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Abstract: The aim of this work is to obtain novel and interesting results for mild solutions to a
semilinear differential inclusion involving a w-weighted, ®-Hilfer, fractional derivative of order
# € (1,2) with non-instantaneous impulses in Banach spaces with infinite dimensions when the
linear term is the infinitesimal generator of a strongly continuous cosine family and the nonlinear
term is a multi-valued function. First, we determine the formula of the mild solution function
for the considered semilinear differential inclusion. Then, we give sufficient conditions to ensure
that the mild solution set is not empty or compact. The desired results are achieved by using
the properties of both the w-weighted ®-Laplace transform, w-weighted y-convolution and the
measure of non-compactness. Since the operator, the w-weighted ®-Hilfer, includes well-known
types of fractional differential operators, our results generalize several recent results in the literature.
Moreover, our results are novel because no one has previously studied these types of semilinear
differential inclusions. Finally, we give an illustrative example that supports our theoretical results.

Keywords: fractional differential inclusions; w-weighted ®-Hilfer fractional derivative; infinitesimal
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1. Introduction

Fractional differential inclusions and equations have many applications in our life [1-4].
Impulsive differential equations and impulsive differential inclusions are suitable models
for studying the dynamics of actions in which a sudden change in state occurs. If this
change occurs instantaneously, it is called an instantaneous impulse [5,6], but if this change
continues for a period of time, it is called a non-instantaneous impulse [7-9].

There are many definitions for the fractional differential operator, and some of them are
particular cases of others. Therefore, it is useful to consider fractional differential equations
and fractional differential inclusions that contain a fractional differential operator which
includes a large number of other fractional differential operators. This is our goal in this

work. Indeed, in this paper, we consider a semilinear differential inclusion involving the

w-weighted ®-Hilfer fractional derivative, Dg ’;}@’w (Definition 3, below), which generalizes

the concepts of fractional differential operators that were presented by Riemann-Liouville
(w(ec) = 1L,0 >0, ®(0) =0, v = 0), Caputo (w(c) = 1,0 >0, (o) =0, v =1),
Hadamard (w(c) = 1,0 > 0, ®(c) =logo, o > 0,v = 1), ®- Riemann-Liouville (w(c) =
1,0 >0, v =0), - Caputo (w(c) = 1,0 > 0 ,v = 1), Katugampola (w(c) = 1,0 >
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0, ®(0) = of,p > 1,0 = 1), Hilfer-Hadamard, (w(c) = 1,0 > 0, ®(0) = logo,c > 0),
Hilfer (w(c) = 1,0 > 0, ®(0) = o), Hilfer-Katugampola (w(c) = 1,0 > 0, ®(0) =
of,0 > 1) and ®-Hilfer derivatives (w(c) = 1,0 > 0).

Since the mild solution of a differential equation is not required to be continuously differ-
entiable, like the classical solution, the study of the existence of mild solutions to differential
equations or differential inclusions has been of interest for decades, especially for semi-linear
differential equations and semi-linear differential inclusions. More than thirty years ago, the
study of the existence of a mild solution to semi-linear differential Equations and semi-linear dif-
ferential inclusions containing a fractional differential operator became of interest. Some of these
equations contained the Caputo fractional derivative [10-12], some involved the Riemann-—
Liouville fractional differential operator [13,14], some contained the Caputo-Hadamard
fractional differential operator [15,16], some included the Hilfer fractional differential oper-
ator of order « € (0,1) in [17-26], some contained the Katugampola fractional differential
operator [27], some contained the Hilfer—-Katugampola fractional differential operator of
order a € (0,1) [28-32] and others involved the Hilfer fractional differential operator of
order A € (1,2) [33].

In this article, we will prove the existence of a mild solution to a semi-linear differen-
tial inclusion involving the w-weighted ®-Hilfer fractional differential operator. Because
the fractional differential operators introduced by Caputo, Riemann-Liouville, Caputo-
Hadamard, Hilfer and Hilfer-Katugampola are special cases of w-weighted ®-Hilfer frac-
tional differential operators, our work generalizes many of the abovementioned results by
replacing the fractional differential operator considered in these papers with the w-weighted
®-Hilfer fractional differential operator.

In order to formulate the problem, we mention some symbols that will be used during
this paper.

-3 =1[0,0].

- E is a Banach space.

-ne(1,2),vel01]and ¥y = u+2v — pv.

-w: S —]0,00[and w (o) = w(lg).

-® : § — Risa strictly increasing continuously differentiable function with ®'(8) # 0
for any ¢ € &, and & lisits inverse.

-m isanatural, Ngo = {0,1,2,..,m}, Ny ={1,2,..,m} and N, = {2,3,4,...,m}.

- =0<n<Hh<m<h<... <0’m§l9m<0'm+1:b.

- Sk = (%, 0k1];k € No, Ty = (94,0141);1 € Ny,

—Dgi’;’@’w is the w-weighted ®-Hilfer derivative operator of order y and of type v and
with a lower limit at 9;

- 1129;0” P is the w-weighted ®-integral operator of order 2 — u and with a lower limit
at 191'.

- A is the infinitesimal generator of a strongly continuous cosine family{C(¢) },cr,
where C(c) maps E into itself.

-F: 3 x E — Py(E) (the family of non-empty, convex and compact subsets of E )

- 8,8 [0, xE — E; i € Ni are continuous functions, and xo,x; € E are
fixed points.

- AC(S3, E) is the Banach space of absolutely continuous functions from S to E.

In this paper, and by using the properties of w-weighted ®-Laplace transform, we de-
rive at first the formula of a mild solution to the following differential inclusion containing
the w-weighted ®-Hilfer fractional derivative order u and of type v with the existence of
non-instantaneous impulses in Banach spaces with infinite dimensions:
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D‘u,vdmu

(0) € Ax(0) 4+ F(o,x(0)), ae., 0 € (8;,0:11],i € No,
x(‘fl = gi(oi, x(0;)),i € Ny

x(0) = gi(o,x(07)),0 € (07, 9],i € Ny,

lim,_o+ w(o )Igqu)wx(a) = xq, lim,_,o+ G )d”fT (w(a)lé/?’q)'wx(a)) =1x1, 1)
lim, - (w(0) Iy, x(0)) = gi(®;, x(8;)), Vi € Ny

lim 5 i (w(0) 5, x(0)) = g7 (8, %(6;)), Vi € Ny,

=0, I(c) do

)

Then, without assuming the compactness of C(c); o > 0, we find the sufficient condi-
tions that ensure that the mild solution set of Problem (1) is not empty or compact in the
Banach space PC_ ¢, (S, E), which will be defined latter.

To further explain our arguments that clarify our motivation for studying Problem
(1) addressed in this manuscript, as well as the importance of our purpose, we state the
following: In a very recently published paper, Alsheekhhussain et al. [34] considered
Problem (1) when the operator A is the zero operator. Zhou et al. [10] and He et al. [11]
investigated the existence of mild solutions to Problem (1) when &; = o¢; = b,Vi €
Ny, w(o) =1, ®(0) = 0;0 € § and v = 1. Wang et al. [12] considered Problem (1)
when w(c) =1, ®(0) =0;0 € ¥ and v = 1. Thongsalee et al. [13] proved that solutions
for Problem (1) exist; when A is the zero operator, F is a single-valued function, v = 0,
9 = 0; =b,Vi € Ni, wio) =1,and ®(0) = ¢ € S, Shu et al. [14] studied Problem
(1) in the particular cases v = 0, w(c) = 1 and ®(0) = 0,V € I, Gu et al. [17] was
the first to consider Problem (1) when u € (0,1),9; = 0; = b,Vi € Ny, w(c) =1 and
Plo)=0;0€

Working with the Laplace transform and density function, Gu et al. [17] was the first
to define the mild solution for the semilinear differential equation:

{ Dy"x(0) = Ex(0) + f(0,x(0)), a.e., o € (0,b], 2

. 1-
lim, o+ IO,UP x(0) = xo,

where DS:Z is the Hilfer fractional derivative of order 4,17 € (0,1), p =5+ 1 — dy, E is the
infinitesimal generator of Cyp-semigroup of linear bounded operators, f : [0,b] x E — E
and x( € E is a fixed point. Jaiwal et al. [18] presented the definition of a mild solution for
(2) when & is an almost sectorial operator, and then they found the sufficient conditions
that guarantee that the solution exists.

