping representation, grasp
quality, grasp angle, and grasp width images, respectively. The three bars on the right from top to
bottom correspond to the color of the grasp quality feature map, grasp angle feature map, and gripper
width feature map, respectively.

Tables 2 and 3 show that the proposed algorithm has high grasp detection accuracy
and fast speed, effectively ensuring the real-time performance of grasping detection and
providing a basis for the implementation of closed-loop control.
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4.3. Simulation Experiment

We optimized our algorithm in the dexterous workspace of the manipulator using the
SLSQP algorithm. The results are presented in Figure 9. In this space, we select a point
every 2 cm for computation using Equation (22). The FOV of the camera is set to 67◦, which
is similar to that of the commonly used Realsense D435i camera.

In Figure 9, 39,000 points are sampled within the aforementioned space. Of these,
38,980 points are marked in blue, and only 20 points are marked in red. In Figure 9c,d,
note that the red points are primarily at the edges of the dexterous workspace. This
suggests that our model may require further refinement to handle situations at the edges
of the workspace. In addition, most of the unsolvable cases occur when the gripper is
approximately 12 cm away from the target object and the camera is positioned very close
to the target object with a limited FOV. In such cases, it is understandable that obtaining
an effective solution is difficult because our algorithm does not allow the gripper to move
far away from the object in the vertical direction. Overall, these results are promising
and indicate that our model is well-suited for various tasks in the dexterous workspace of
the manipulator.

Figure 9. Visibility of optimization algorithms in the dexterous space of the manipulator. (a) The
X-axes and Y-axes in this figure represent the position of the target object in the base coordinate
system of the manipulator, and the Z-axis represents the vertical distance between the EE and the
target object. The optimal solution obtained using our model within the FOV of the camera is shown
in blue and outside it in red. (b–d) The projections of (a) onto different planes. Color intensity
indicates the number of unsolvable points at each position.

To evaluate the real-time performance of our motion control algorithm, we con-
ducted a visibility detection experiment. To verify the visibility of our proposed mo-
tion planning algorithm, we compared it with the A∗ , RRT, and RRT∗ algorithms in a
simulation environment.

We propose a ratio ϑ to measure the ability of the motion planning algorithm to keep
an object in the FOV:

ϑ =
tin
t

(26)

where t represents the total time spent from the first detection to the time the EE grasped the
object successfully and tin represents the time the object was in the FOV during movement.
The larger the ϑ, the better the visibility of our motion planning algorithm. Referring to
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the FOV of commonly used cameras, the FOV of the wrist camera is set to 150◦, 120◦, 90◦,
and 60◦. Because the trajectory generated by the genetic algorithm is random, we randomly
placed the target object in 20 different positions and grasped the object five times in each
position using different algorithms when the FOV was fixed. The evaluation indicator is
calculated by averaging all ϑ under the same FOV using the same algorithm, as presented
in Table 4.

Table 4. Visibility under different algorithms.

Algorithm 150◦ 120◦ 90◦ 60◦

A∗ 100% 100% 70.83% 62.65%
RRT 100% 100% 65.07% 53.14%
RRT∗ 100% 100% 59.61% 51.71%
Ours 100% 100% 97.15% 83.33%

When the FOV is set to 150◦ and 120◦, it is similar to that of a global camera. At this
point, all motion planning algorithms can effectively ensure that the detected object is
always in the FOV during movement. However, when the FOV is reduced to 90◦, the ϑ
of the other three algorithms decreases sharply. When the FOV is further reduced, our
algorithm loses sight of objects approximately 16.66% of the time; these instances are
concentrated at the end of the grasping process. At this time, the object is very close to the
gripper, and when the FOV of the wrist camera is small, the gripper is in a blind area of the
camera’s vision.

4.4. Dynamic Grasping in Real-World Environments

During post-disaster rescue operations, supplies are often packed in camouflage bags.
Therefore, this study conducted experiments on camouflage bags. The dynamic grasping
experiment is conducted in three scenarios: a dynamic target scenario (DTS), a dynamic
base scenario (DBS), and a dynamic target and base scenario (DTBS). Figure 10 shows the
experimental scenarios and the relevant data for DTS, DBS, and DTBS.

Figure 10. Three experiment scenarios: (a) DTS, (b) DBS, and (c) DTBS.
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To verify the grasping ability of the algorithm in the DTS, an object is placed on a sort-
ing box with wheels so that the object can be moved by dragging the box. The manipulator is
placed on a stable platform to ensure that the base of the manipulator does not move. The en-
tire grasping process is depicted in Figure 10a. The object moves within the workspace
of the manipulator, and the manipulator tracks the object and grasps it successfully. Dur-
ing the process of grasping, the manipulator is repositioned several times. We selected
three representative instances to demonstrate this (Figure 11a). The red line indicates the
reference trajectory of the EE, and the blue line indicates the real trajectory. The yellow, pur-
ple, and green lines indicate the first, second, and third planning trajectories, respectively.
Each planned trajectory effectively reflects the motion of the object. When the object moves,
the newly planned trajectory will cover the unreachable part of the original trajectory and
finally form the completed reference trajectory. To ensure that there is sufficient effective
information in the FOV, when the distance between the EE and the object is less than
20 cm, the grasp detection algorithm stops its process and the planned trajectory does not
change. In the early grasping stage, the swing amplitude of the manipulator is significant
because the given waypoints are sparse. In the late grasping stage, the reference waypoints
are dense; thus, the swing amplitude of the manipulator is effectively reduced. Finally,
the manipulator successfully grasps the object. This experiment proves the effectiveness of
our algorithm applied to a hydraulic manipulator in a real-world environment.

