
Citation: Bulbul, S.S.; Abduljabbar,

Z.A.; Najem, D.F.; Nyangaresi, V.O.;

Ma, J.; Aldarwish, A.J.Y. Fast

Multi‑User Searchable Encryption

with Forward and Backward Private

Access Control. J. Sens. Actuator Netw.

2024, 13, 12. https://doi.org/10.3390/

jsan13010012

Academic Editors: Donald Elmazi,

Elis Kulla and Hakima Chaouchi

Received: 7 December 2023

Revised: 10 January 2024

Accepted: 18 January 2024

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Actuator Networks
Sensor and

Article

Fast Multi‑User Searchable Encryption with Forward and
Backward Private Access Control
Salim Sabah Bulbul 1, Zaid Ameen Abduljabbar 2,*, Duaa Fadhel Najem 3, Vincent Omollo Nyangaresi 4 ,
Junchao Ma 5,* and Abdulla J. Y. Aldarwish 2

1 Directorate General of Education Basra, Ministry of Education, Basra 61004, Iraq; pgs2185@uobasrah.edu.iq
2 Department of Computer Science, College of Education for Pure Sciences, University of Basrah,

Basrah 61004, Iraq
3 Department of Cyber Security, College of Computer Science and Information Technology,

University of Basrah, Basrah 61004, Iraq
4 Department of Computer Science and Software Engineering, Jaramogi Oginga Odinga University of

Science & Technology, Bondo 40601, Kenya
5 College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
* Correspondence: zaid.ameen@uobasrah.edu.iq (Z.A.A.); majunchao@sztu.edu.cn (J.M.)

Abstract: Untrusted servers are servers or storage entities lacking complete trust from the data owner
or users. This characterization implies that the server hosting encrypted datamay not enjoy full trust
from data owners or users, stemming from apprehensions related to potential security breaches,
unauthorized access, or other security risks. The security of searchable encryption has been put
into question by several recent attacks. Currently, users can search for encrypted documents on un‑
trusted cloud servers using searchable symmetric encryption (SSE). This study delves deeply into
two pivotal concepts of privacy within dynamic searchable symmetric encryption (DSSE) schemes:
forward privacy and backward privacy. The former serves as a safeguard against the linkage of
recently added documents to previously conducted search queries, whereas the latter guarantees
the irretrievability of deleted documents in subsequent search inquiries. However, the provision of
fine‑grained access control is complex in existing multi‑user SSE schemes. SSE schemes may also
incur high computation costs due to the need for fine‑grained access control, and it is essential to
support document updates and forward privacy. In response to these issues, this paper suggests a
searchable encryption scheme that uses simple primitive tools. We present a multi‑user SSE scheme
that efficiently controls access to dynamically encrypted documents to resolve these issues, using
an innovative approach that readily enhances previous findings. Rather than employing asymmet‑
ric encryption as in comparable systems, we harness low‑complexity primitive encryption tools and
inverted index‑based DSSE to handle retrieving encrypted files, resulting in a notably faster sys‑
tem. Furthermore, we ensure heightened security by refreshing the encryption key after each search,
meaning that users are unable to conduct subsequent searches with the same key and must obtain
a fresh key from the data owner. An experimental evaluation shows that our scheme achieves for‑
ward and Type II backward privacy and has much faster search performance than other schemes.
Our scheme can be considered secure, as proven in a random oracle model.

Keywords: symmetric encryption; cloud computing; access control; multiple user; backward privacy

1. Introduction
Following the rapid emergence of cloud computing, individuals and enterprises can

now outsource storage and computation to the cloud [1–3]. The encryption of outsourced
data before uploading to the cloud can prevent privacy leaks; however, data availability
will be reduced if traditional encryption is used, as querying outsourced data is impossible
in this case [4].

J. Sens. Actuator Netw. 2024, 13, 12. https://doi.org/10.3390/jsan13010012 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan13010012
https://doi.org/10.3390/jsan13010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0001-6546-8083
https://orcid.org/0000-0003-2666-6874
https://orcid.org/0000-0002-1039-6462
https://doi.org/10.3390/jsan13010012
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan13010012?type=check_update&version=2

J. Sens. Actuator Netw. 2024, 13, 12 2 of 18

Searchable symmetric encryption (SSE) allows encrypted documents to be searched
securely, thereby solving the problem described above [5–7]. Two methods can be used
to design searchable encryption schemes: the first considers a single user who uploads en‑
crypted data to the server and retrieves themwhen needed by requesting a query [8,9], and
the second involves the data owner, who sends encrypted data to the server and allows
many users to access them [10–13]. In addition to searching for documents, users some‑
times need to upload their documents in realistic scenarios: for instance, collaborative e‑
health applications and projects are examples of situations in which a crowd of members
need to upload relevant information, and then to search for and access each other’s contri‑
butions depending on their roles. SSE was originally introduced by Song et al. [5] with the
aim of facilitating efficient access to encrypted data while minimizing privacy constraints.
During the execution of a user’s query, SSE reveals some information to the server, which is
known as leakage. An access pattern and a search pattern are usually included in the leak.
Search patterns reveal which searches have the same keyword, whereas access patterns
reveal the files returned by searches.