Yang et al. [19] proved the existence of mild solutions for the non-local semilinear
differential equation:

D x(0) = Bx(0) + f(0,x(0)),a.e., o € (0,b], 3
lim, o+ 1L, (@) = %0 - g(x) ©
where u € (0,1),v € [0,1], p = p+ v — uv, and E generates an analytic semigroup
of uniformly bounded linear operators. Wang et al. [20] showed solutions for (3) with
the existence of non-instantaneous impulses and where f is a multi-valued function and
studied the controllability of the problem. Very recently, Elbukhari et al. [23] proved the
existence of a mild solution for Problem (3), when E is the infinitesimal generator of a
compact Cyp-semigroup and g does not satisfy any assumption such as compactness or
Lipschitz continuity, making their findings interesting.
Suechoei et al. [35] derived the formula of a mild solution for Problem (1) in the
particular cases u € (0,1),9; = 0; =b,Vie N; w(c) =1, 0 € andov =1.
Later on, Asawasamrit et al. [36] studied non-instantaneous, impulsive differential
equations involving the ®-Caputo fractional derivative of order « € (0,1) with Riemann-
Stieltjes fractional integral boundary conditions.
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Sousa et al. [37] introduced the concept of the ®-Hilfer fractional derivative of order
# € (0,1) and obtained important results. Kucche et al. [38] showed that solutions for the
following non-linear differential equation involving the ®-Hilfer fractional derivative exist:
0,0
szﬂ x(0) = f(o,x(0)),ae.,0 € (a,b] —{o1,02,...,0m}
lim,_,+ I;;,gx((fk +e)—lim_,o+ I;;,ﬁx(ak —e)=¢€eRk=1,.,m,
lim,_ + I;:ix(a) =x €R,

where y € (0,1),v €[0,1], DZ; ff is the ®-Hilfer fractional derivative, p = p + v — pv and
f:lab] xR —=R.

In [39-46], there are studies on the existence of mild solutions of differential equations
and inclusions involving the w -weighted ®-Hilfer fractional derivative of order i € (0,1)
and of type v € [0,1] in the special case w(c) = 1; Vo € S.

Very recently, Benial et al. [47] considered w-weighted ®-Riemann-Liouville differen-
tial equation of order o (&), where ¢(¢) : [0,b] — (1,2].

For other contributions on weighted fractional boundary value problems, we refer
to [48-50].

Remark 1. Our work is novel and interesting because:

1- To date, none of the researchers in the field have considered studying semilinear differen-
tial equations or semilinear differential inclusions containing the w-weighted ®-Hilfer fractional
derivative of order y € (1,2) and of type v € [0, 1].

2- Our studied problem is considered with the existence of non-instantaneous impulses and in
infinite-dimensional Banach spaces.

3- Our problem contains the w-weighted ®-Hilfer fractional derivative, which interpolates
many fractional differential operators, and hence, it includes the majority of problems cited above.

4- Li et al. [33] derived the representation of mild solutions to Problem (1) in the particular
situations when w(c) = 1 and (o) = o, Vo € 3.

The following summarizes the focal contributions of our work.
*  Anew class of differential inclusions is formulated, involving the w-weighted ®-Hilfer

differential operator, Dg ’g@’w, of order p € (1,2) and of type v in Branch spaces with
finite dimension, when the linear term is the infinitesimal generator of a strongly
continuous cosine family, and the nonlinear term is a multi-valued function

¢ By utilizing both the w-weighted ®-Laplace transform and w- weighted ®-convolution,
the representation of mild solutions for Problem (1) is derived (Lemma 10 and Defini-
tion 12).

*  Our obtained formula for mild solutions coincides with the formula that was obtained
by Li et al. [33] in the special case w(c) = 1 and ®(0) = o, Vo € < (Corollary 1).

¢ The conditions that ensure that the mild solution set for Problem (1) is not empty or
compact are obtained (Theorem 1).

e  This work is a generalization of what was achieved in [17,19,33-35].

*  Anexample is given to show the possibility of applying our results (Example 1).

¢ Our method helps interested researchers to generalize the majority of the aforemen-
tioned works to the case where the non-linear term is a multifunction and the space is
infinite-dimensional.

e  Since a large class of fractional differential operators can be obtained from D} ’;’q)’w,
the works in many results mentioned above can be generalized by replacin,g the

considered fractional differential operator with Dg/’;]’q)’w and making the dimension of
the space infinite, and this is considered as a suggestion for future research work as a
result of our work.

*  One can obtain a broad class of fractional differential equations and inclusions as a
particular case of Problem (1) (see Remark 1).
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We organize our work as follows: in Section 2, we present definitions and results
from previous work that we will need to obtain our results. In the third section, we obtain
the relation between Problem (1) and the correlating fractional integral equation and the
representation of mild solutions. Moreover, we prove that the mild solution set for Problem
(1) is not empty or compact. Finally, an example is presented to clarify the possibility of the
application of our results.

2. Preliminaries and Notations
We commence this section by recalling some symbols that will be used later.
For any p > 1, denote by LZ,"D((O, b), E) the Banach space of all Lebesgue measurable

functions f such that fw(CID’)% € LP((a,b),E) when p € [1,00), and fw € L*((0,b),E)
when p = oo, where

il on e { 2 1 () [P (x)dx) i p € [1,00),

||waL°° (0,b),E)” if p = oo.

For any function f : [0,b] — E, define [50]

DY (o) = w (o)

DR f () .= DV DRV () = w*l(a)[m L (f@)w(e) k € Ny,

and

futal0) 1= 0D (0) = [ I Fl0)0(e), k € N

Let us consider the Banach spaces:
-Cw([a,b],E) := {x € C(S,E) : wx € C([a,b],E)}, where ||x|| = maxgcg ||w(s)x(s)]||.
-Co—y0,w(S, E) := {x € C((0,b],E) : (P(.) — ®(0))> "x(.) € Cu(S, E)}, where

[1xlle,y o0(3,8) = sup I (Do) — @(0))* "w(o)x()ll-

0

-PCy_yow(S,E) = {x : [0,b] = E, (®()—D(%))> "x(.) € Cu(Sk E), X|g; €
C(Ui/ E)/
limgﬁﬁ; (@(0) — D(%))* "x(¢) and im _, + x(0) exists, k € Ny, i € Ny}, where

16]1pCy 03,5y 1= max{sup (®(c) — @(8))* " [[w(e)x(c)[£, sup ||x(e)]|E},
U'G\Sk oeTy
keNy keNy

-ACY (3, E) := {x: [a,b] = E,xw € AC(S, E)}, where ||x||AC1,w(%,E) = ||xw||AC(%/E).
G pow(S/E) = {x € Copou(S,E) : DVP¥x € Copow(S, E)}-

e

S,

) aw(SE) i= {x € Ci7) 4 ,(S,E) : D"®x € Gy qeu(S,E)},n € N—{1},
where
ke @
[|x ||C2 oo (S/E) = k; ||D* 'waCQm,ZL,(%,E)+||Dn' 'wx||c2,m(g,g).

SACTP(QE) = {x : ¥ — E, D" 1®Vx € AC(S,E), D" x € Ly ((0,b),E)};
n € N— {1}, where |[x[| scnow(s,g) = l[Xn-1,0,0/lac(s p)-
The function xpc, . . (3.E) : Pb(PCZ 7®,u(S, E)) [0, c0), which is given by :

XPCy . 00(3,E) (D) i= maX{}gé%Xc@k,E)(DM) max Xc(, £ (D7)}t
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is a measure of noncompactness on PCy_ (S, E), where
D5 = {h* € C(SK, E) : h*(0) = (®(0) = D(%))* Tw(o)h(0),0 € Sy,
h*(8) = lim h*(c),h € D},
o087

and
D\f‘ :={h* € C(T,,E) : h*(0) = h(t),t € T;, h* (t;) = h(ti*),h € D}.

Definition 1 ([50]). Let « > 0. The w-weighted Riemann—Liouville fractional integral of order a
where the lower limit at a of a function f € Lf,,’q)([a, b, E) in regard to ® is given by:

w (o)

L N©) = Ty /f@(v)—<I><z9>>“*1q>’<19>f<19>w<19>d19‘

Lemma 1 ([50], Theorem 2.4). Assume f € LZ;q)((a, b],E),1 < p <oo,a>0andp >0, then
o, ®,w 18,Pw a+p,P,w
Ill,(f Iu,a f = Iﬂ,ﬂ f

Definition 2 ([50]). Let n € Nand a €]n —1,n|. The w-weighted Riemann—Liouville fractional
derivative whose order « where the lower limit at a of a function f : [a,b] — E in regard to ® is
given by:

(D)) i= D™ (I f) (0)

= MD 2o ([ (@) - @(8)" 10 (9) f(B)w(9)ds,

assuming that the right-hand side is well defined.

Lemma 2 ([50], Proposition 1.3).
i-Ifa > 0and B > 0, then

o, P,w (CD(‘T) — @(a))ﬁ_l
O —
_ T (@(0) —D(a))Pret N
— TB1a) e ;Yo e S (4)
ii-If p > 0and « < B, then
0,00 (P(0) — @(a))P!
I)u,:T1> ( ZU((T)
_T() (@(0) —P(a))f o
71"(,8—0&) e ;Vo e S

One can use similar arguments to the ones used in E = R ([50], Theorems 3.3-3.6) to
prove the next lemma.

