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Abstract: Determining the predictor variables that have a non-linear effect as well as those that have
a linear effect on the response variable is crucial in additive semi-parametric models. This issue has
been extensively investigated by many researchers in the area of semi-parametric linear additive
models, and various separation methods are proposed by the authors. A popular issue that might
affect both estimation and separation results is the existence of outliers among the observations. In
order to address this lack of sensitivity towards extreme observations, robust estimating approaches
are frequently applied. We propose a robust method for simultaneously identifying the linear and
nonlinear components of a semi-parametric linear additive model, even in the presence of outliers
in the observations. Additionally, this model is sparse in that it may be used to determine which
explanatory variables are ineffective by giving accurate zero estimates for their coefficients. To
assess the effectiveness of the proposed method, a comprehensive Monte Carlo simulation study
is conducted along with an application to investigate the dataset, which includes Boston property
prices dataset.

Keywords: adaptive LASSO; group LASSO; outlier; penalized approaches; robust methods

MSC: 62G05; 62J07; 62J05

1. Introduction

Semi-parametric linear additive (SLA) models have both the flexibility of non-parametric
regression models as well as the simplicity of linear regression models. These applicable
models are broadly used as a popular mechanism for data analysis in many fields. In SLA
models, an acceptable relationship of the mean response variable is assumed to connect
with some explanatory variables linearly, while it relates to other explanatory variables
non-linearly in an additive form.

Suppose y = (y1, . . . , yn)T is the vector of the response variable and X = (x1, . . . , xn)T

is the n × p design matrix with p covariates and n observations xT
i = (xi1, xi2, . . . , xip).

Without loss of generality, assume that xi is partitioned into xT
i(1) = (xi1, xi2, . . . , xiq) and

xT
i(2) = (xi(q+1), . . . , xip) for some q ∈ {1, . . . , p − 1}. Then, the semi-parametric linear

additive model (see, e.g., [1]) is defined as

yi = xT
i(1)β +

p

∑
j=q+1

f j(xij) + ϵi, i = 1, . . . , n, (1)
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where β = (β1, β2, . . . , βq)T is a q-dimensional vector of unknown parameters, fq+1, . . . , fp
are unknown smooth functions, and ϵi’s are random error terms, which are presumed to
be independent of (xi). It is assumed that the response and the covariates are centered,
and thus the intercept term is omitted without loss of generality.

There are several approaches for the estimation of non-parametric additive models, in-
cluding the back-fitting technique (see [2]), simultaneous estimation and optimization [3–6],
mixed model approach [1,7,8], and Boosting approach [9,10]. Ref. [5] has presented a re-
view of some of these methods, up to 2006, and [11] has performed several comparisons
between these techniques. The problem of variable selection and penalized estimation in
additive models has been investigated by many researchers [12–22].

An essential concern in practice is to identify the linear and nonlinear parts of the SLA
model, i.e., whether the explanatory variables can be considered as the linear or nonlinear
parts of the model. Ref. [23] studied an additive regression model as the standard model by
assuming that each of the functions is decomposed into linear and nonlinear parts. Their
proposed approach of estimation was a penalized regression scheme based on a group
mini-max concave penalty. Ref. [24] surveyed the additive model and tried to isolate the
linear and nonlinear predictors by using two group penalty functions, one for enforcing the
sparsity and the other one for enforcing linearity to the components. Ref. [25] introduced a
similar model to that of [23], while they imposed the LASSO and group LASSO penalty
functions to the coefficients of the linear parts and the coefficients of the spline estimator
of the nonlinear part, respectively. Ref. [26] introduced a similar additive model and they
enforced linearity to the spline approximation of the functions using the group penalty
function of the second derivative of the B-splines. There are also more contributions on the
problem of structure recognition and separation of nonlinear and linear parts of the SLA
model [27,28]. Some details of the literature review for the proposed separation approaches
are considered in Section 2.

The presence of outliers, which are unusual observations that fail to follow the scheme
of the bulk of the observations, is a frequent problem in the model fitting of datasets.
In such situations, robust regression approaches are used to solve the undesirable effects
of the outliers. Some of the most popular robust regression approaches are M-estimation,
S-estimation, the least median of squares, and the least trimmed squares; see [29] for more
details. Robust methods are well-known statistical techniques to overcome the complication
of outliers. The least trimmed squares (LTS), suggested by Rousseeuw and Leroy [30],
is one of the most popular robust regression techniques, as it minimizes the sum of h
smallest squared residuals instead of the whole sum of them, for a specified positive integer
trimming parameter h ≤ n. The LTS estimator is efficient in reaching the maximum possible
breakdown point (50%) [31]. There are several works that have studied robust estimations
for the semi-parametric and non-parametric linear models (see, e.g., [32–34]).

In this paper, we consider the effect of outliers on simultaneous separation and estima-
tion methods in SLA models, and we survey the LTS version of the methods by introducing
the LTS version of the separation and sparse estimation approach suggested by [24]. The pa-
per is organized as follows. Section 2 presents a literature review of some simultaneous
separation and estimation approaches. Section 3 contains the general LTS version of the
approaches presented in Section 2, and then we try to apply the LTS version of the pro-
posed method by [24] in our implementation. Then, the finite sample breakdown point
of the proposed model is established with the introduction of a computational algorithm.
The comprehensive simulation studies are conducted in Section 4, in which many different
criteria are evaluated in six different competitive models. The proposed approach is then
applied in the Boston housing prices dataset, along with the prediction achievement of
different methods. At the same time, we try to reveal the effect of the outliers using the
different partial residual plots of all competitive schemes.
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2. Literature Review of the Separation Methods

In this section, we review the available penalized models that separate the nonlinear
and linear parts of the semi-parametric regression model in the literature.