Dynamic searchable encryption with leakage mitigation SSE was applied to static
datasets until 2009, when the principle of updating encrypted databases (described as dy‑
namic SSE schemes) was first presented [14,15]. Existing dynamic symmetric searchable
encryption (DSSE) schemes encounter substantial challenges, particularly in terms of stor‑
age complexity and overhead costs. While traditional searchable symmetric encryption
(SSE) schemas designed for static databases excel in efficiently searching encrypted data,
they fall short in accommodating dynamic updates, such as deletions and additions. The
demand for adaptability in dynamic environments, characterized by constant changes in
data, poses a significant hurdle for current schemes. Storage complexity has emerged as a
primary concernwithinDSSE schemes, withmany struggling tomanage escalating storage
requirements as datasets expand or undergo evolution. Furthermore, the security guar‑
antees of certain schemes may be compromised when adapted for dynamic operations,
creating a critical gap in ensuring the confidentiality and integrity of sensitive information.
However, despite the added functionality, dynamic SSE raises privacy concerns. Dynamic,
searchable cryptographic schemes facemany challenges, including forward and backward
specificity. The notion of forward privacy is straightforward: within a database, a file may
encompass keywords that have been previously queried, even after their inclusion in the
database. A brief discussion of this concept was presented in [16], and a more detailed dis‑
cussion in [17–19]. Recently, file injection attacks were introduced in [20]. Dynamic SSE
schemes now require forward privacy as an essential attribute. The concept of backward
privacy is the second concept related to dynamic SSE: when a file is searched for in the
present, the system does not reveal whether it was previously deleted from the encrypted
database. This concept was first mentioned in [18], but without a formal definition, and
has been expanded on by Bost et al. [21], who provided a formal definition of leakage with
three levels and proposed a system that eliminated it.

• Type I backward privacy leakage: When a search for a keyword w is carried out,
Type I schemes reveal how many updates were made to w, what type of updates
were made, and when each update was made.

• Type II backward privacy leakage: As well as the leakage at the first level, the sec‑
ond level may also reveal the times at which all updates associated with the keyword
were made.

• Type III backward privacy leakage: The last level is considered the weakest, as it
reveals the deletion of a previously added keyword, in addition to the leakage at the
above levels.

J. Sens. Actuator Netw. 2024, 13, 12 3 of 18

Multi‑user searchable encryption (MUSE) is a cryptographic technique designed to
facilitate encrypted data querying by multiple users, ensuring rigorous standards of pri‑
vacy and security. It serves as a robust solution for integrating search capabilities with en‑
crypted information, particularly in applications like cloud storage, where shared access
to data is often necessary. MUSE leverages encryption to enable data exploration without
requiring decryption, employing the searchable symmetric encryption (SSE) method. SSE
empowers users to conduct searcheswithin encrypteddatawhile preventing unauthorized
access. In the MUSE framework, each user possesses an individualized secret key critical
for the encryption and decryption of data, enhancing the overall security and privacy mea‑
sures. The encrypted data are subsequently stored on a server taskedwith enabling search
operations on the data. Whenever a user initiates a search for specific information, a search
query is transmitted to the server, which employs the SSE scheme to conduct a search of
the encrypted data and delivers the results back to the user. Throughout this process,
data remain in an encrypted state, thereby preserving the paramount principles of privacy
and security.

Two pressing issues remain unresolved, although researchers have provided solu‑
tions for certain scenarios such as that in [22]. The first problem is to find a lightweight
approach to multi‑user access control. Due to their intricate nature and the significant
computational demands involved, existing multi‑user SSE schemes lack a suitable access
control method for all cases. The second requirement is for dynamic multi‑user scenarios.
In order to ensure secure uploading, forward privacy must also be provided [7,18] dur‑
ing the upload process. We developed an efficient multi‑user SSE scheme that preserves
forward privacy and efficiently controls access. The levels of access control privilege in
our construction are symmetrical, and it is a privilege‑based multi‑user SSE scheme that is
simpler and faster than attribute‑based schemes with complex access structures.