Figure 11. Relevant data on grasping in dynamic scenarios. Each line indicates information about
the EE and hip joints in a different scenario. The circle represents the start and end of the object’s
movements. (a) Trajectory of EE in DTS. (b) Trajectory of EE in DBS. (c) Trajectory of hips in DBS.
(d) Trajectory of EE in DTBS. (e) Trajectory of hips in DTBS.
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To evaluate the performance of the algorithm in the DBS, we used a quadruped robot
with a manipulator. An object is placed on the ground in front of the robot. Because the
workspace of the manipulator is limited, the robot must perform a squatting motion to
reach the object. The entire experiment process is depicted in Figure 10b. In this experiment,
when the object is beyond the manipulator’s workspace, the mobile base moves to the
ground at a speed vh = h/t until the target enters the manipulator’s workspace. Here, h
represents the height at which the robot base should descend. t represents the execution
time at which the EE moves to the target position. In this process, the manipulator continues
to move along the planned trajectory and maintains grasping detection.

Figure 11b indicates the trajectory of the EE. The red curve indicates the real trajectory,
and the blue curve indicates the reference trajectory. The second line graph shows the
distance between the hip joints and the ground when the robot squats. The blue, yellow,
green, and red curves correspond to the lf, rf, lh, and rh of the robot, respectively. The data
represent the values of the robot’s hip coordinate system in the upper and lower directions
of the ground coordinate system. The robot is powered on from the squatting mode to the
initial mode in 0–2.5 s, as shown in Figure 11c. During this period, the four curves tended
to first rise and then remain stable. Notably, the robot body starts to descend at 2.5 s and
quickly returns to a standing state at 4 s. During the entire grasping process, the object is
always in the FOV, and the manipulator finally grasps the object successfully.

Figure 10c illustrates the grasping process in the DTBS. The motion curve of the EE
during this period is shown in Figure 11d. As shown in the figure, the EE has a tracking
trend for the movement of the object. In the beginning, to enable the EE to move to the
location of the object, its trend moves to the right. As the object moves to the left, the EE
follows it and moves toward the left. Similar to the experiment shown in Figure 11a,
when the distance between the EE and the object is less than 20 cm, the manipulator stops
detecting the location of the object. The EE moves toward the object directly according
to the planned trajectory without adjusting the initial planned trajectory according to the
visibility. Figure 11e shows the distances between the four hips and the ground when the
robot squats. Unlike in the DBS, the hip velocities change because of the movement of
the object.

5. Conclusions

In our research endeavor, we introduce a pioneering closed-loop grasping strategy
tailored for quadruped robots outfitted with manipulators. Central to our approach is
the deployment of the DES-LGCNN, a lightweight neural network adept at discerning
high-precision grasps while mitigating computational overhead. Impressively, this network
boasts a detection time of a mere 6 milliseconds, sustaining an accuracy rate surpassing 92%.
Moreover, our innovation extends beyond mere detection; we have devised a trajectory
planning algorithm meticulously engineered to ensure sustained visibility of the target
object within the camera’s field of view (FOV) throughout manipulator motion. In the
experiment, our algorithm reaches the visibility of 83.33% when the FOV of the camera is
only 60◦, while other algorithms only reach a visibility of 62.65%. This continuous visual
feedback loop enriches the control algorithm, empowering it to adapt dynamically to
changing scenarios, even in instances where the robot’s torso exhibits non-static behavior.

Notably, the effectiveness of the algorithm is only tested when the robot’s torso moves
up and down in our experiments, because the robot needs to have a high-precision posi-
tioning ability to realize forward and backward movements. This problem requires the
robot to have a strong location ability. In the future, our objective will revolve around seam-
lessly integrating the manipulator subsystem within the broader robotic framework. Such
integration would pave the way for a spectrum of sophisticated functionalities, including
remote target recognition and autonomous navigation and operations. In the forthcoming
research, we aim to make a highly integrated environmental awareness system, enabling
the robot to navigate diverse environments autonomously while executing complex tasks
with finesse. Through such advancements, we envision a future where robotic systems
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exhibit unparalleled versatility and adaptability, revolutionizing industries ranging from
rescue to exploration.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/drones8050208/s1.
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