2.1. Group Penalization of the Spline Coefficients

Ref. [23] studied the following additive regression model as the guideline model:

y =
p

∑
j=1

f j(xj) + ϵ, (2)

and they assumed that each of the functions f j has a linear and a nonlinear part as follows:

f j(x) = β0 + β jx +
Kn

∑
k=1

θjkBjk(x),

where Bj1, · · · , BjKn are basis functions. They suggested estimation of the model parameters
by minimizing the following penalized objective function:

L(β, θ) =
1

2n

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij −
p

∑
j=1

Kn

∑
k=1

θjkBjk(xij)

)2

+
p

∑
j=1

ργ(||θjn||Aj;
√

Kλ), (3)

where ρ(·) is a penalty function depending on the penalty parameter λ ≥ 0 and a regu-
larization parameter γ. In objective function (3), Lian et al. [23] considered the mini-max
concave penalty function for their model, as follows:

ργ(t;λ) = λ
∫ t

0
(1 − x/(γλ))+dx, t ≥ 0.

Under some conditions, they proved the consistency of the proposed estimators and studied
the correctness of the separation performed by their estimators.

2.2. Affine Group Penalization of the Spline Coefficients

Ref. [24] considered model (2), while they relaxed the assumption that each of the
functions f j has a linear and a nonlinear part; instead, they made an effort to separate the
linear and nonlinear covariates by the following affine group penalized model:

L(θ) =
1
2

n

∑
i=1

(
yi − θ0 −

p

∑
j=1

Kn

∑
k=1

θjkBjk(xij)

)2

+ nλ1

p

∑
j=1

w1j||θj||Aj + nλ2

p

∑
j=1

w2j||θj||Dj , (4)

where λ1 ≥ 0 and λ2 ≥ 0 are penalty parameters, w1js and w2js are the proper weights,
which are appropriately chosen in order to reach a suitable consistency in model selection,
and for any Kn × Kn matrix B, ||θj||B = (θT

j Bθj)
1/2. Ref. [24] suggest the use of w1j =

1/||bj||Aj and w2j = 1/||bj||Bj , for an initial estimate bj of θj, j = 1, . . . , p. To enforce
sparsity and linearity to the functions f1, . . . , fp, they assumed that ||θj||Aj = 0, if and
only if ∑k θjkBjk(x) ≡ 0 and ||θj||Dj = 0, if and only if ∑k θjkBjk(x) is a linear function of x.
Letting

Aj =

{∫ 1

0
Bjk(x)Bjk′(x)dx

}Kn

k,k′=1
and Dj =

{∫ 1

0
B′′

jk(x)B′′
jk′(x)dx

}Kn

k,k′=1

results in ||θj||Aj = ||∑k θjkBjk|| and ||θj||Dj = ||∑k θjkB′′
jk||. They proved that the proposed

estimators are asymptotically normal.
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2.3. LASSO and Group LASSO Penalization of the Linear and Nonlinear Coefficients

Ref. [25] studied the following scheme as a baseline model:

y = Zα +
p

∑
j=1

f j(xj) + ϵ, (5)

in which they assumed that there are some covariates Z that we need to consider in the
linear part. Similar to [23], they assumed that

f j(x) = β0 + β jx +
Kn

∑
k=1

θjkBjk(x)

Then, they enforced the LASSO and group LASSO penalty functions to the coefficients of
the linear parts and the coefficients of the spline estimator of the nonlinear part, respectively,
as follows:

L(β, θ) =
n

∑
i=1

(
yi − β0 − Ziα −

p

∑
j=1

β jxij −
p

∑
j=1

Kn

∑
k=1

θjkBjk(xij)

)2

+ λ1||α||1

+ λ2||β||1 + λ3

p

∑
j=1

||θj|| (6)

2.4. Group Penalization of the Second Derivative of the B-Splines

Ref. [26] considered (2) as their baseline model and imposed linearity to the spline
approximation of the functions f1, . . . , fp by minimization of the following penalized
objective function, which uses the group penalty function of the second derivative of the
B-splines:

L(θ) =
n

∑
i=1

q

∑
ℓ=1

ρτℓ

(
yi − θ0ℓ −

p

∑
j=1

Kn

∑
k=1

θjkBjk(xij)

)
+ nq

p

∑
j=1

Pλ(||B′′
j ||), (7)

where ρτℓ(·) is the quantile regression loss function.

3. Robust Penalized Estimation Methods

All of the penalized loss functions (3), (4), (6), and (7) can be written in the following
general form:

Lm(η) =
n

∑
i=1

Lim(yi, η) + n
p

∑
j=1

Pjm(ηj), m = 1, . . . , 4, (8)

where Lim is the loss function of the ith observation, and Pjm is the penalty function of the
jth parameter, i = 1, . . . , n, j = 1, . . . , p in the mth model, m = 1, . . . , 4.

The least trimmed squares (see [35]) penalized loss function associated with the mth
model is then as follows:

Qm(u, η) =
n

∑
i=1

uiLim(yi, η) + h
p

∑
j=1

Pjm(ηj), m = 1, . . . , 4, (9)

where ui is the binary indicator clarifying whether the ith observation is a normal observa-
tion or is an outlier point, such that ∑n

i=1 ui = h, ui ∈ {0, 1}, for i = 1, . . . , n, and h ≤ n is a
starting conjecture for the number of normal observations. Let U be the diagonal matrix
with diagonal elements u = (u1, u2, . . . , un)⊤.
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The resulting robust sparse semi-parametric linear estimator is obtained by the follow-
ing optimization problem:

min
η,u

Qm(u, η)

s.t.
n

∑
i=1

ui = h,

ui ∈ {0, 1}.

(10)

In this work, we only consider the robust version of penalized loss function (4):

Q(u, θ) =
1
2

n

∑
i=1

ui

(
yi − θ0 −

p

∑
j=1

Kn

∑
k=1

θjkBjk(xij)

)2

+ hλ1

p

∑
j=1

w1j||θj||Aj + hλ2

p

∑
j=1

w2j||θj||Dj (11)

Hereafter, we name scheme (4) sparse semi-parametric linear additive (SSLA) and
scheme (11) robust sparse semi-parametric linear additive (RSSLA). We also name the
special case λ2 = 0 of schemes (4) and (11) sparse nonlinear additive (SNLA) and robust
sparse nonlinear additive (RSNLA), respectively, because by letting λ2 = 0, the schemes
change into nonlinear forms. As an alternative competitor for these schemes, the simple
linear LASSO regression is also considered, which is called sparse linear (SL), and its robust
version based on the LTS method is called robust sparse linear (RSL) in this research.