Lemma 3. i- Ifa € (n — 1,n) and f € AC"®%([a,b],E), then Df{f’wf exits almost everywhere
and

(D)) = £ [ (@(0) ~ (@) 10/ (0)DF ™ w(0) ()0
k=n—1 _ k
SRR Ol
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where foow(a) = f(a)w(a).
ii-If f € LE®((a,b), E) and & > B > 0, then DES VIS0 £ (o) = I4e PP f(0), Vo € S.
iii- If f € LE® ((a,b), E), then DY I8PV £(0) = f(0), Vo € S.
iv-Ifa € (n—1,n) and f € LIy®((a,b], E) such that ;9% f e AC®%([a,b], E), then
forany o € [a, b]

L (Dgg ™ f)(0)

_ gy (@) —@@) L 1 d na
_f(U)_w l(a-)kzzl T(oc—k—i—l) LITILI}(Q)/(U')%) k(w(U)Ia,a (0-)) (5)

Definition 3 ([50]). Letn € Nand « €|n —1, n[. The w-weighted ®—Caputo fractional derivative
of order o where the lower limit at a of a function f ;[a,b] — E in regard to to ® is given by:

®(a))*

k=n-1 _
D))= Do) - 3 FOLE O ()

assuming that the right-hand side is well defined.
In the following, we recall some properties for 1;‘,;;1’ “, DZ‘:,;I) “and CDZ‘/’(? ",
Lemma 4 ([50], Theorems 4.2-4.5). i-Ifa € (n—1,n) and f € AC®®([a,b], E), then for a.e.

-1 -
DI )(0) = Frrr ([ (@(0) ~@(0))" g L (B)(8)) a0,

ii- Ifa € (0,1) and f € AC"®%([a,b],E), then for a.e.

wfl o
DI )(0) = fr ([ (@(e) — @)L (0)(o)) o

iii- ‘DY (w1 (o) (D(0) — ®(a))*(c) = 0;Yk =0,1,...,n — 1, wheren —1 < & < n.

As a result of definitions (3) and (1), we give in the following definition the concept of
the w-weighted ®-Hilfer derivative operator.

Definition 4. The w-weighted ®-Hilfer derivative of order y and of type v where the lower limit
at a for a function f : [a,b] — E is given by
DR (i) = 1;’53*” D2 I{g,zgfu)(lfv)ﬁbrw (o)
= L DXL (o)
= I "D (o), ®)
where v = u + 2vs. — yvs., assuming that the right-hand side is well defined.

Remark 2. 1-If f € C¥®®([a.b],E), then DY (o) exists a.e., and consequently Dhve ™™ f (o)
exists for o € (a, b].

2-If I " f(0) € CI_, (2, b), E), then DI f(0) € Cpyw,0([a,b], E), and conse-
quently Dﬁ‘,}zf”q)’w f (o) exists for o € (a,b].

3- Let x € LE®((a,b],E) be such that I2;7%"x € C ew(labl,E).  Since
Ci%q),w([u, b],E) C C>®%([a,b],E), then, Iﬁ/;'r’cp'wx € C>®%([a,b], E). Therefore, by Lemma
1, (5) and (6), we obtain for o € (a, b],
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7 (DL ) (0) = 15 1o DY x (o)
= 17 Diy x (o)
(@(0) = P(a)" ! 1 4

w(o)T(7) Uliﬂ(cp/(a) 25 (@) P x(e))

- lim (w(o) 27 ®%x (7). (7)

Definition 5 ([51]). We call a one-parameter family of bounded linear operators {C(c) }ycr which
maps the Banach space E into itself a strongly cosine family if and only if

(i) C(0) =1,
(i) C(0+0)+C(0—0)=2C(8)C(0) forall 9,0 € R,
(iti) The map o — C(0)x is continuous for each x € E.

Definition 6 ([51]). Let {C(0)},cr be a strongly cosine family, Then, we call the family
{S(0) }yer, where

S(0)x = /(;UC(ﬂ)xdﬁ, ®)

a strongly continuous sine family correlated with {C(0) },cR-

Lemma 5 ([51]). Let {C(0)},er be a strongly cosine family on E. Then, the following are true.
1-5(0) = 0,C(0) = C(—0),S(0) = =S(—0) forallc € R;
2-C(0),C(0),S(0) and S(8) are commute for all 0,9 € R;
3- Forany x € E, 0 — C(0)x is continuous;
4-S(0 +0) + S(o — 9) = 2S(c)C(O)for all 7,9 € R;
5-S(c+0) =S(0)C(9) + C(0)S(9)forall 0,0 € R;
6- There are positive constants My and ¢ such that ||C(c)|| < Moe €Il for all ¢ € R and

(%8
[IS(o)x — S(9)x|| < M0|/19 e SI"lxdt|, forall 0,8 € R.

Definition 7 ([51]). The infinitesimal generator of a strongly cosine family {C() } e is given by

d2

Ax = 2
X do?

C(U)x|X:0/
where D(A) = {x € E : C(0)x is twice continuously differentiable of o'}.

Lemma 6. Let A be the infinitesimal generator of a strongly continuous cosine family {C(0) } ycr.
Then, for A with Rel A > ¢, A belongs to the resolvent set of A, A(A2 — A) ~lu = [;” e 7 C(0)u do
and (A2 — A)"lu = |7 e M S(0)u do ;u € E, where ¢ is defined in the sixth item 6 of Lemma 5.

Definition 8 ([50]). The w— weighted ®—Laplace transform for a function f : [a,00) — E is
given by
{Lowf()}A) = / e M= O0)ey(0) f(0) @' (0)do, A > 0. 9)

a

Definition 9 ([50], Definition 5.9). The w— weighted ®—convolution of functions f : [a,00) —
Eandh : [a,c0) — R is given by

(l’l *q;[w f)U'
=w"(0) /: w(@H(P(0) — @(a) — ©(8))h(®TH(P(0) — D(a) — P(V))w(B) f(8) D' (8)d0.
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where ®~1 is the inverse function of ®; that is, c = &1 (P(0) — P(a) — P(9)) <= D(0) =
®(0) — D(a) — O(9).

Definition 10 ([50]). A function f : [0,00) — E is considered to be a w-weighted ®-exponential
function if there are positive constants L, C, K such that ||w(x) f(x)|| < LeC®®),Vx > K.

Lemma 7 ([50], Proposition 5.2, Remark 5.8, Theorem 5.9 and Corollary 5.11). Leta > 0.

1- f *<I>,w h = h *q>,w f
2-
Lo o' ()(@() — d(a)P1}(A) = LB g o g 10
{Lopw™ ()((®() = ®(a))"HA) = — 5% p > —1. (10)
3-Ifa > 0and x : [a,00] — E is a piecewise continuous function on each interval [0, o] and
w—weighted ®—exponential, then

Lou(1@ ) (1) = et g an

4- If the w—weighted ®—Laplace transform of f and h exist for A > 0, then
{Low(f *o,0 1) }(A) = {Lowf}(A) X {Lowh}(A). (12)

5-Leta € (n—1,n). If (DY ) (c) is well defined for almost a > 0, then

n—1 d

{Louw(Dar ™ f(0)}A) = A*{Law(f(0) }(A) - lim Z(W)%(X)IZZ,E“'QW (a®). (13)

(7—>0k 0

Lemma 8 ([52], Corollary 3.3.1.). Assume that U is a not empty, closed and convex subset of E
and Y : U — P (E) is x —condensing and with a closed graph, where x is a non-singular measure
of noncompactness defined on subsets of U. Then, Y has a fixed point.

Lemma 9 ([52], Propostion 3.5.1.). Assume that U is as in Lemma 8 and Y : U — Py (E) is
x—condensing on all bounded subsets of U, where x is a monotone measure of noncompactness
defined on E. If Y has a closed graph, and the fixed-points set for Y, Fix(Y), is a bounded subset of
E, then it is compact.

3. Non-Emptiness and Compactness of the Mild Solution Set for (1)

Firstly, by using the properties of the w—weighted ®—Laplace transform, we derive
the formula of a mild solution function for Problem (1). For this purpose, we consider the
following w-weighted semilinear differential equation of order y and of type v :

0,9,
Dy ™" x(0) = Ax(0) + f(0,x(7)),0 € (0,0],
11m0_>0+ I 7’ Yw(o)x(o) = (14)
2,

lim,,_,q+ q),( )d(r( T2 0w(0)x (o )7 x1,
where f : 3 x E — E. By applying the operator Ig, f) "“ on both sides of Equation (14) and
using (7), we have for o € (0, b]
(@) — B(0))72

I(y—=1)

+ I Ax (o) + I f (0, x(0)). (15)

+ xyw (o)

x(0) = xow (o)

Equation (15) is called the corresponding integral equation for Problem (14). In the
next lemma, we obtain the formula of a mild solution function for (14).
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Lemma 10. Assume that A is the infinitesimal generator of a strongly continuous cosine family
{C(0)}oer and x € LE®(S, E) such that Ig;'y’cp’wx € cgﬂ,@,w([o, b],E). If x satisfies (15),
then, for o € (0, b],

x(0) = Do, TP (@ (0) — @(0))° K (0,0))x0 + (Z4 *a0 Z2) (0)

- 0,0
+ [7(@(0) - (8) 7K 0,9 (8, x(8) () (€)de, (16)
where ¢ € (0,b],6 = %, Zi(0) = wil(g)(q}(@:;()o))%%lz Z(0) = (®(0)—

®(0))*'K**(0,0)x1, Z3(0) = (@(0) — (0))°'K***(0, 0)xo,

K*®® (g, 9)u = ! /m 50E5(0)8((P(0) — ®(8))°0)udb; o € (0,00),0< 8 <0, (17)

w(o) Jo

E5(0) = 30717 5p,(075) and ps(6) = Ly (~1)r 1o~ 1 LD sin(nr), 0 €
(0,00).