In this paper, we present a novel searchable symmetric encryption (SSE) scheme de‑
signed to achieve robust access control in dynamic multi‑user environments. Our ap‑
proach introduces a unique combination of pseudorandom functions (PRFs) and forward–
backward privacy preservation mechanisms, ensuring that updates are indistinguishable
from random numbers, thereby guaranteeing both Type II backward and forward privacy.
The novelty of our scheme lies in its efficient yet secure design, demonstrated through a
comprehensive security analysis and experimental evaluations, where it consistently out‑
performs existing schemes, including SSMDO [23] and Najafi [24], in terms of index gen‑
eration, search process efficiency, and overall system performance. In our approach, the
server maintains an encrypted index that correlates individual keywords with specific sets
of file identifiers, which denote the files containing those keywords. Each keyword entry
is encrypted with a unique, fresh key, which is determined based on the keyword itself,
the number of times that keyword has been updated, and a random value. A fresh ran‑
dom value is generated after each search query to ensure forward privacy. This fresh key
is derived using a pseudorandom function from a master key held by the owner, and the
owner is therefore required to keep records of the number of updates for each keyword and
to present such a random value when needed. To conduct a keyword search, the owner
must generate and disclose a ‘once’ key, which enables the user to interact with the rele‑
vant entries in the encrypted index, retrieve file identifiers associated with the keyword,
and subsequently retrieve the corresponding encrypted files. Upon retrieval, the user de‑
crypts the encrypted files, ensuring that results stored on the server are promptly deleted
to achieve backward privacy. The key is then automatically updated to prevent its reuse
by the same user or any other users for subsequent searches. This comprehensive system
establishes a secure environment suitable for multiple users. We can summarize the main
contributions of our model as follows:

J. Sens. Actuator Netw. 2024, 13, 12 4 of 18

1. We propose a multi‑user searchable symmetric encryption scheme that uses symmet‑
ric keys, thus significantly reducing the computation cost of the scheme.

2. Our scheme is shown to be secure in multi‑user scenarios via theoretical analyses of
forward privacy and user security. Several experiments are also carried out to demon‑
strate that our design is efficient from the perspectives of computation and storage.

3. Our scheme achieves reverse privacy: search queries should not reveal deleted files,
because the updating key is changed when each search query is finished. This type
of privacy is lacking in most similar constructions.

4. We employ an optimized indexing system that marks and subsequently removes ac‑
cessed entries, as the access pattern inadvertently reveals these results, and their en‑
cryption similarly exposes them.

The remainder of the paper is structured as follows. Related work is discussed in
Section 2, and we present the problem statement in Section 3. The primitive tools and
secure definitions used in our scheme are introduced in Section 4. The proposed scheme
is described in detail in Section 5. Section 6 presents an analysis of the system and its
performance. Section 7 concludes the paper.

2. Previous Work
Kamara et al. [15] presented the first scheme to explicitly support efficient database up‑

dates. In their later work, Kamara and Papamanthou [14] were able to reduce the amount
of leakage in the first method. In a seminal paper [16], the concept of forward privacy
was introduced as a novel idea for encryption schemes; however, it is important to high‑
light that the studies in [14,15] did not consider this concept in the design of their systems,
meaning that there is potential susceptibility to privacy breaches of the data. Since this con‑
cept was introduced, it has become one of the basic pillars of preserving privacy for any
searchable encryption scheme and has been extensively studied and applied, as described
in references [17–19,25–27]. The concept of backward privacy was introduced for the first
time by Stefanov et al. [18], although they provided no definition or construction of this
concept. To the best of our knowledge, Bost et al. [21] were the first and only researchers to
focus on the notion of backward privacy and to offer schemes for implementing it, as well
as to present a formal definition of backward privacy. Specific constructions have been
proposed to bolster privacy in various adversarial scenarios, as detailed in [28]. Neverthe‑
less, it is imperative to note that these constructions do not accommodate multiple users
and are tailored exclusively to an individual user of the system.

A multi‑user scenario has not been seriously considered in SSE schemes for a long
time. In one research study [22], an attempt was made to develop a multi‑client SSE
scheme based on an attribute‑based encryption ABE scheme and OXT scheme, as de‑
scribed in [6]. In this proposed scheme, clients had the capability to establish access poli‑
cies for their documents using their individual attributes, and subsequently to upload
these documents to a server. Other clients could access these documents concurrently
only if their own attributes were aligned with the access policy for the document. How‑
ever, two key limitationswere identified in [22]. Firstly, the integration ofABE introduces
a considerable andpotentially unnecessary overhead, given thatmore straightforward ac‑
cess control methods, such as privilege levels, would suffice for most use cases. Secondly,
the system permits any client to upload documents without imposing constraints to ad‑
dress the corresponding security concerns, specifically the issue of forward or backward
privacy. Stefanov et al. [18] claimed forward privacy by stating that the same search to‑
kens should not match a newly inserted document. File injection attacks [20] can destroy
encrypted systems when an SSE scheme lacks forward privacy. Owing to the need for
and importance of accommodatingmultiple users in some systems, several schemes have
been developedwith the aim of addressing this requirement, as documented in [23,24,29].
The constructions outlined in these articles employed asymmetric encryption techniques,
resulting in elevated computational costs during search and decryption processes. In ad‑
dition to the substantial computational expenses associated with these systems [23,29],

J. Sens. Actuator Netw. 2024, 13, 12 5 of 18

they also failed to ensure backward privacy. We compare our proposed scheme with
other schemes involving multiple users. To the best of our knowledge, there have been
no previous works that have supported several users while offering backward privacy,
as noted in Table 1. In addition, the approach of Zhang et al. [22] is the only one to sup‑
port multiple users. In the scenarios considered here, fine‑grained access control is not
needed and imposes excessive computational burdens.