3.1. The Breakdown Point of the RSSLA Model

The RSSLA estimator is obtained as

θ̂RSSLA = argmin
θ

argmin
u∈Eh

Q(u, θ),

where

Eh = {u; ui ∈ {0, 1}, i = 1, 2, . . . , n,
n

∑
i=1

ui = h}.

Conventionally, we consider h = [[n(1 − α)]], where [[a]] denotes the ceiling of a and
α ∈ (0, 1) is the percent of leverage observed points. Indeed 1 − α is a starting guess for the
percent of outlier points. Some researchers propose considering α = 0.75 (see [36] for more
details). Others have proposed considering h = [n/2] + [(p + 1)/2]. The finite-sample
breakdown point (FBP; see, e.g., [29]) is a size or rate for the consistency of a method.
For the complete sample Z, the FBP of an estimator S = S(Z) is given by

BP(S; Z) = min
m

{
m
n

: sup
Z∗

||S(Z∗)||2 = ∞
}

,

where Z∗ is a corrupted sample obtained from Z by replacing m of the complete n observa-
tions by random samples. In the following theorem, the FBP of LTS-SPSRE is established.

Theorem 1. The FBP of θ̂RSSLA estimator is

FBP(θ̂RSSLA; y, X) =
n − h − 1

n
. (12)

Proof. Let (y∗, X∗) be the corrupted sample by replacing the last m ≤ n − h sample points.
Then the number of normal points in (y∗, X∗) is n − m ≥ h. For an arbitrary sample
(y∗, X∗), we can write

min
u∈Eh

Q(u, 0) = min
u∈Eh

y∗⊤Uy∗ ≤ min
u∈Eh

y⊤Uy ≤ hM2
y,

where My = maxi=1,...,n |yi|.
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Let θ be such that hλ1 ∑
p
j=1 w1j||θj||Aj + hλ2 ∑

p
j=1 w2j||θj||Dj ≥ hM2

y + 1; then

min
u∈Eh

Q(u, θ) ≥ hλ1

p

∑
j=1

w1j||θj||Aj + hλ2

p

∑
j=1

w2j||θj||Dj

≥ hM2
y + 1

> min
u∈Eh

Q(u, 0).

Since minu∈Eh Q(u, θ) ≤ minu∈Eh Q(u, 0), we can write

hλ1

p

∑
j=1

w1j||θj||Aj + hλ2

p

∑
j=1

w2j||θj||Dj

∣∣∣∣∣
θ=θ̂RSSLA

≤ hM2
y + 1,

and hence BP(θ̂RSSLA; y, X) ≥ n−h−1
n .

Let Φ be the n × (pKn) matrix of Bjk(xij)s, i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , Kn.
Change the last m = n − h + 1 observations of (y, X) such that the last m observations of
(y, Φ) are changed to (aM, ae), with M > 0 and a > 0, e = (ej1 , . . . , ejp)

T , in which ei is a
vector with 1 as its ith elements and zero elsewhere, and

max(h − m, 0)( max
i=1,...,n

|yi|+ M max
i=1,...,n

||Φi||)2 + hλ1M/p
p

∑
i=1

w1i||eji ||Ai + hM/pλ2

p

∑
i=1

w2i||eji ||Di ≤ a2.

Let P(θ) = hλ1 ∑
p
j=1 w1j||θj||Aj + hλ2 ∑

p
j=1 w2j||θj||Dj and consider the point θM =

a(M/p)e. Now, for the last m sample points, according to (y − ΦθM) = aM − aM = 0, it
can be written that

min
u∈Eh

Q(u, θM) =

{
minu∈Eh−m(y − ΦθM)⊤U(y − ΦθM) + P(θM), h > M
P(θM), otherwise.

Therefore,

min
u∈Eh

Q(u, θM) ≤ max(h − m, 0)( max
i=1,...,n

|yi|+ M max
i=1,...,n

||Φi||)2 + P(θM)

≤ a2. (13)

Also, for the corrupted sample, we can write

min
u∈Eh

Q(u, θ) ≥ (Ma − aθ⊤e)2,

in which at least one of the last m points of the corrupted sample is in the set of the least
possible h residuals. Now, considering θ such that |θ⊤1| ≤ M − 2, it can be seen that

min
u∈Eh

Q(u, θ) ≥ a2(M − θ⊤e)2 > a2, (14)

since θ⊤e ≤ |θ⊤1| ≤ M − 2, which is a contradiction. Thus, we deduce that

|θ̂⊤RSSLA1| > M − 2,

which means that FBP occurs as M tends to infinity, i.e., BP(θ̂RSSLA; y, X) ≤ n−h−1
n , and the

proof completed.

3.2. Computational Penalized LTS Algorithm

To find u∗, we have to look for the minimum of the set Eh overall (n
h) combinations of

the complete set {1, . . . , n}. Thus, for somewhat large values of sample size, achieving the
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optimal value may need too much time and space. To extend the procedure of obtaining
the RSSLA model, an analog of the FAST-LTS algorithm developed by [35] is proposed.

Let uk ∈ Eh be the indicator vector obtained at iteration k and θ̂
(k)
RSSLA be the obtained

argument that minimizes Q(uk, θ) in the kth iteration. Then,

uik+1 =

{
1, e2

ik ∈ {(ek)
2
j:n; j = 1, . . . , h}

0, otherwise,
.

where (ek)
2
1:n ≤ · · · ≤ (ek)

2
n:n are the sorted sample of the squared residuals.

It is obvious that
Q
(
uk+1, θ̂

(k+1)
RSSLA

)
≤ Q

(
uk, θ̂

(k)
RSSLA

)
,

and the algorithm continues until convergence.
To guarantee that the updated solution of the algorithm is as close as possible to the

optimal solution of Q(u, θ̂), the steps of the algorithm are replicated s times with s beginning
indicator vectors u1

0, . . . , us
0. To decrease the computational cost of the algorithmic program,

the methodology proposed by [35] is applied, in which only two iterations of the algorithm
for each iteration are performed, obtaining u1

2, . . . , us
2, keeping a small number, k, of them

with the lowest values of Q(u, θ̂), and the algorithm is continued until convergence occurs.
The latest result is the indicator with the minimum value for the optimization problem.