Proof. Let A > 0 be such that Rel A’ > ¢, where ¢ is given as in the sixth item of Lemma 5.
Then, using Lemma 6, (A% — A)~! is well defined and

(A%~ A) 1y = / e N09(0)u do ;u € E. (18)
0

Applying the generalized w—weighted ®—Laplace transform, defined by (9), on both sides
of Equation (15) and using (10) and (11), it follows that

{Lowx()}(A)

= {Lowxow '(.)

+ {L':D,wxlwil ()

+{Lawlhy " AX()}A) + {Lawlyy ™ f(@, () }(A). (19)

Set
X()‘) = {Lg),wx}()‘)/
and
F(A) = {Lgf (-, x())}(A).

Then, (19) becomes

X x1  AX(A)  F(A)
e VA VR

X x1 . AX(A)  F(A)

=ty t e T e (20)

X(A)

From (18), it yields
X(/\) — A2577+1(/\215 _ A)71x0 +A257’y(/\25 o A)71x1
+ (A% = A)TTF()

- )\26—7“/ e M5 (0)xg do + /\2‘577/ e M7S(0)xy do
0 0

+ /O Y e N5 () F(A)do
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In I, replacing o with (®(8) — ®(0))?, we obtain

L =A% /0 T 5(@(8) — (0))7 e MO PO 5((@(9) — (0))°)@ (8)x1d9.

Because 6 € (%, 1), then [53]
o~ (M@(8)—2(0))° _ /Ooo e*A9(¢(ﬂ)*¢(0))p5(9)dQ'

Equations (22) and (23) imply that

_A26 v/ / B(0))0 e A0(@(9)-(0))
ps(0)S( 0))5) ' (8)x1d0d9.

Replacing 6(P () — ®(0)) with (1) — D(0),

5-1
— 22— 'y/ / 5 (0)) e MNP —2(0) 5 (9) x

T

- O ¢/ (1)x,dbdr.

S( (&
Replacing 6 with o7 and using (11), (12) and (17), we obtain

I = A%-7 /°° MO =2(0) (@ (1) — B(0))*
0
-1 -1
[ o8 psle 8 DS(@(T) ~ (0))°0) (x)xadode

— 2 [ MO0-20) (@) — 0(0)) 1 (1)
( /O " 5085(0)S((@(7) — (0))°0)do)x1dT
=A% /0 " e MOM-20) (g () — B(0))° 1@ (1) (T) KPP (T, 0) vy d.
Since, from (10),
Lo (w ™} (0)(P(0) = @(0))7 271 = AT (y — 24),
it yields,

12 - LQ,w(Zl}(/\) X {L@,w(ZZ}(A)
= Ld>,w(Z1 *ow ZZ)'

Similarly,
L
= A2l /0 " e MOD-20) (g (1) — B(0))° 1@ () (t)K® (7, 0) xodt

= A2 Lo (((1) — @(0))° 1 HA).

(22)

(23)

(24)
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Since limy_,o '~ (27 D20[(P(0) — ®(0))?1KP2% (0, 0)x0) = 0and 1 — (26 — v +
1) € (0,1), by (13), we have

_ o— 5
I = A" Y Lew(Z3}(A) = {Law (Do, " 7 Z3} (M) (25)
For I3, by arguing as in (21)—=(23), we can arrive at

I — / / 5 D’ A@(0)-0) p, (0) x
(1) — @(0))°

)<I>’( )E ( )dodt

0
_ / / [0 )’ - A@(0)-0) s (0) x

’ )e—)\(‘b( )=2O) (i, x (i) )w () D' () D' (T)dxdOdT

s
= [T [ RSO acotmr+otm 00y 0)
0 0 0
S(W) £, %(x) ) (1)@ (k) (€)drdOd . 26)

Replacing, in (26), ®(x) with ®(c) — O(1) + P(0), one can obtain
e 2 () = 2(0)° (@(e)—a(0))
13—/0 /T /0 ) o e ps(0) %
— ®(0)

F(@7H(@(0) = @(1) + (0)), (P (P(0) — (1) + (0))) x
w(®HD(0) — @(1) + ©(0)))P (o )deUdT

_ [T (A0 // (@(t 1p5(9)><

5(( 202000 (0)0 (1)

f(@7H(@(0) — (1) + P(0)), x(P (P(0) — D(T) + P(0))) %
w(® Y ®(0) — @(1) + ©(0)))dbdTdo. 27)

Replacing ®(7), in (27), with ®(¢) — ®(8) + P(0), we obtain:

13—/ // 12 97 195(9)><

S((M) )£ (8, x(9))w(9)®' (9)®' (¢)d0dddo.
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Replacing 6 with 07 and using (17), we get

-1 -1
L= [T e [7 7 o) - o(0)) e ps(6 3 o0 x

S(( (0)— D(8))°0) £(8, x(8))w(8)P' (8) @' (o) dbdddor

_/ ®(0)—®(0)) /(q>(0) ®(8))0 1/ 50¢5(6

S((@ (f)— D(8))°0) £ (9, x(8))d6]w(8)P' (8) @' (o) dbd

_/ P(0)—D(0)) (0) 00 )571K§,<I>,w(0.119)x

f(8,x(8))w(8)®' (9)dd] @' (0)do

= L<I>,w{Z4}( )/ (28)
where Zy () = [ (® ®(8))° Lw(9)K*P® (0, ) f (8, x(8)) D' (8)d.

Equatlons (20), (25) (26) and (28) give us
{Lawx}(A) = {Laow (Dgy " Zo} (V) + Lo (Za *a0 Z1 }H(A)
+ +Low{Zs} (M)
By utilizing the w—weighted ®—Laplace transform, we obtain, for any ¢ € (0, b],
x(0) = Dy, " Z3(0) + (Z1 Ho 22)(0) + Za(0)
=Dy, " q’“’(( () = (0))° K™ (0,0)x0) + (Z1 *a0 22)(0)
+ / ®(0))° KO P (0, 9) f (8, x(0))w(8) D' (8)d9.
So, (16) is satisfied. [

As a consequence of Lemma 10, we obtain the next definitions:

Definition 11. A function x € Cy—,,@,,(S, E) is called a mild solution for Problem (14) when it
satisfies the next fractional integral equation:

x(0) = Df T (@(0) = @(0))° KO (0,0)x0) + (Z1 a0 Z2) (0)

- /0 U(CD(U) — ®(9))° K (g, 9) f (8, x(0)) D (8)w(8)d9. (29)

Definition 12. A function x € PCy_, ¢ (S, E) is called a mild solution for Problem (1) if it
satisfies the following fractional integral equation:

Df, " (@(0) — ©(0))01KIP (0, 0))x0 + (Z1 *a0 Z2) (0)
+ Jo (@(0) — D(8))°1KO®® (7, 8) f(8)w(8) D' (8)dD, o € S,
gi(0,x(0;7)),0 €0;,i € Ny,

KO = DA (@) - 0(8,)) KOO 0, 8,)) (81, %(07 ) 0)
+(Zs,i *a,w Zg ;) (0)
T ((0) — B(8)) KPR (0, 8) F(8)w()' (8)d8, 0 € Si € Ny,
_ —26—
where §; = (191', O'iJrﬂ;i €Ny T; = (O’i, l9i];i S N1, Zl(O’ ((D(Errg ;1;()0))7 : 1, Zz(O’) =
o 26—1
(@(0) — ®(0)) K0, 0)x1, Zsi(o) = LU i’éi"””  Z(0) = (@(0) -

D (8;))° 1K (0, 8;) g (8;,x(9;)),0=5and f € Llr(( 0,b),E) with f(8) € F(8,x(9)),ae.



Fractal Fract. 2024, 8, 289

14 of 32

Corollary 1. Ifo; = 9; =b,Vi € N, w(o) = 1and ®(0) = o,V ¢ € S, then the mild solution
function of the following problem:

Dé‘,’ﬁx(a) € Ax(c) + F(o,x(0)),a.e.,c € (0,b] -
lim, o+ Ig;vx(cr) = x0, lim,_ o+ %(I&;Vx(g)) =x (31)
becomes B
_ ) DiTT (001K (0,0)x0) + (Z1 % Z2) (o)
xo) = { T [F (0= 8)-1K3(0, )£ (9)d8,0 € (0,1], (32)
where § = &,
Ko(o,8)u = [ 6025(6)6(c — 0)°0)uds, 33)

Ko (o, 8)u = [;° 66Z5(6)S (0 — 8)°0)udf and

1 o 51 af 25 5
(Z1xZy)(0) = m/o (o —8)7 27190~ 1K%(9,0)x; = 1&02‘50" 1K (0,0)x1, (34)

and this coincides with Definition (8) in [33].
The next lemma illustrates some properties of K’(.,.).