Table 1. Comparison of the proposed scheme with alternatives in the literature.

Scheme
Computation Communication

BP Multi‑User
Search Update Search Update

Moneta [17] Ô
(
awlogN+ log3N

)
 Ô

(
log2N

)
 Ô

(
awlogN+ log3N

)
 Ô

(
log3N

)
I ×

Dianadel [17] O(aw) O
(
logaw

)
 O(nw + nwlogaw) O(1) III ×

SDa [30] O(aw + logN) O(logN) O(aw + logN) O(logN) II ×

πWBP [28] O
(
o’w

)
 O(1) O(nw) O(1) III ×

Najafi [24] O(nw) O(m) O(SR) O(1) III 4

SSMDO [23] O(1) O(m) O((ow + 1) ∗Q) O(m) × 4

Ours O
(
o’w

)
 O(1) O(nw) O(1) II 4

BP represents backward privacy, N indicates howmany (keyword, identifier) mappings there are. m is the num‑
ber of distinctive keywords. An addition operation on w is represented by aw, a delete operation on w is denoted
as dw, and an update operation on w is represented by ow (i.e., ow = aw + dw). According to our last search, there
have been o′w updates, while nw refers to the number of documents we currently have shared with w. Ô masks
the logN contents. 3 indicates satisfied, while × indicates not satisfied. SR is the size of the result set for w. A
conjunctive query Q =

{
w1, . . . , w|Q|

}
,
∣∣Q∣∣ > 1 .

3. Problem Statement
3.1. System Model

Figure 1 shows the SSE system, which consists of three distinct entities: data owners,
cloud servers, and users, as follows:
a. Data owners bear responsibility for themaintenance of the system and resolving issues.

They play a pivotal role in the allocation and distribution of access tokens to users. Data
owners are tasked with generating encryption keys, modifying databases, and creating
keys for users upon request, particularly when users initiate search operations.

b. Users have the authority to upload their own data to the cloud and to perform
searches across documents uploaded by other users. Access tokens, which are fur‑
nished by data owners, enable users to formulate access policies when uploading
documents. Users can only access documents for which their access tokens align
with the access policies, thus ensuring secure access during query execution.

c. Cloud servers within the SSE system are equipped with advanced computational and
storage capabilities, thereby facilitating robust data processing and storage. When a
user uploads ciphertext accompanied by its associated index, the cloud server assumes
responsibility for data processing. In caseswhere a user dispatches a search token to the
cloud server, it initiates the search operation and subsequently returns the correspond‑
ing ciphertext results. The functionality of this server is crucial in terms of ensuring the
security and efficiency of the system’s search operations.

J. Sens. Actuator Netw. 2024, 13, 12 6 of 18

J. Sens. Actuator Netw. 2024, 13, x FOR PEER REVIEW 6 of 18

loaded by users to extract additional privacy-related information. The owner generates a
temporary key when a user requests a search on the server, which expires upon comple-
tion of the search operation. The key is essential for accessing encrypted data stored on
the server, and users are unable to access the data without it.

Figure 1. Model of the proposed system.

3.3. Design Objectives
We present an efficient scheme for dynamic multi-user environments with the aim of

facilitating straightforward queries while ensuring a high level of data user privacy. Our
design therefore considered several security and performance objectives, as follows:
1. The owner has the exclusive capability to generate tokens from a master primitive

key, which can subsequently be entrusted to authorized users as necessary. Subse-
quently, these users can perform queries on an encrypted database by utilizing the
securely stored keywords at their disposal.

2. A multi-user environment is provided. Using the access tokens assigned to each
user, the cloud server allows them to outsource their documents on behalf of all us-
ers and to search for outsourced documents that other users have contributed.

3. The computational cost is low. In our scheme, access control is implemented using
only symmetric encryption. We contend that our proposed scheme will be less
computationally expensive than previous schemes.

4. Forward and backward privacy are preserved. To achieve privacy, we use a counter
based on keywords and a random number that is modified after each search to
generate fresh keys. For these reasons, the cloud server cannot establish a connection
between new documents that have been uploaded and previous search tokens.