4. Simulation Study

In this section, we present an extensive simulation study to examine the performance
of the proposed estimators in the presence of the outliers. We consider the simulation
scenarios proposed by [24] to generate clean data. The clean data are generated from
the model

yclean
i =

p

∑
j=1

f j(Xij) + ϵi,

where f1(x) = 5 sin(2πx), f2(x) = 10x(l − x), f3(x) = 3x, f4(x) = 2x, f5(x) = −2x and
f j(x) = 0,, for j = 6, . . . , p. The errors ϵi are generated from a normal distribution with
zero mean and variance σ2. The covariates Xij are generated from a multivariate normal
distribution with zero mean vector and the covariances Cov(Xij1 , Xij2) = 0.5|j1−j2| and then
the cumulative distribution function of the standard normal distribution is applied to them
to transform their range into [0, 1].

The simulation study is performed for N = 100 iterations of the data generation and
estimation. For each iteration of the simulation study, we generate n = 100, 200 clean train
datasets, with p = 50, 100, 200 covariates, and σ = 0.2, 0.5. The clean train data points are
denoted by

(Xtr
i1, . . . , Xtr

ip, ytr−clean
i ), i = 1, . . . , n.

We further generate nts = n/2 test datasets, denoted by

(Xts
i1, . . . , Xts

ip, yts−clean
i ), i = 1, . . . , nts.

Then, we contaminate the response values ytr−clean
i and yts−clean

i as follows. From n (nts)
samples, we choose 20% randomly, and we denote this subset by O. Then, for any i∗ ∈ O,
we generate U1i∗ and U2i∗ from a uniform distribution over [0, 1] independently. Next, we
let

youtlier
i∗ = Yclean

i∗ +

[
2I(U1i∗ > 0.5)− 1

]
(2 + U2i∗)Sclean

Y , for i∗ ∈ O,

where Sclean
Y is the sample standard deviation of clean responses. For a Core i5 10210U

CPU (1.60 GHz) with 8 GB RAM and R version 4.2.1 (64 Bit), the mean computation time
for SSLAM is 16.84 min (with optimization of BIC for choosing penalization parameters),
for SLM it is 0.26 s, for SGAM it is 2.41 min, for RSSLAM it is 53.29 s (without optimization
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of BIC for choosing penalization parameters), for RSLM it is 0.23 s, and for RSGAM it is 4.54
min. Note that the codes of the proposed models are developed in R, while for the SLM
and RSLM models, the R package glmnet is used, which implements the main procedures
in the C programming language.

Several criteria are considered in this simulation study to examine the performance of
the estimators. The mean integrated square error (MISE) for f j is defined as

MISE( f j) =
∫ 1

0
( f̂ j(x)− f j(x))2 dx, j = 1, . . . , p.

For the purpose of testing the prediction efficiency of the proposed methods in the
presence of the outliers, we define the clean data mean square error (CMSE) and clean data
prediction error (CPE) for the train and test datasets, respectively, as follows:

CMSE =
1
n

n

∑
i=1

(ŷtr
i − ytr−clean

i )2,

CPE =
1

nts

nts

∑
i=1

(ŷts
i − yts−clean

i )2.

The false negative rate and the false positive rate are also defined as follows:

FNR =
#{j; 1 ≤ j ≤ p, f j ̸= 0, f̂ j = 0}

#{j; 1 ≤ j ≤ p, f j ̸= 0} ,

FPR =
#{j; 1 ≤ j ≤ q, f j = 0, f̂ j ̸= 0}

#{j; 1 ≤ j ≤ q, f j = 0} ,

where #A stands for the cardinality of the set A.
We also define the false linear rate (FLR) and false non-linear rate (FNLR) criteria as

follows, to examine the separation performance of SSLA and RSSLA models:

FLR =
#{j; 1 ≤ j ≤ p, f j is not linear, f̂ j is linear}

#{j; 1 ≤ j ≤ p, f j is not linear} ,

FNLR =
#{j; 1 ≤ j ≤ p, f j is linear, f̂ j is not linear}

#{j; 1 ≤ j ≤ p, f j is linear} ,

as well as the false outlier rate (FOR) and false non-outlier rate (FNOR) criteria as follows,
to examine the outlier detection performance of robust models:

FOR =
#{i; 1 ≤ i ≤ n, yi is not outlier, yi is detected as outlier}

#{i; 1 ≤ i ≤ n, yi is not outlier} ,

FNOR =
#{i; 1 ≤ i ≤ n, yi is an outlier, yi is not detected as outlier}

#{i; 1 ≤ i ≤ n, yi is an outlier} .

The means and standard errors of all the above criteria are tabulated for all different
scenarios in Tables 1–8. From Tables 1 and 2, one can see that the robust separative model
RSSLA is the most powerful model for estimating the true regression functions, especially
for larger values of n (n = 200 in Table 2), while for n = 100 (Table 1), the RSNLA model is
also a successful model for estimation of the nonlinear regression functions. From Table 3,
it can be observed that the RSSLA model is almost more efficient than other competitors
(except the RSNLA model in a few cases) in the sense of the clean data MSE (CMSE).
The clean data prediction performance of the RSSLA model is of course the best among
the six models, based on the CPE values tabulated in Table 4. From Table 5, the RSNLA
model is the best model based on the FNR criterion, while the best values of the FPR
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criterion are obtained for the SL model, based on the values in Table 6. However, one can
see that the FNR and FPR values for the RSSLA model are better than those of the SSLA
model, which means that the robust modeling improves the FNR and FPR values in the
separative semi-parametric linear model. From Table 7, it can be seen that both SSLA and
RSSLA models have near-zero values of the FLR, while the RSSLA model has significantly
lower values of the FNLR than the SSLA model. This shows that the robust modeling helps
the model to separate the linear and nonlinear covariates more accurately. Finally, from the
values of the FOR and FNOR criteria in Table 8, we can deduce that the RSSLA model
is the most powerful model among the three robust models for the correct detection of
the outliers.