Lemma 11. Suppose that the operator A satisfies the next condition:

(A) A is the infinitesimal generator of a strongly continuous cosine family {C(0) }yer, and
there is Ml > 0 such that supy>o||C(0)|| < M.

Then,

1- For every o > 0, every ¢ € (0,0) and every u € E,

_ 51
w(o)|[K*®% (o, )ul| < M(CD(U)F(;;)(&)) ]| )

2-Forany oy > 01 > 0,

lim ||w(07)K> P (09, 9) — w (o7 )K¥P® (07, 8)|| = 0. (36)

(% md %]

Proof. 1- Since supy,>o||C(0)|| < M, it yields

w(@) K2 (0, 0)ul] < [ 5025(6) IS((P(c) — @(6))°0))|uds
< [ 065 (0)M(@(0) ~ ©(0))° | ull o
— M(®(0) ~ @(0))"lJulls [ 6°s(6)de.

Since [5° 62¢5(0)d6 = % it follows that

@(0)[[K2(0,0)ul] < M(2(0) ~ (@) lullS 1 s

M(D(0) = @(8))°||u]]
T(20) '



Fractal Fract. 2024, 8, 289

15 of 32

2-For any u € E with ||u|| <1, we have
lim_|[w(02) (K™ (0, 8)u — w(o1) (K™ (01, 8)ul |
0 — 0

< Jim [ 502,(6) I((@(02) ~ @(9))°8) ~ S((@(e1) — @(6))°6))[uds

= Jim M|(®(c2) ~ ©(8))%6) ~ S(@(0r) ~ D(8))°0)][ul]8 [ 6°s(6)d

< lim MI@(@2) = 2(8))°0) — S(@(1) — (8))0)
T =0 1"(2(5)
=0.

O

Lemma 12. For every u € E and every o € (0;,0;11],i € Ny

(@)~ 0(8:)° (@)K (0, 8)u)

= (6 = 1)(@(0) — @(8;)° 2 @(0)w ()K" (v, 8;)u

+8(D(0) ~ (82 20(0) [ 022(0)C((@(e) ~ B(8:))°0)5(6)ude,

and
1 (@(0) ~ @(8)) 0(0) K5 @, 0,)u)]|
< (@(c) - ©(8)* 210) F .
Proof.

7o (@) — ®(9,))" Mw(e)K*P (0, 8;)u)
= (6 —1)(®(0) — ®(8))° 2dw(0) K> (o, D)u

+(@() = (0" 2 ([ 5025(0)S((@(0) — @(8) ‘s

However,

o[ ab2a(0)5((@(@) - @(6:)o)udo
= [ 025(0) 5 [S((2(0) — @(8:)0)ud
= [ a0E:(0)3(@(0) — @(8)" 10(0)C((@(e) — @(81))*0)udo

= 62(D(0) — D (8))° (o) /Ooo C((®(0) — D(0)°0)0%E5(0) udo.

(37)

(38)

(39)

(40)

Then, Equation (37) is yielded from (39) and (41). Now, by (35), (37) and assumption

(A), we obtain
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1L ((2(2) = @(8) (@) KO (e, 1)) |
< (16 = 1)(@(0) = B(8:))" 20 (e)(@)K (0, 8;)u]|
+[(@(0) - (0 20(e) [~ 2622(6)C((@(0) - B(8,) ) uds)|

M(P(0) — ()’ [|ul]
T'(20)

+(@(0) = (0)* 2 B0)M [[ul] [ e6%¢; (0)do
Milu|
I'(26)

5((D(0) — @(9;))* 2D (o) M||u]]
T(20)

< (1-0)(@(0) — (8;))° (o)

= (1= 0)(@(0) — @(9,))* *®(0)

+

= (®(0) — @(8;))* *®(0)

So, (38) holds. [
Lemma13. Ifo € 0 € (8;,0;41],i € Ny, then
w(@)(@(0) = @(8:)*||Dy P (@() — @(8:)) KD (0, 8;))x0) |
=@ —Nlll)‘lic?Jyl —1) 1)
Proof. In view of (i) of Lemma 3, (ii) of Lemma 4 and (38), we have

1D T (@(0) — @(8))P KA (0, 9;))xo) |

= 110 [ (@l) — 0(0)) A (0(0) — @(8))F (o) (0,8 0l

ao
w (o v
< S [ @00 — @) I (9) — () o)k (8,01 o
w o) 7 19y (2(0) = (8))%2M] xo |
< T o (@) (@) ) ro—ollas

_ Ml (o) -
[(y —wI(20) Jo
= Al o o) (@(e) ~ @(8)2)

— r(zz(;/)lgzcgyi(fi}lz » w (o) (@(0) — D(8;))2 2T
= M||xol]

C(2-1r(y-1)

So, (41) is true. [

O(0) — D(8))T F1D(0) (D(9) — D(8))*°2dd

w ! (0)(P(0) - D(8;)7 %

In the next theorem, we demonstrate that the mild solution set for Problem (4) is not
empty or compact.

In addition to condition (A), assume F : & x E — P, (E) to be such that:

(Fy) For any u € E, F(.,u) is measurable and for almost o € Ugcn, S, F(0,.) upper
semicontinuous.

(F,) There is a function ¢ € L}D,w(s, [0,00)) such that for every u € E and any k € Ny,

[[E(o,u)[| < () (1 + [[ul]), ae. for o € Ugen, Si-
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(F3) There is ¢ € LL® (S, R) such that for every bounded set D C E,
X(UuepF(o,u)) < (®(0) = @(0))* "(c)x(D), a.e.or & € Ugen, i,
where yis the Hausdorff measure of non-compactness on E.

(Hy) For every i € Ny, g; : [07,9;] x E — E such that for every ¢ € [0;, 9], gi(0,.)
map, every bounded set to a relatively compact subset and for every bounded set D, C E,

lim sup ||gi(T2, x) — gi(T1,x)|| = 0.

Th—1T xeD
Moreover, there is h; > 0 with
llgi(o, u)|| < hi||lu||, Yo € T;, and Vu € E.

(Hy) Forany i € Ny, g/ : [07,9;] x E — E is defined such that it maps bounded sets to
relatively compact sets, and there is i > 0 with

lgi (o, u))|| < hj||u|, Vo € T;, and Vu € E.

Hence, Problem (1) has a mild solution assuming that the next inequalities are satisfied.

3hMP(b) M®(b)1-1+2
T(y—20+1)L(25) T(26) ol o g pe +h <1 (42)
and R
2MP(b) 7
1'('(2)5)|g| |L}é¢(%,]R+) <1, (43)

where i = max;cn, {h;, i} }. Moreover, the set of mild solutions is compact in Banach space
Co—n,0,0(S, E).

Proof. Letu € Co_, 0,,(S3, E). Assumptions (F;) and (F,) imply the existence of a measur-
able function f € L1((0,b), E) with f(¢) € F(c,u(c)), a.e. [52]. We define a multi-valued
function R :PCy_ 1 0,w(S,E) = P(Co—qy,0,0(S, E)) (the family of non-empty subsets of
Co—,®,0(S, E)) in the following manner: v € R(u) means that

DY, (@(0) — @(0))0 KO (0, 0))x0 + (Z1 a0 Z2) (@)
+ [ (®(0) — @(8))°IKE®® (0, 8) f(8)w(8) D' (8)d0, o € o,
gi(o,x(0;7)),0 € Tyi € Ny,

=0 Dl (o) — @ (8)) KO 0, 8,))g4(85, x(87))

+(Zs,i %0 Zg ;) (0)

+ [5 (D(0) = @(8))° T K¥P (0, 9) f(9)w(8) P (8)dB, o € i € Ny,

(44)

where f € L'((0,b),E) with f(c) € F(o,u(c)),a.e. Our aim in the following steps is to
show that, by using Lemma 8, the R has a fixed point, and it is clear that this point is a mild
solution for Problem (4).

Step 1. For any u € Co_r, 0,0 (S, E), R(u) is convex. This is, clearly, achieved since the
set of values of F is convex.