4. Preliminaries
4.1. Notation

We use 𝒓 $← 𝐗 to refer to an element 𝑟 that has been randomly selected from a set of
elements 𝐗. Strings of length 𝑙 are denoted as {0, 1}௟, while strings of arbitrary length are
denoted as {0, 1}∗. Two strings 𝑎 and 𝑏 are concatenated using 𝑎||𝑏. 𝜆 is the security
parameter. We use |𝑆| to denote the cardinality of a set 𝑆 and the symbol 𝒜 to repre-

Figure 1. Model of the proposed system.

3.2. Security Assumptions
In the proposed scheme, the cloud server is presumed to adhere to the principles of

integrity and some inquisitiveness. It is assumed that the cloud server will faithfully exe‑
cute the prescribed protocols and procedures within this framework. Simultaneously, the
cloud server undertakes the task of aggregating and scrutinizing the documents uploaded
by users to extract additional privacy‑related information. The owner generates a tempo‑
rary key when a user requests a search on the server, which expires upon completion of
the search operation. The key is essential for accessing encrypted data stored on the server,
and users are unable to access the data without it.

3.3. Design Objectives
We present an efficient scheme for dynamic multi‑user environments with the aim of

facilitating straightforward queries while ensuring a high level of data user privacy. Our
design therefore considered several security and performance objectives, as follows:
1. The owner has the exclusive capability to generate tokens fromamaster primitive key,

which can subsequently be entrusted to authorized users as necessary. Subsequently,
these users can perform queries on an encrypted database by utilizing the securely
stored keywords at their disposal.

2. Amulti‑user environment is provided. Using the access tokens assigned to each user,
the cloud server allows them to outsource their documents on behalf of all users and
to search for outsourced documents that other users have contributed.

3. The computational cost is low. In our scheme, access control is implemented using
only symmetric encryption. We contend that our proposed scheme will be less com‑
putationally expensive than previous schemes.

4. Forward and backward privacy are preserved. To achieve privacy, we use a counter
based on keywords and a random number that is modified after each search to gen‑
erate fresh keys. For these reasons, the cloud server cannot establish a connection
between new documents that have been uploaded and previous search tokens.

J. Sens. Actuator Netw. 2024, 13, 12 7 of 18

4. Preliminaries
4.1. Notation

We use r $← X to refer to an element r that has been randomly selected from a set of
elements X. Strings of length l are denoted as {0, 1}l , while strings of arbitrary length are
denoted as {0, 1}∗. Two strings a and b are concatenated using a||b . λ is the security pa‑
rameter. We use |S| to denote the cardinality of a set S and the symbol A to represent the
adversary server. L denotes information that has been leaked during the operation of the
system. P(x; y) refers to a protocol executed in the context of a client–server setting where
the protocol P is executed using the client’s input, denoted as x, and the server utilizes
the input y, in accordance with the provided parameters. To implement the search proto‑
col, we typically need Lsrch = (ap, qp), where ap represents the access pattern and qp is
the query pattern in the protocol.

4.2. Forward and Backward Privacy and Leakage Functions
In dynamic searchable encryption (DSE) systems, leakage functions play a crucial role

in maintaining the integrity of the encrypted index as new documents are either added to
or removed from the collection.

An effective searchable encryption scheme should disclose the least possible amount
of information. Leakage can be captured using leakage functions. The setup protocol ex‑
clusively reveals Lstup, encompassing solely the count of documents and keywords within
the database DB, as well as the size of the database. In more formal terms, Lsrch maintains
a history Hist containing the history of all queries qi.

Forward privacy. Informally, forward private schemes are those where it is impos‑
sible to relate an operation to one that occurred previously. There is a strong property
within DSSE that prevents the leakage of update operations during an update. In prin‑
ciple, updating a keyword requires that no information about it is leaked in the update
query. Formally, it is defined as follows:

Definition 1. (Forward Privacy). SSE schemes with L‑adaptive security are forward private if
used for an update query.

Lupdt(op, w, ind) = L’updt (op, ind).

A stateless function L’ is used here. This definition is the same as that in [17], where multiple
keywords appear in the update query.

Backward privacy. Backward privacy is a critical property of searchable encryption
schemes that ensures the confidentiality of previously submitted queries even in the event
of server compromise or collusion. By deleting some entries from prior searches for a key‑
word w, the server does not learn any new information. When a search for a keyword w
found in a previously deleted entry is performed, backward privacy guarantees that the
server remains unaware of any additional information beyond the initial search. In an
ideal scenario, the SSE scheme should not conceal previously removed entries, or at least
their file identifiers, from an adversary [18]. The author of [21] provides a formal definition
of three types of backward privacy, where Type I reveals the least information and Type
III the most. In accordance with the notation used in [21], there are several functions that
need to be added before we give our final definition.