Table 1. The means and standard deviations of MISE values for n = 100 from the simulation study
for 6 models. The standard deviations are shown in subscripts.

p σ f SSLA RSSLA SNLA RSNLA SL RSL

50 0.2 f̂1 0.3340.309 0.0860.119 0.3980.269 0.2390.217 2.2770.697 2.5411.014
f̂2 0.2030.234 0.0580.106 0.2030.152 0.1350.087 0.2130.177 0.1950.037
f̂3 0.2130.146 0.0460.081 0.2760.116 0.1560.098 0.4660.384 0.3570.167
f̂4 0.1500.169 0.0390.050 0.1430.158 0.0840.061 0.1410.193 0.1120.104
f̂5 0.1270.129 0.0430.054 0.1290.117 0.0880.045 0.1020.077 0.0920.079

0.5 f̂1 0.4440.415 0.2390.202 0.4610.251 0.3330.217 2.3580.751 2.4580.978
f̂2 0.2240.209 0.1380.123 0.2190.189 0.1710.110 0.1980.059 0.2000.050
f̂3 0.2430.182 0.1460.174 0.2750.128 0.2370.115 0.4850.525 0.3880.225
f̂4 0.1520.165 0.0820.085 0.1340.119 0.0960.062 0.1580.195 0.1230.121
f̂5 0.1430.140 0.0800.054 0.1280.104 0.1110.069 0.1210.210 0.0990.107

100 0.2 f̂1 1.8870.000 0.8870.000 0.6090.286 0.3230.255 2.3320.827 2.3290.991
f̂2 0.1850.004 0.1680.000 0.1930.059 0.1520.059 0.1990.089 0.1910.026
f̂3 0.3210.000 0.1970.116 0.2830.085 0.3150.000 0.5000.447 0.3870.221
f̂4 0.3340.491 0.0800.000 0.1090.098 0.0840.024 0.1340.242 0.0970.076
f̂5 0.0800.000 0.0630.000 0.1060.087 0.0850.026 0.0850.054 0.0790.006

0.5 f̂1 0.8870.001 0.5870.003 0.6080.286 0.3470.258 2.1510.635 2.2210.768
f̂2 0.1860.000 0.1690.001 0.1940.083 0.1540.052 0.1930.041 0.1900.023
f̂3 0.3210.001 0.2290.102 0.2970.058 0.3180.001 0.4140.275 0.3500.174
f̂4 0.0830.000 0.0800.000 0.1020.068 0.0820.024 0.0920.072 0.0850.040
f̂5 0.0850.000 0.0800.000 0.1210.151 0.0910.044 0.0880.005 0.0840.029

200 0.2 f̂1 0.9640.024 0.3830.172 0.5740.281 0.2580.275 2.0450.525 2.0930.719
f̂2 0.1240.003 0.1130.062 0.1700.046 0.0860.109 0.1870.006 0.1890.026
f̂3 0.3070.000 0.1410.101 0.2640.078 0.2130.102 0.3940.237 0.3170.065
f̂4 0.0940.001 0.0680.032 0.0860.040 0.0760.059 0.1100.090 0.0880.054
f̂5 0.0880.002 0.0760.001 0.0950.055 0.0790.020 0.0810.003 0.0800.003

0.5 f̂1 0.9250.057 0.6060.018 0.6150.314 0.4840.393 1.9730.458 2.0920.584
f̂2 0.1860.001 0.1730.004 0.1790.057 0.1670.055 0.1880.015 0.1910.040
f̂3 0.2810.002 0.2050.098 0.2720.079 0.2340.100 0.3500.130 0.3180.067
f̂4 0.0790.000 0.0620.007 0.0850.033 0.0890.056 0.1070.097 0.0980.092
f̂5 0.0810.003 0.0590.000 0.0890.041 0.0790.005 0.0800.002 0.0800.003
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Table 2. The means and standard deviations of MISE values for n = 200 from the simulation study
for 6 models. The standard deviations are shown in subscripts.

p σ f SSLA RSSLA SNLA RSNLA SL RSL

50 0.2 f̂1 0.2870.686 0.0800.274 0.3630.218 0.3300.098 2.9850.903 2.6750.676
f̂2 0.1670.076 0.0550.044 0.1960.117 0.0820.075 0.1960.033 0.1910.016
f̂3 0.2610.098 0.0650.091 0.2460.135 0.0700.084 0.5790.320 0.4850.268
f̂4 0.0760.040 0.0340.013 0.1750.154 0.0410.046 0.1300.154 0.0990.065
f̂5 0.0800.033 0.0350.001 0.1630.123 0.0460.047 0.0990.079 0.0770.011

0.5 f̂1 0.2900.252 0.0860.093 0.3450.179 0.1870.139 2.7190.810 3.0080.850
f̂2 0.1680.040 0.0500.033 0.2220.137 0.1160.085 0.2110.121 0.1920.028
f̂3 0.2480.103 0.0580.049 0.2750.185 0.1420.117 0.5200.289 0.4660.253
f̂4 0.0750.015 0.0440.024 0.2220.176 0.0890.052 0.1380.144 0.0930.065
f̂5 0.0800.002 0.0500.027 0.2130.194 0.0980.069 0.1070.105 0.0850.034

100 0.2 f̂1 0.2950.417 0.0760.122 0.2220.138 1.1150.887 2.6070.701 2.6510.940
f̂2 0.1820.023 0.0630.065 0.1620.056 0.1520.059 0.1960.051 0.1880.016
f̂3 0.2750.097 0.0680.092 0.2330.110 0.2070.123 0.5060.332 0.4020.205
f̂4 0.0790.011 0.0480.035 0.0800.022 0.0660.026 0.0960.077 0.0910.057
f̂5 0.0800.000 0.0490.034 0.0820.019 0.0720.029 0.0900.053 0.0830.036

0.5 f̂1 0.3170.294 0.1120.124 0.2950.204 0.1510.154 2.4130.672 2.4430.731
f̂2 0.1840.016 0.0740.057 0.1440.056 0.1040.064 0.1890.017 0.1880.010
f̂3 0.2990.069 0.0970.083 0.2090.094 0.1200.096 0.4990.295 0.3810.186
f̂4 0.0790.008 0.0650.020 0.0910.043 0.0680.041 0.1030.099 0.0850.032
f̂5 0.0800.000 0.0630.024 0.0940.045 0.0710.018 0.0830.017 0.0790.010