Step 2. There exists ng € N such that R(U,,) € Uy, where Uy = {u € Co_y0,0(S,E) -
||”||C277,c1>,w(i‘f£) < np}. To clarify this, assume that there are u,,v,;n € N with v, €
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§R(un),||un|\C%%@/w(g/E) < nand ||1/ln||c27%®/w(g’E) > n. So, according to (44), there are
fu € LY((0,b),E) ;n € Nwith f,(c) € F(c,un(0)),a.e., and

Dy (@(0) — ©(0)) 1K (0,0))x0 + (Z1 *a,0 Z2) (0)
+ JT(@(0) — @(8))° KPP (0, 8) fu (8)w(8) D' (8)d9, o € S,

B gi(o,vn(07)),0 € Tji € Ny, .5
PO = DT (@) - (8)) 1K (0, 8))5:(8, 04(8]) “
+(Zsi xo0 Zg5) ()
+ [5 (@(0) = D(9))° K (0, 8) fu (8)w(8) D' (8)dV, 0 € S0 € Ny
Let o € (0,01]. By (41),
(@(0) = ©(0))* "w(0)||Df, " (@(e) — @(0)° K (0, 0))xo|
M |xol|
= @D -1y (40
Moreover, according to the definition of *¢ ,, we have
(®(0) *<I>(0))2‘7w( N(Z1 *0 Zz)( |
= (®(0) = @(0))* ”II/ ®(0) — @(8))w (@ (P(0) — D(0) — P(8))
— 2d>((2) 2?)(19) - w(8)'(8)(D(9) — D(0))° 'K (8,0)x,d8)|
D)) 26—1
<o) [T =2E RO (9) - 0(0)°
w(8)K®**(8,0)x, @' (8)d8||.
This inequality with (35) leads to
(@(0) = P(0))* Tw(e)[[(Z1 *q>wZz)( )|
25—1
0. 2 ’7/ ‘ ,())/ 25)( ))’)’ |<I>(l9)><
M(P(8) — <I>(0))2‘5 !
(2 5 d9
1 2 o
e / (@ ~ (8)) 2@ ()d0
_ M(@()! T (P(0) —39(0))7 2"+2a1>(0)7-2fs
['(26)I(y - 25) (v —29)
3M(b)
= T(y—20+1)I(28)° (47)
Next, from assumption (F,) and (35), one obtains for almost ¢ € (0,¢],
@K (0,005l < 1 (@(0) - @@ 2
< Ml @(0) - @(0) p(o)
< Ml @(0) - 2(9) (). (48)

This inequality leads to
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(@(0) = B(0)* (o) [ (@(a) — B(8))° 1 [K** (0, 0)fu (0)w(8)]|@/ (9)d)

(®(0) — ®(0))>~7 /0‘7 |(®(0) — 49(19))57” ‘|w(‘7)K5'<D’w(fT,l9)fn(l9)Hw(ﬂ)cb’(ﬂ)dlg
n 2— -
%‘ /0 (@(0) — ©(9))* w(9) @' (8) p(8)d0]
17426 1o
M(1+n1)(<12>((5};) T+ /0 w(9)®' (8)p(8)dd
M(1+ n)®(b) 712
F(25) Hgol‘Lzll;@(%,RJr).

<

(49)
For o € (0, 9;], the assumption (/) leads to
[[on ()] < hn.

(50)
Next, let o € (9;,0741]. Set

L(e) = ||D} 7P (@(0) — (8,)) K (0, 8:)) g3 (8, 0(8]))|
It is yielded from (41) that
w(0) ((®(0) — ©(8;))> TL(0)

M]Jxo]|
S@onr( 1) Gh

Moreover, from the definition of x4, (35) and (H;), we get,

I(2(0) = () 70(0) (Zs, 0,0 Z5) @)
2— I .
< o [ @) 2000 - @) 2 @(0) - @(8))

||w(t9)K<I>,5,W(l9I ﬂi)g;‘(ﬂi,x(ﬂi—)m@/(ﬂ)dﬂ
nMh ®(b)>7 o
< Tt -2 Js
1-9425 1o
< % ./19‘ (®(0) — 20(8;) — ®(8))" 210/ (8)do
3nMhd(b)
T T20)r(y-20+1)

|, (2(0) —20(%) — D(8)7 27 (@(9) — (8;))* @' (8)d8

(52)
Next, by arguing as in (49), one has

[(@(0) = @(8:)* "w(o) /:(fb(ff) = @(8))°|[K*P (0, 8) fa (8)w(8)] | (8)d9

M(1 4 n)®(b)1-7+2
T(20) l1ellgo o ey

(53)
Relations (46), (47) and (49)—(53) give us

n < |[oa|
M]|xol| 3(14+nh)M®(b)  M(1+n)d(b)1-7+2

S 26— O)(y—1) " T(y—26+Dr(25) " 5T(20)
+ hn.

||(P| |LL;‘D(£‘;‘,R+)
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Dividing both sides of this inequality and then letting n — oo yields

3hM®(b) M®(b)1-7+2

e [(y—25+1)I'(29) T'(20) ||¢||L},;¢’(%,R+) +h,

but this inequality contradicts (42).

Step 2. The graph of R is closed on Uy,. Let v, € R(uy,);n € N, with u,eUy,, uy — u
and v, — v. Then, there are f, € L'((0,b),E);n € N with f,(c) € F(o,uu(0)),ae.
such that (45) is fulfilled. From (49), (f,;) is uniformly bounded, and hence, it has a weakly
convergent subsequence. We denote it, again, by (f,) to a function f in L'((0,b), E).
From Mazur’s lemma, there exists a subsequence of (f,), (z,), which converges almost
everywhere to f. For any n € N, let

Dy, " (@(0) — @(0))7IKIP(0,0))x0 + (Z1 a0 Z2) (0)

+ Jo (@(0) = @(8))°LKO® (7, 8)zy (8)w(9) D' (8)dd, 0 € o,
gi(0,on(0;)),0 € Tji € Ny,

Dly TP (@(0) — ©(8;))° KPP (0, 9;))1(85, 0 (97))

+(Zsi *ow Zg) (0)

+ [5,(P(0) = @(9))° T KYPV (0, 8)zn (9)w(9) P (8)dD, 0 € i € Ny

Obviously, (v},) is a subsequence of (v, ) and converges to the function

Dy, (@(0) — @(0)) KO (0,0))x0 + (Z1 #a0 Z2) (0)

+ [ (@(0) = @(8))°LKO®® (7, 8) £ (9)w(8) D' (8)dD, 0 € T,

. Qi(o,v(07)), 0 € T;i € Ny,

Pl = DR (o) — (8y)) KOV (0, 8,)g,(85, 08 )

+(Z5,i *O,w Zg,i)(g)

+ [5 (@(0) = D(9))° K (0, 8) f(9)w(9) P (9)dD, 0 € Vi € Ny

Then, v* = v; moreover, the upper semi-continuity of F(c,.) implies f(c) € F(co,u(0)), a.e.,
and so, v € R(u).
Step 3. Let £ = R(Uy, ). For every k € Ny, and every i € Ny, let
£, = {2 € C(SK E) 1 2(0) = (D(0) — D(8))* Tw(0)o(0),0 € Sy,
z(8) = lim z(0),v € £},
(7—>l9k+

and
£7, =z € C(T,,E) : 2(0) = v(0),0 € T;,2(0;) = z(0}"), v € £}.
In this step, our aim is to show that the sets £5, and £7 are equicontinuous in the Banach
spaces C(Sy, E) and C(T;, E).
Case 1. Suppose that z € £;5;. Then, there is v € R(Uy,) with

o= 9

According to the definition of i, there exists u € Uy, and f(c) € L1((0,b), E) with f(c) €
F(o,u(0)),a.e., such that

(0) = 4 Doy ((@(0) = @(0))* KA (0,0))x + (Z1 500 Z2) (7)
+ [ (D(0) = @(8))°IKO® (7, 8) £ (9)w(8) D' (8)dD, 0 € T,
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Let T, » € Spand 1 < . We have

A1 = [[(@(12) — ©(0)2 Tw(12) Dy, (@(0r) — @(0)) T IKY(0,0) ) x0(12)
— (@(11) — ©(0)> "w(w) Dy, I (@(0) — ©(0))° K (0, 0))x0 (71|
< [(@(12) — ©(0)277 — (®(1y) — D(0))27|x
llw(m2) DY, (@(0) — @(0)° K (0, 0))x0(12) |
+(@(11) — ©(0))*7|[aw(2) Df ;I (@(0) — @(0))P K (0,0))x0(12)
—w(m) D, (@(0) — ©(0))°TIKE (0, 0))x0 (71|
= A1 + App.

Due to the continuity of ® and (41), limg, ¢y A1 = 0. Moreover, using (35), we obtain

lim (®(c) — @(0))* w(e)| K> (e, 0)u|

c—0
_ 2—y+6
< 1im M®(0) = PO lul] _
c—0 r(25)
Then, by Definition 3,

Dhe" M (@(0) — @(0)) K (01,0)x0(0)
—7+1,9, -
= Dy, P(@(0) — @(0)° K (01,0))x0(0).
Therefore, by (38),

lim A12
T—1

= lim ||w()D}, " (@(0) — (0))° 1KY (0,0))x0 (1)

—w(n)Dy, (@ () — @(0)° KO (0, 0))x0 ()|
. 1 ? e

< Jim po sl [ (@(m) — (@)1

< (@) ~ 0(0)° (@)K (8,0))x)do

- /OT]<<<I><T1> —(e)) !