Each query executed is represented by one entry in a list Q. In the case of a search, the
entrywill take the form (t, w), where t denotes the timestamp for the query and w denotes the
keyword searched. An example of an update would be (t, op, (w, ind)), where= add or del,
and ind is thefile that has beenmodified. Let TimeDB(w) be a function that, for a keyword w,
returns a list of all the timestamps/file identifier pairs associated with keyword w that have

J. Sens. Actuator Netw. 2024, 13, 12 8 of 18

been added to DB during the term of this keyword and that have not been deleted during
this time.

TimeDB(w) = {(t, ind)|(t, add, (w, ind)) ∈ Q and ∀ t′,
(
t′, del, (w, ind)

)
/∈ Q}

Afunction called Updates(w) records updates, timestamps t, deletions, and additions
to a specific keyword w. Formally, we have the following:

Updates(w) = {t|(t, add, (w, ind)) ∈ Q or (t, del, (w, ind)) ∈ Q}.

A function called DelHist(w) returns to the adversary all pairs of insertion times‑
tamps and deletion timestamps that are associated with deleted entries. The deletions
corresponding to additions are explicitly revealed.

DelHist(w) =
{(

tadd, tdel
) ∣∣∣ ∃ ind :

(
tadd, add, (w, ind)

)
∈ Q and

(
tdel , del, (w, id)

)
∈ Q

}
Clearly, leakage from these functions is increasing. As a result, backward privacy is

now formally defined for different types of leaks.

Definition 2. ([21]). An L‑adaptively‑secure DSSE scheme has backward privacy where L =(
Lstup,Lsrch,Lupdt

)
:

TypeI (BP level− I) : i f f Lupdt(op, w, ind) = L’updt(op) and Lsrch(w) = L”srch

{TimeDB(w), aw}
TypeII (BP level− II) : i f f Lupdt(op, w, ind) = L’updt(op, w) and Lsrch(w) = L”srch

{TimeDB(w), Updates(w)}
TypeIII (BP level− III) : i f f Lupdt(op, w, ind) = L’updt(op, w) and Lsrch(w) = L”srch

{TimeDB(w), DelHist(w)}
In this case, L′ and L′′ represent a stateless function.

A leak happens when a user actually retrieves the files. The definition given above
presupposes that a scheme results in the inadvertent exposure of files currently holding
the data w. Specifically, TimeDB(w) has the capability to reveal the indexes of the docu‑
ments returned.

Pseudorandom functions. Let GenPRF
(
1λ

)
∈ {0, 1}λ for key generation, and let

the function G : {0, 1}λ × {0, 1}l → {0, 1}l′ be a family of pseudorandom functions
(PRFs). For all PPT adversaries Adv, G is a secure PRF family,

∣∣ Pr
[
K ← GenPRF

(
1λ

)
;

AdvGK (÷)
(
1λ

)
= 1

]
− Pr

[
AdvR()

(
1λ

)
= 1

]∣∣ ≤ v(λ) , where R: {0, 1}l → {0, 1}l′
means the function is truly random.

5. Proposed Forward and Backward Multi‑User Scheme
5.1. Overview

This section presents the proposed scheme, which to the best of our knowledge is
the first to support multiple users with backward and forward privacy. We employ a
straightforward method to store encrypted records in such a manner that no information
is divulged to the server during updates, which include file insertions and deletions. The
only information revealed to the server is the timing of each update that occurred while
the records were stored in an encrypted state. An inverted index (address value) is used
in this construction to store encrypted data of the form (ind, op), where op refers to op‑
eration insertions or deletions and ind is the name of a specific file associated with these
operations. Using a pseudorandom function, the owner can generate the set of locations
that are associated with a keyword w for a given search operation using the address at
which the values are stored in the hash table. This ensures that the user can efficiently
produce a set of locations associated with a particular keyword. The author of [12] in‑
troduced a similar syntax based on asymmetric encoders; however, our scheme is based

J. Sens. Actuator Netw. 2024, 13, 12 9 of 18

on symmetric encoders, which makes searching and decoding much faster. Our scheme
is also more secure, as privacy is ensured in both the forward and backward directions,
which is not possible in [12].This issue was effectively resolved in our scheme, which per‑
mits the creation of locations directly on the user’s device. The decryption of entries also
occurs locally on the user’s device, thereby obviating the need to transmit the decryption
key to the server for the purpose of creating location addresses and decrypting results. In
the context of dynamic symmetric searchable encryption (DSSE), the assurance of disso‑
ciating previous search queries from subsequent ones necessitates forward privacy. Up‑
dates process, while backward privacy ensures the non‑association of subsequent search
requests for the retrieval of deleted documents from the past. This study introduces a com‑
prehensive method for preserving both forward and backward privacy in DSSE. Notably,
this strategy marks the development of the first operational and non‑interactive Type II
backward–private DSSE framework without reliance on secure execution environments.
The proposed DSSE scheme achieves Type II backward and forward privacy by generat‑
ing a unique one‑time (fresh) key, denoted as Kg, for each search query, resulting in distinct
encryption outcomes for each iteration. Additionally, it safeguards against the server by
discerning the underlying operation (delete or add) embedded in the update query.