200 0.2 f̂1 0.2890.312 0.0220.084 0.1490.170 0.0260.056 1.3801.280 1.3921.288
f̂2 0.1910.020 0.0110.013 0.0760.078 0.0180.030 0.1080.092 0.1080.093
f̂3 0.2840.088 0.0200.079 0.0980.104 0.0250.052 0.2600.300 0.1900.183
f̂4 0.0770.008 0.0150.027 0.0480.045 0.0190.028 0.0570.064 0.0510.055
f̂5 0.0810.001 0.0230.018 0.0510.052 0.0250.033 0.0510.056 0.0460.040

0.5 f̂1 0.1120.095 0.0430.055 0.1760.240 0.0610.092 1.2331.201 1.2261.226
f̂2 0.0820.011 0.0360.024 0.0780.080 0.0450.062 0.1020.095 0.1010.093
f̂3 0.1080.057 0.0330.028 0.1100.122 0.0460.065 0.2540.320 0.1960.223
f̂4 0.0380.006 0.0210.008 0.0430.044 0.0300.036 0.0620.093 0.0560.086
f̂5 0.0230.000 0.0150.013 0.0480.049 0.0340.039 0.0550.079 0.0420.040

Table 3. The means and standard deviations of CMSE values from the simulation study for 6 models.
The standard deviations are shown in subscripts.

n p σ SSLA RSSLA SNLA RSNLA SL RSL

100 50 0.2 2.4090.875 0.7361.082 2.9210.394 1.3570.843 1.4270.269 1.4050.358
0.5 1.6570.388 1.6370.333 3.2310.389 2.1260.814 2.9790.528 1.9551.170

100 0.2 2.4380.290 1.5390.741 2.9860.409 1.2770.635 1.4860.334 1.5750.480
0.5 2.6150.288 1.4950.758 3.2490.395 1.7430.651 1.7740.388 1.7740.402

200 0.2 2.4890.364 1.6130.381 2.9840.410 0.9530.590 1.6170.843 1.6950.501
0.5 2.7240.286 1.6280.643 3.1620.416 1.7880.719 1.7450.362 1.8420.500

200 50 0.2 0.8871.091 0.8000.272 2.8740.934 0.8940.276 1.3070.220 1.2840.169
0.5 0.9880.280 0.8250.370 3.1400.331 2.1561.029 1.5120.189 1.4900.235

100 0.2 0.8360.420 0.3380.336 1.5481.050 1.8791.304 1.3260.192 1.3690.262
0.5 1.0750.273 0.8840.401 2.6210.922 1.0260.461 1.5630.210 1.6270.298

200 0.2 0.7180.346 0.2180.352 1.7101.477 0.2530.082 0.7800.680 0.8140.726
0.5 1.0230.249 0.4270.214 1.7651.657 0.5730.705 0.8580.814 0.9130.886
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Table 4. The meanss and standard deviations of CPE values from the simulation study for 6 models.
The standard deviations are shown in subscripts.

n p σ SSLA RSSLA SNLA RSNLA SL RSL

100 50 0.2 4.1932.098 0.9001.260 4.6061.392 1.6021.084 1.7500.403 1.7340.464
0.5 2.0180.413 1.9930.507 5.4511.546 2.3970.883 3.0262.100 2.1901.345

100 0.2 4.2202.657 1.4720.728 3.6640.964 1.8610.300 1.9480.686 1.8710.567
0.5 2.9911.106 1.0831.051 4.0730.889 1.9460.785 2.1950.591 2.1670.598

200 0.2 2.1670.306 1.0230.364 3.4410.969 1.1190.664 1.9970.522 2.0060.589
0.5 2.0340.346 0.9760.564 3.9010.929 2.1070.766 2.2620.645 2.1970.592

200 50 0.2 0.9231.069 0.9100.336 7.7081.816 0.9971.065 1.4500.250 1.4100.263
0.5 1.1280.334 0.9320.349 9.2921.983 2.3530.973 1.7390.338 1.6540.290

100 0.2 0.9670.434 0.4340.425 2.0701.616 1.9351.333 1.5250.289 1.5990.385
0.5 1.1820.372 1.0110.468 3.9251.777 1.1360.464 1.7670.296 1.8370.406

200 0.2 1.0300.209 0.2520.389 1.9091.696 0.8370.603 0.9320.827 0.9420.846
0.5 1.2020.386 0.4430.465 2.0872.017 0.6360.784 1.0020.950 1.0260.987

Table 5. The means and standard deviations of FNR values from the simulation study for 6 models.
The standard deviations are shown in subscripts.

n p σ SSLA RSSLA SNLA RSNLA SL RSL

100 50 0.2 0.2990.239 0.1470.122 0.2920.165 0.2330.176 0.5720.173 0.5270.193
0.5 0.2730.210 0.2000.144 0.2880.171 0.2670.169 0.5720.193 0.5330.192

100 0.2 0.6310.056 0.3790.089 0.5620.165 0.3370.176 0.6100.174 0.6280.192
0.5 0.6100.000 0.5170.096 0.5200.160 0.4720.159 0.6850.171 0.6320.187

200 0.2 0.6420.237 0.4610.166 0.6010.148 0.4030.137 0.7070.174 0.6870.176
0.5 0.6170.203 0.5420.202 0.6110.154 0.4820.127 0.6920.149 0.7150.171

200 50 0.2 0.7290.118 0.2370.240 0.0680.097 0.0430.073 0.4680.161 0.4030.182
0.5 0.6990.121 0.1980.160 0.0620.091 0.0520.088 0.4530.174 0.4550.160

100 0.2 0.7910.081 0.4780.174 0.5780.291 0.3200.255 0.6740.264 0.5270.151
0.5 0.8130.064 0.3950.242 0.3820.282 0.2370.230 0.5550.136 0.5370.153