((@(19) ®(0))°" (19)K§’q)’w(l9 0))x0)dd||
q’( ) ‘5 2M||x H -
+T£—>Tl F( 5 . / W -

— ((®(n) - q>(19))W " '@ (8)do
=0.
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Next, from (47), we obtain

Ay = [|(®(12) — ©(0))* "w(2) (Z1 %00 Z2) (T2)
—(@(1) — @(0))* "w(n)((Z1 *o0 Zz)(Tl)H
_ —y [ (®(m2) —20(0) — @(8))T !
= [[(@(r) — @()* 7 [ S
w(8)®' (8)(P(8) — ®(0))° 1K (8,0)x,d0
o [0 (D(1) —20(0) — ()21
—(@(m) — () [T S
w(9)®'(9)(P(8) — (0 ))‘5‘1I<q"“"(19 0)xldﬂll

X

X

@(19))7—2(5—1
7 26)
w(8)@' (8)(D(8) — <1><o>>5 TR (8,0)x,d8]|
T (@(1) —20(0) — @(9))T !

<||(® >

X

+[(®(2) - @(0))*7

0 I'(7y —26) *
w ()P (8)(D(8) — ®(0))° KL (9,0)x,d8

7 o) — _ —26—1
—(®(1) —d>(0))277/0 (®(z) 21?((3)_ 2:513(19))7 X
w(8)' (8)(D(9) — D(0))° 'K (8,0)x,d8)|

7 _ _ —25—-1

+ll@(m) oo [* AW =ZROZLON
w(8)D' (9)(D(8) — @(0))°1K®O(8,0)x,d8

T _ _ —20—1
- (@(n) - oo [" (2RO Z SO,

w ()P (8)(P(9) — @(0))°KP*(9,0)x1d9)|
= Aoy + Ay + Ags.

Relation (35) implies that

lim A21

T—T

_ M®(0) T |
= " T(y —26)T(20)
=0.

et /TZ (P(12) —20(0) — @(8))" >~ 19/ (8)d9

Again, by (35), one has
lim A22
T—1T
_ M) Ty |
= TT(y—20)T(29)

lim [|(®(12) ~ @(0)) [ [(@(r) - 20(0) - B(8))7 2!

— q>(r2) —20(0) — ®(8))" "X 1@ (8)do
=0,
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and

Next,

T

(@ () = 2(0) () [” (@(12) — @(8))° K (1, 0)f(6)u0(0) ()0
~(@(n) = 2(0)* Tu(m) [ (@(n) @)K (1, 0)f(0)w(0)® (6)ds])

(@(x2) ~ B(8))° K (13, 8)F(9)w(&) ' (8)d8)|
£ 1[(@(m) = 2(0) Tu(w) [ (@(r) = @(0) K (1, ) F(O)w(@) (9)d0

T

—(®(11) — ®(0))* Tw(r) /O (®(12) — @(8))° T LKO® (15, 9) f(9)w ()P (8)dV]|

[ @(1) — @) w(wm) [ (@(n) ~ D(0) K (1, 0)f()uw(®)@ (9)d0

T

—(®(n) - @(0))2*710(11)/0 (®(11) — (8))° KPP (10, 8) f (9)w () D' (8)dd
= Az + Dy + Asz + Asg.

Note that assumption (F) leads to

f()]] < @(o)(1+ng),ae.

Then, relations (35) and (50) tell us

|[w(T2)KO®® (1, 8) £ (8)w ()]

< M1+ 1) (2(12) — @(9))°p(B)w(9)
= T(20)

_ M(1+ p)®(b)°g(8)w(8)
= T(20)

a.eford € (0, 1.

From (51), we have

lim A
T—T 51

< lim [[(@(r2) — #(0))* w(w)

T T

= / jz(@(rz) — ()’ KPP (13, 9) f(9)w () D' (9)d|

= Jim @(6)7 [ 1((@(x) ~ @(0)" | o(m) K, 0)£(0)u(@)] | (0)d0

n 0 E
< MOLIIOOL i [ (@(r) — 0(0))" T g(0)u(0) (0)d0

=0.



Fractal Fract. 2024, 8, 289 24 of 32

Next, using (51) and the continuity of @, it follows that

lim Agz
T—1T

< lim [(@(12) — D(0))>"7 — ((1y) — D(0))> 7| x

T—T

7 (@ () — @(0)) () K0 (2, 8) £ (0)0(0)]| ' ()0
n )
< MOPOE tim |(@(m) - 9(0)* 7 - (@(n) - @(0))2 7|
[ (@)~ @(0)" 1 p(@)u(@)@ (9)d8
=0.

For As3, we have

lim A33
To—T

< Jim (@) - @(0)> " [ [((@(2) ~ @(9)" " - (@(x) - @(6)) |
() KSR (13, 8) f(B)w(8) || (8)d0

_ ML+ m)@(t)’
T(20)

Jim [M[(@(m) - D) 19'(8) - () — B(#)° ' (8)p(#)w(@)d0
=0.

Finally, due to (36) and (51), it yields

lim A34
T—1T

< lim [1(@(n) ~ ®(0)> w(wm) [ (®(n) - ©(8) K (x5, 8) f(8)w(6)®(6)d0

— (®(1y) — @(0))> Tw(1y) /OTl((QD(ﬁ) — ®(8))° KPP (11, 9) f(9)w(8) D' (8)dD||

< B> lim [ (®(1) - () x

T—1 J0

[|w(12)K®% (12, 9) — ()K" (1, 8)|| | [w(8) £ (8)]| ¥ (9)dB

T

<007 [T ((@(n) - @(8) " x

Jim [Jw () K¥P% (1, 8) — (1)K (13, 8) | |w(8) 9 (8) @' (9)dB
2 1

T

<@b)*2 [T ((@(n) - @(8) ! x

lim ||a0(2) K% (12, 8) — w(1y)K* (11, 8) [a0(8) p(8) @' (8) D
T—T
= 0,

independently of v.
Suppose that z € E‘f;i € Nj. Then, there is v € R(U;,) C Uy, with
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Case 2. Let 1y, o € T; and 7y < Tp. Since Uy, then due to (Hj),

Tllg}l |z(72) — z(71)]]

= lim [|gi(m,v(c;")) = gi(m,v(0; )| =0,

Th—T
independently of v. If 7y = 0;, then

Tllg% ||z(72) — z(71)]]

= lim lim ||gi(m,v(0; )) — gi(c,v(0;))|| =0,

Tz*)T] (%5 ]

independently of v.

Case 3. Suppose that z € £‘§i;i € N;. Following the same arguments used in case 1,
one can show that £ §;i € Nj is equicontinuous.

As a result of the above discussion, the proof of the results in this step is complete.

Step 4. Let U = N3_,Uy, where U1 = R(Uy,) and U411 = RN(Cp),n € Ny. Then,
(Un) is a decreasing sequence of not empty, bounded, convex subsets. In this step, our
aim is to show that U is not empty or compact. Using the Cantor intersection property, it
remains to be shown that

lim xc, o35 {0n:n €N} =0, (54)

n—o0

where XCoy00(SE) 18 the measure of noncompactness on Cp_,,¢, (S, E), which is defined
in the introduction section.

Assume n € N is fixed and € > 0 is arbitrarily small. By Lemma 5 in [54], one can find
a sequence (v;),>1 in U, with

XCZ—'y,(b,w(%rE) (Un) S ZXCZ—%QZU(SrE) (D) + & (55)

where D = {v, : r > 1}. From Step 3, it yields

XPCy 00(3,E) (D)

—max{maxmaxxg{v (o) : 0" ED(\ ,maxmax xg{v"(c) : v* € D1 }},
keNy 7€, K ieN; geT; %

where xf is the measure of non-compactnes in E,

D, = {v* € C(S,E) : h*(0) = (®(0) — D(8))> Tw(o)v(o),0 € 3y,
0" (%) = lirg+ v*(0),h € D},

k

and
Dy, = {v" € C(T, E) : v"(0) = v(0),0 € T;,v"(0;) = v(c;"),v € D}.

Since, forany v € D, and any i € Ny, v(0) = gi(¢,v(0;)),V ¢ € T}, and since g;(c, ) maps
bounded sets into relatively compact sets, it follows that maxien, max, .z, {0*(0) : v €
D‘Ti} = 0, and hence inequality (55) becomes

XCZ "ytbw(g E)(UH)
< ZmaxmaxXE{( (o) = ®(0) > "w(o)o, 7 > 1} +e. (56)

keNy reSy
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Let o € . Since forany r € N, v, € U,, = R( U,,_1), there are u, € U,,_1 such that
vr(0r) = Db (@(0) — @(0)) TR (0, 0)) 00 + (Z1 %0 Z2) (0)
(o
+ / (@(0) — D(8)) LK (0, 8)w(8)f,(8)D' (9)d8,
0

where fr € LY((0,b),E) with f,(¢) € F(c,u,(0)),a.e. In view of (F3), it holds for a.e.

v € (0,0]
0(8) = w(O)x{fi(9) : k > 1} < w(9)xe(UkenF (8, ur(9)))
< w(8)(D(8) — (0))* T(®)xe{us(9) : v € N}
= ¢(B)xe{(D(8) — P(0))* Tw(®)uy(8) : r € N}
< 6(B)XCy . 00(3,E) (On—1)- (57)
Set

— X[ (@(@) ~ @(8)) K (0, 9)uw(®) () (9)d8 : 1 € N}do.