Setup. Managing the setup is the responsibility of the owner of the data. A secret
key KSKE is generated by the setup algorithm (Algorithm 1) upon entering the security
parameters λ. The owner starts with four blank maps (EDB, PDB, keyCnt, Srchrn). In the
first map EDB, entries are encrypted and a cashed plaintext identifier is stored in PDB; these
are then transmitted to the server, where they are stored for later modification through the
update and search protocols. The other two maps are stored locally with the owner. A
counter is stored on one map keyCnt for each keyword, and a random value is stored on
another map Srchrn for each keyword search.

Update. A specific file is updated (added or deleted) during the update procedure
shown in Algorithm 2. In addition to receiving the file ind that contains a list of keywords,
the owner will also receive the operation op (add or remove). The owner has access to
the KSKE key, the values of the local state search random Srchrn, and keyword counter
keyCnt. Srchrn will be modified after each distinct keyword is searched for, and keyCnt is
a counter that indicates how many updates have been made for each distinct keyword.
The generation of unique fresh keys for each update operation, resulting in distinct values
for the same keyword on each update, introduces additional computational complexity
cost to the system. However, the significant benefits derived from this practice include
heightened data privacy protection and the alleviation of the need for clients to manage
an extensive array of keys. The system incorporates one private key (KSKE) exclusively
stored with the data owner, reinforcing the security infrastructure. A fresh key Kg is gen‑
erated by using KSKE with a random value Srchrn. Only one search is performed with this
key Kg, and the search engine considers this to have expired once it has been used, so that
users cannot use it again. Through the generation of a fresh key, denoted as Kg, for each
update query, distinct encryption outcomes are achieved during each update operation
(deletion or addition) for the same keyword. This approach aims to prevent information
leakage and uphold the security properties of Type II backward privacy and forward pri‑
vacy. Furthermore, it provides protection against the server by elucidating the underlying
operation (delete or add) inherent in the update query.

Let us examine an illustrative example to elucidate the concept embodied by the entry
(add, ind), signifying a request for the inclusion of a file in the encrypted database. Subse‑
quently, we shall elucidate the operation of the update algorithm in the following manner.
To add a keyword, it must be associated with a file. FileCnt[w] is first checked for con‑
figuration by the owner. When this happens, the counter value keyCnt for w is set to zero,
and Srchrn to a random value. The counter is incremented in both cases (lines 2–4). To
ensure backward privacy and one‑time use when searching, a renewable key Kg is gener‑
ated for each keyword. Next, the owner runs the PRF G with key Kg twice and calculates
G
(
Kg , w

∣∣∣∣ keyCnt[w]
∣∣∣∣0) and G(

Kg , w
∣∣∣∣ keyCnt[w]

∣∣∣∣1). (ind||op) will be encrypted and

J. Sens. Actuator Netw. 2024, 13, 12 10 of 18

stored on the server side at the location Addrw extracted based on the first PRF output.
In contrast, the second PRF output is XORed with the entry (ind||op), resulting in an en‑
crypted value Valw, which is stored by the server (lines 6–7). Apair of addresses and values
(Addrw, Valw) is sent to the server, which stores them as EDB[Addrw] = Valw (line 9).

 Algorithm 1 Setup(λ;⊥)

 Owner:
1: KSKE

$← GenPRF(1λ)
2: EDB, PDB, keyCnt, Srchrn ← empty map
3: ∂← {key Cnt, Srchrn

}
store in Owner

4: Send EDB To the Server side.

 Algorithm 2 Update(∂, f , op, KSKE; EDB)

 Owner:
1: For all w ∈ f
2: I f ∂[w]← {}
3: keyCnt = 0, Srchrn

$← {0, 1}λ

4: keyCnt ++
5: Kg ← G(KSKE, w||Srchrn)
6: Addrw ← G

(
Kg, w

∣∣∣∣ keyCnt[w]
∣∣∣∣0)

7: Valw ← (ind ||op)⊕ G
(
Kg, w

∣∣∣∣ keyCnt[w]
∣∣∣∣1)

8: Send {Addrw, Valw} to server
Server:

9: EDB[Addrw]← Valw

Search. Finally, we describe the algorithm that is used to search for keywords
(Algorithm 3). A request containing a keyword is sent to the ownerwhen the user Uk requests
a search of the encrypted database stored on the cloud server. The owner searches for the
keyword in the local state ∂ maps. A one‑time key Kg is generated for the search and de‑
cryption if it exists, and the user Uk can use this. As well as generating a tag value Kt for w,
the server also returns a list of document identifiers (if any exist) that are a match for w in
the last search query, allowing the server to return the set of documents that match w
(lines 2–3). The key Kg, Kt and the keyword counters keyCnt[w] are sent over a secure chan‑
nel by the owner to Uk. keyCnt[w] represents a cumulative count of the updates made
to w, which is used by Uk when searching for files containing this keyword. By employing
key Kg and counter, a user generates a list Laddr that shows where corresponding entries
in EDB are located. This is accomplished by evaluating the PRF G on input