200 0.2 0.7990.101 0.4110.129 0.2120.217 0.0970.148 0.3220.288 0.2970.280
0.5 0.8180.093 0.3880.214 0.2100.235 0.1330.188 0.3150.317 0.3170.311

Table 6. The means and standard deviations of FPR values from the simulation study for 6 models.
The standard deviations are shown in subscripts.

n p σ SSLA RSSLA SNLA RSNLA SL RSL

100 50 0.2 0.4630.216 0.4230.109 0.4930.049 0.3490.054 0.1300.122 0.1800.135
0.5 0.5420.161 0.4880.087 0.4920.051 0.3830.049 0.1420.121 0.1730.131

100 0.2 0.2510.154 0.2060.052 0.2060.033 0.1500.033 0.1160.105 0.1980.100
0.5 0.1270.015 0.1060.031 0.2080.034 0.1670.034 0.0790.085 0.0940.075

200 0.2 0.4510.163 0.3170.184 0.1280.021 0.0900.017 0.0470.055 0.0620.068
0.5 0.3410.244 0.2060.086 0.1250.020 0.0980.016 0.0570.061 0.0640.075

200 50 0.2 0.4450.219 0.1660.119 0.8720.044 0.6760.049 0.0220.010 0.1850.131
0.5 0.6230.190 0.1810.132 0.8850.038 0.6970.051 0.0230.019 0.1920.136

100 0.2 0.1170.121 0.1030.096 0.1760.231 0.1790.172 0.0320.013 0.1410.099
0.5 0.1980.175 0.0910.069 0.3600.216 0.3110.135 0.0320.021 0.1090.084

200 0.2 0.1050.107 0.0760.048 0.1410.124 0.0810.090 0.0370.054 0.0460.060
0.5 0.2050.104 0.0830.066 0.1340.127 0.0840.095 0.0320.053 0.0330.055
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Table 7. The means and standard deviations of FLR and FNLR values from the simulation study for
SSLA and RSSLA models. The standard deviations are shown in subscripts.

Criterion FLR FNLR

n p σ SSLA RSSLA SSLA RSSLA

100 50 0.2 0.0000.000 0.0060.055 0.5490.203 0.3080.288
0.5 0.0050.052 0.0110.074 0.4220.246 0.3840.265

100 0.2 0.0000.000 0.0000.000 0.1950.163 0.0100.001
0.5 0.0030.000 0.0000.000 0.1530.127 0.0280.010

200 0.2 0.0000.000 0.0000.000 0.1380.141 0.0140.005
0.5 0.0020.000 0.0000.000 0.1060.082 0.0170.011

200 50 0.2 0.0000.000 0.0000.000 0.5420.414 0.1250.162
0.5 0.0000.000 0.0000.000 0.5930.213 0.1630.182

100 0.2 0.0000.000 0.0000.000 0.3190.322 0.0650.134
0.5 0.0000.000 0.0000.000 0.5710.333 0.0350.103

200 0.2 0.0000.000 0.0000.000 0.2750.249 0.0540.082
0.5 0.0000.000 0.0000.000 0.4430.218 0.0270.095

Table 8. The means and standard deviations of FOR and FNOR values from the simulation study for
3 robust models. The standard deviations are shown in subscripts.

Criterion FOR FNOR

n p σ RSSLA RSNLA RSL RSSLA RSNLA RSL

100 50 0.2 0.0900.157 0.1220.075 0.2460.152 0.0850.039 0.0930.019 0.1240.038
0.5 0.1440.073 0.2280.163 0.3160.124 0.0990.018 0.1190.041 0.1420.031

100 0.2 0.0290.049 0.1540.087 0.2200.128 0.0700.012 0.1010.022 0.1180.032
0.5 0.0000.000 0.1560.081 0.2530.118 0.0620.000 0.1020.020 0.1260.029

200 0.2 0.0170.031 0.1660.085 0.1480.130 0.0650.001 0.1040.021 0.0990.033
0.5 0.0150.004 0.1700.083 0.2600.138 0.0730.011 0.1050.021 0.1280.034

200 50 0.2 0.0350.047 0.0980.056 0.1360.158 0.0710.011 0.0870.014 0.0960.039
0.5 0.0410.045 0.0980.047 0.2680.120 0.0730.011 0.0870.012 0.1290.030

100 0.2 0.0260.047 0.1240.065 0.0290.046 0.0690.012 0.0930.016 0.0700.012
0.5 0.0590.064 0.1300.063 0.0990.091 0.0770.016 0.0950.016 0.0870.023

200 0.2 0.0180.022 0.0780.087 0.0410.076 0.0330.013 0.0560.050 0.0400.045
0.5 0.0630.070 0.0720.080 0.0850.114 0.0300.010 0.0520.049 0.0490.057

5. Case Study

To evaluate the performance of the proposed method for a real dataset, we analyze
the Boston housing prices dataset [37,38] with 506 observations and 14 features. The R
package MASS [39] contains these data. Here, we consider the median value of the price of
the owner-occupied homes in USD 1000 (Median Price) as the response variable, and the
following covariates:

• Crime rate: per capita crime rate by town;
• Nitrogen Oxides: nitrogen oxide concentration (parts per 10 million);
• Rooms: average number of rooms per dwelling;
• Age: proportion of owner-occupied units built prior to 1940;
• Distances: weighted mean of distances to five Boston employment centers;
• Lower Status: lower status of the population (percent).

The following model is considered:

Median Price = µ + f1(Crime rate) + f2(Nitrogen Oxides) + f3(Rooms) + f4(Age)

+ f5(Distances) + f6(Lower Status) + ϵ (15)

The leave-one-out cross-validation is considered, by only considering the samples
with less than the 90% quantile of the train set square residuals (not considered as outliers)
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in all models. We call this criterion trimmed leave-one-out cross-validation (TLOOCV),
which is as follows:

TLOOCV =
∑n

i=1 ui(yi − ŷ(−i)
i )2

∑n
i=1 ui

,

where ŷ(−i)
i is the prediction of yi by using all observations except (Xi, yi), and

ui =

 1 (yi − ŷ(−i)
i )2 < Quantile0.9

{
(yj − ŷj)

2, j ∈ {1, . . . , n}
/

i
}

0
.