Therefore, from (35), (56) and (57) and the properties of the measure of noncompactness,
we obtain

(o) - <I>(0))2_VZU(U)L(U)

=@(0) - @(0 2”2(({/00(@(0) = ®(8))°H[w(e)K* (0, 9)||o(8)®' (8)d9
Mo

g) /0 (®(0) — @(8)* ' o(8)®'(8)dd
b
(

< TR K sau(on) Oan): [ @ @a(0)w(0)dd

(
I'(
Mq)( )l Y+26
= T 0
(

Mq) b 1—y+20
- I‘()Z(S)|g||L}lfD(%,R+)XC2'y,cb,w(SrE)(U”—l)’ (58)

Let o € Sy, k € Nj. As above, forany r € N,
vr(0) = Dz,,;;’“'q"“’«@(a) — D (8;)) T KO (0, 0;))gi(8;, 04 (8))
+ (Z51 *d> w )((7)
+ [[(@(0) - @(8) 7K (0, 8)f, (8)w(@) (0)de,

where fr € L1((0,b), E) with f,(c) € F(o,u,(c)), a.e. Because both g;(,.) and g¥ (¢, .) map
bounded sets to relatively compact sets, it yields

J(@(0) — B(8))* Tw(@)o, : r > 1)
— {(®(0) - ()2 Tw(0)Y(0) : 7 > 1},

= x({ a(cp(a) — &)’ 1w(a) KO (0, 9)w(8) f,(8) D (9)d0 : r € N}d9.
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As in (58)

x{(@(0) = @(8))* Tw(o)vr 17 > 1}

MD(b 1—7+26
< M lellgo s e i) Gat): G9)

From (56), (58) and (59), one has

XCyy(3,E) (On)

ZM(b(b)lf’erZ(s
= F(Zé) ||g||L%‘fb(g«lRJr)XCQ,%q),w(‘\\S,E) (6,1,1) + €.

Then,

XC2,%<I>,w (%,E) (On)

2MP(b 1—7+26
< el )" Xcs g0 (B) €

Step 5. By applying the Cantor intersection property, the set U is not empty or compact.
Then, the multi-valued function R : U — Py (U) satisfies the assumptions in Lemma 8,
and hence, the fixed-points set of the function is not empty. Moreover, Using Lemma 9, the
set of fixed points of R is compact in Co_, ¢, (3, E). O

4. Discussion and Conclusions

There are many definitions for the fractional differential operator, and some of them
include others. Therefore, it is useful to consider fractional differential equations and frac-
tional differential inclusions that contain a fractional differential operator which includes
a large number of other fractional differential operators. Since the w-weighted ®-Hilfer

fractional derivative, Dg/’;/q)’w, interpolates the fractional derivative differential operators
that were presented by Riemann-Liouville, Caputo, Hadamard, $-Riemann-Liouville,
®-Caputo, Katugampola, Hilfer-Hadamard, Hilfer, Hilfer-Katugampola and ®- Hilfer
derivatives, it contains a large number of fractional differential operators. In this work,
the representation for a mild solution to a semilinear differential inclusion involving the
w-weighted ®-Hilfer fractional derivative of order u € (1,2) and of type v € (0,1) is
derived in the presence of non-instantaneous impulses, and then the non-emptiness and
compactness of the set of mild solution for the considered problem is proved in infinite di-
mensional Banach spaces. The nonlinear part of the considered problem is the infinitesimal
generator of the strongly continuous cosine family, and the nonlinear part is a multi-valued
function. Our results are novel and interesting because no researchers have previously
studied such semilinear differential inclusion. Moreover, since the fractional differential
operator Dg”;”q)’w interpolates many other known fractional differential operators, our
objective problem includes many problems which are considered in many cited papers in
the introduction section. In addition, our technique can be used to generalize many cited
papers in the introduction to the case when the considered fractional differential operator is
replaced by Dg,;;,@,w and the dimension of the space is infinite, and this can be considered
as a suggestion for future research work as a result of this paper.

5. Example

Example 1. Assume that E is a Hilbert space, D is a non-empty convex compact subset of E, b =
3,3=[03,m=1,8=0,0=16=20=3 pu=3 v=3 Thnv2—p) =3,
Y=p+2v—puv = %andZ—'y = %, w: ¥ —|0,00, ®:Y — Risa strictly increasing
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continuously differentiable function with ®'(8) # 0, and for any ¢ € 3, x1, x, are two fixed points
in E, and A = sup{||x|| : x € Q}.The definition of an operator A : D(A) C E — E is given by:

Av=1", (60)
with
D(A) = {v € L*[0, 7] : v,y € L?[0,1],0(0) = v(7) = 0}.

Note that the representation of the operator A is

[e9)

Ax =) —K? < x, x> xp,x € D(A),
k=1

where x¢(y) = V2 sin ky,k = 1,2, ..., is the orthonormal set of eigenfunctions of A. In
addition, A is the infinitesimal generator of a strongly continuous cosine family C(c),cr
which is defined by

C(o)(x) =) cosko < x, x> xp,x €E,
k=1
and the corresponding sine family S(c),cr on E is given by

(o) : k
S(o)(x) =), su;( T <x, x> xx €L
k=1

Suppose F : & x E — Py (E) is a multivalued function given by:

E(@(0) — (0))3||u]| Q, o € S = [0,1],
Flo,u)={ ¢Q,0eT=(1,2], (61)
E(@(0) — (2))3||u|| Q, 0 € Sy = (2,3],

where ¢ > 0. Clearly, for any u € E, F(., u) is measurable and, for any y € F(o,u),

AZ(@(0) — @(0))3[u]|, o € B,
C Ao E Tl,
AZ(@(0) — @(2))

AG(P(0) — @(0))

[yl

[lu]|, o€ 3,

[SSE W=

(1 +[[u]]), o € S0,

S C/\/UGTL
AZ(@(0) — @(2))3 (1+ [[ul]), o € S,
AZ(@(b) — @(0))3 (1 +ul]), o € S0,
S CAIUGTl/

AE(@(b) = @(0))3 (L+ |ull), o € 3.
So, assumption (F,) is verified with
1
¢(0) = AG(P(b) — ®(0))3, Vo € Ukeqo,1} k- (62)
Moreover, let uj, u; € E and if y; € F(o,u7), then

E(@(0) — @(0))3||u1| e1, o € [0,1],
y1 = crq,0€ (1, 2], 1
E(@(0) — (2))3||ul| 01, o € (2,3],
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where e1, k1, 01 are elements in (). Set
E(®(0) = (0))5w(0) ||z e1, o € [0,1],
ya=1 ¢x,o€e (1,2, 1
$(P(0) = @(2))3w(o)]|[ul] 01.0 € (2,3].
Due to the definition of F, it yields y, € F(c,uy) and
A (@() = @(0)) 3w (0)||uz — |, o € [0,1],
H]/Z—ylH: 0106(1/ 2]/ .
AG(@(0) — @(2))3w(0)|Juz — ], o € (2,3].
Therefore,
h(F(o,u2), F(o,u1) < AZ(®(0) — D(80)} [z =, Yo € Sk = 0,1 (63)

It follows from (63) that F(c,.) is upper semicontinuous for every o € Sy, k = 0,1,
and for almost 0 € S, k=0,1,

xe(F(o,u) :u € D))
< (D(0) — D(8))* "g(0)xe{(u(0) : z € D}.

Then, (F3) holds with

{(0) = Ag, foralmost o € Sy, k=0, 1. (64)
{(0) =AENT €S
Next, let g7 : [ 2] xE—E,g;:[1,2] x E— E as follows:
81(0,x) = ¢Y(x),81(0,x) = {Y* (x), (65)

where Y, Y* : E — Q) are the projection operator on Q). Notice that |1 (¢, x)|| < A¢||x|| and
llg1(o, x)|| < E||Y*]] ||x||,V(c,x) € [1,2] x E. So, conditions (H;) and (H;) are satisfied,
where 1 = A¢ and I} = ||Y*|].

As a result of Theorem (1), we have the following problem:

él<I:'w

Dy'Y x(0) € Ax(0) + F(o,x(0)), ae., 0 € S1,i € {0,1},

x(v*) gi(oi, x(0;)),i=1,

x(0) = gi(o,x(0;)),0 € (03, 0], 0 € Ty,

lim,_,g+ w(0)] ’0743 x(0) = xg, lim,_,o+ %%(w(a)l&?’qwx(a)) =x,
1im0%i,(w(a)1§,;”x( 7)) = gi(8;,x(9,)),i=1

lim, - gtz 45 (@(0) 15, " x(0)) = g7 (8, x(9;)),i = 1

which has a mild solution where A, F , g and g* are as in (60), (61) and (65) given that

3hMP(3) MP(3)1-71+2
T(y =25+ 1)T(20) ras) Pl emrn T <1 (66)
and e
2MO(3)17
s llzees <1 (©7)

where M = sup, 4 ||C(0)||,§ = 5§ = %, ¢ and ¢ are as in (62) and (64). By choosing

sufficiently small ®, A, p and ¢, inequalities (66) and (67) are satisfied.
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