Values of TLOOCV are presented in Table 9, along with the percent of test points
(100(1 − ∑n

i=1 ui/n)%), considered as the outliers. As one can see from Table 9, the RSSLA
model has achieved the smallest value of the TLOOCV among all models.

To draw the partial residual plot for the jth covariate (j = 1, . . . , 6), we compute the
residuals of the regression of the response variable against all covariates except the jth
covariate, and then we plot it against the jth covariate. These plots are shown in Figures 1–6
for all six models. The outliers are the points where their square residual is greater than the
90% quantile of the square residuals.

Figure 1. Partial residual plots for SSLA model.

Figure 2. Partial residual plots for RSSLA model.
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Figure 3. Partial residual plots for SNLA model.

Figure 4. Partial residual plots for RSNLA model.

Figure 5. Partial residual plots for SL model.
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Figure 6. Partial residual plots for RSL model.

Table 9. Trimmed leave-one-out cross-validation and test outlier percent for 6 models.

Model TLOOCV Test Outlier Percent

SSLA 5.32 13.8%
RSSLA 4.78 12.6%
SNLA 5.51 14.4%

RSNLA 6.16 12.4%
SL 11.98 10.5%

RSL 10.81 10.5%

6. Conclusions and Summary

This research investigates a robust version of the sparse separative semi-parametric linear
regressionmodel introduced by [24] by utilising the LTS regression model [35]. The proposed
research might potentially encompass other separative semi-parametric linear regression models
put forth by [23,25,26], as well as other upcoming comparable techniques. The simulation
analysis demonstrates that the proposed strategy substantially enhances the performance of the
sparse separative semi-parametric linear regression model in terms of estimation, prediction,
variable selection, and separation. The proposed method outperforms previous robust regression
models in outlier detection and has the best performance in terms of a truncated variant of the
leave-one-out cross-validation measure [37,38] when applied to the well-known Boston housing
prices dataset.

Author Contributions: Conceptualization, M.A.; methodology, M.A. and M.R.; software, M.A. and
M.R.; validation, M.A., M.R. and N.A.M.; formal analysis, M.A. and M.R.; investigation, M.A.;
resources, M.A. and M.R.; data curation, M.A., M.R. and N.A.M.; writing—original draft preparation,
M.A., M.R. and N.A.M.; writing—review and editing, M.A., M.R. and N.A.M.; visualization, M.A.,
M.R. and N.A.M.; supervision, M.A.; project administration, M.A.; funding acquisition, N.A.M. All
authors have read and agreed to the published version of the manuscript.

Funding: We want to thank the Ministry of Higher Education Malaysia for their support in funding
this research through the Fundamental Research Grant Scheme (FRGS/1/2023/STG06/UM/02/13)
awarded to Nur Anisah Mohamed @ A Rahman.

Data Availability Statement: All used datasets are available in R software (R Foundation for Statistical
Computing, Vienna, Austria) at the “MASS” library.

Acknowledgments: The authors would like to thank three anonymous reviewers for their valuable
comments and corrections to an earlier version of this paper, which significantly improved the quality
of our work.



Mathematics 2024, 12, 172 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ruppert, D.; Wand, M.P.; Carroll, R.J. Semiparametric Regression; Cambridge University Press: Cambridge, UK, 2003.
2. Friedman, J.H.; Stuetzle, W. Projection pursuit regression. J. Am. Stat. Assoc. 1981, 76, 817–823. [CrossRef]
3. Marx, B.D.; Eilers, P.H. Direct generalized additive modeling with penalized likelihood. Comput. Stat. Data Anal. 1998, 28,

193–209. [CrossRef]
4. Wood, S.N. Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Stat. Soc. Ser. B (Stat.

Methodol.) 2000, 62, 413–428. [CrossRef]
5. Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006.
6. Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc.

2004, 99, 673–686. [CrossRef]
7. Speed, T. [That BLUP is a good thing: The estimation of random effects]: Comment. Stat. Sci. 1991, 6, 42–44. [CrossRef]
8. Wang, Y. Mixed effects smoothing spline analysis of variance. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1998, 60, 159–174. [CrossRef]
9. Breiman, L. Prediction games and arcing algorithms. Neural Comput. 1999, 11, 1493–1517. [CrossRef]
10. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
11. Binder, H.; Tutz, G. A comparison of methods for the fitting of generalized additive models. Stat. Comput. 2008, 18, 87–99.

[CrossRef]
12. Meier, L.; Van de Geer, S.; Bühlmann, P. High-dimensional additive modeling. Ann. Stat. 2009, 37, 3779–3821. [CrossRef]
13. Ravikumar, P.; Liu, H.; Lafferty, J.; Wasserman, L. Spam: Sparse additive models. In Proceedings of the 20th International

Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; Curran Associates Inc.: Red
Hook, NY, USA, 2007; pp. 1201–1208.

14. Wang, L.; Chen, G.; Li, H. Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 2007,
23, 1486–1494. [CrossRef] [PubMed]

15. Wang, H.; Xia, Y. Shrinkage estimation of the varying coefficient model. J. Am. Stat. Assoc. 2009, 104, 747–757. [CrossRef]
16. Lin, Y.; Zhang, H.H. Component selection and smoothing in multivariate nonparametric regression. Ann. Stat. 2006, 34, 2272–2297.

[CrossRef]
17. Bach, F.R. Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res. 2008, 9, 1179–1225.
18. Huang, J.; Horowitz, J.L.; Wei, F. Variable selection in nonparametric additive models. Ann. Stat. 2010, 38, 2282. [CrossRef]
19. Opsomer, J.D.; Ruppert, D. A root-n consistent backfitting estimator for semiparametric additive modeling. J. Comput. Graph. Stat.

1999, 8, 715–732. [CrossRef]
20. Wang, L.; Liu, X.; Liang, H.; Carroll, R.J. Estimation and variable selection for generalized additive partial linear models. Ann.

Stat. 2011, 39, 1827. [CrossRef]
21. Liu, X.; Wang, L.; Liang, H. Estimation and variable selection for semiparametric additive partial linear models (ss-09-140). Stat.

Sin. 2011, 21, 1225. [CrossRef]
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