(
Kg, w

∣∣∣∣i∣∣∣∣0) f or
i = 1, . . . , keyCnt[w]. Since G is a deterministic function, the locations that are calculated
are the same as those obtained during the previous updates to w. The server then receives
the list Laddr of locations (lines 6–9). EDB contains the values of all locations in Laddr, which
the server retrieves from EDB as a result ERes of the search query and the results of previ‑
ous searches from PDB[Kt] (lines 10–15). When the encrypted values ERes are received by
the user, they are decryptedusing the PRF outputs G

(
Kg, w

∣∣∣∣i∣∣∣∣1 f or i = 1, . . . , keyCnt[w]
and then XORed with the i‑th encrypted value and the i‑th PRF output. A key Kg that cor‑
responds to a particular keyword will expire after a search is completed and the value Srchrn
will update. As a result, after the user filters the results Res, the server stores the plaintext
version of the results in the map PDB since is deemed an access pattern leakage that would
be useless if it were encrypted (lines 10–15).

J. Sens. Actuator Netw. 2024, 13, 12 11 of 18

 Algorithm 3 Search(∂, w, KSKE; EDB)

1: User Uk asks the owner to search for keyword w
Owner:

2: Kg ← G(KSKE, w||Srchrn)
3: Kt ← G(KSKE, w)

4: Srchrn
$← {0, 1}λ

5: Send Kg, Kt, keyCnt[w] to user Uk
User Uk:

6: Laddr = {}
7: f or i = 1 to keyCnt[w]
8: Laddr ← Laddr ∪ G

(
Kg, w

∣∣∣∣i∣∣∣∣0)
9: Send {Laddr, Kt} to Server

Server:
10: ERes = {}, Res={}
11: Res← PDB[Kt]
12: f or i = 1 to | Laddr |
14: ERes ← ERes ∪ EDB[Laddr[i]]
15: Delete EDB[Laddr[i]]

Send {ERes, Res} to User Uk
User Uk:

16: f or i = 1 to | ERes |
17: (ind ||op)← ERes[i]⊕ G

(
Kg, w

∣∣∣∣i∣∣∣∣1)
18: I f op = add
19: Res ← Res ∪ind
20: Else
21: Res ← Res /ind
22: Send { Res} to Server

Server:
23: PDB[Kt]← Res

5.2. Security Analysis
Type II backward and forward privacy is achieved by our scheme. As a result of the

pseudorandom nature of G and the fact that the PRF consumes a different input during
each update, forward privacy is assured when the two values (Addrw, Valw) observed by
the server are indistinguishable from random numbers. Servers are not even notified of
which operation has been executed (additions/deletions), so leakage cannot occur. In the
process of querying for ‘w’, the server encounters numerous pseudorandom function (PRF)
evaluations that it has previously encountered during updates, thereby risking potential
breaches of backward privacy. This situation prompts the server to promptly disclose the
timing of each update operation pertaining to ‘w.’ Moreover, the server’s perspective re‑
mains restricted to revealing only the information supplied by the owner, meaning it will
not gain insight into operations such as deletions negating additions or vice versa.

Now that we have declared our scheme secure as the full proof follows later in the
next section, we can state the following theorem:

Theorem 1. Assuming G is a secure PRF, our scheme is an adaptively secure DSSE scheme with

LStup = ⊥, LUpdt (op, w, ind) = ⊥ and LSrch(w) = (TimeDB(w), Updates(w))

6. Experimental Evaluation
6.1. Comparison of the Performance of Our Scheme

Proof of Theorem 1. In our scheme, the transcript is performed as follows: At each up‑
date request, data are stored as (Addr,Val) pairs in the encrypted database EDB on the
server. EDB is initially empty. Also included are lists Laddr of locations of encrypted val‑
ues retrieved from the server when a keyword is searched for. We assume that q is the total

J. Sens. Actuator Netw. 2024, 13, 12 12 of 18

length of the transcript. The simulator Sim operates as follows. On starting, Sim creates an
empty EDB and an empty I list. By randomly sampling from G, Sim calculates (Addr, Val)
during an update query. Let the timestamp of the update be i, and let t be the time it oc‑
curred. An entry in Sim is stored as I(m) = (Addr, Val). Null entries I(m) are returned
for timestamps m that do not correspond to updates. Leakage functions such as TimeDB (w)
and Updates (w) areused in the simulator Sim during akeyword search. Using Updates (w),
the timestamps of previously updated keywords are derived based on the timestamps of
updates from Updates (w), represented as M = (m1, . . . , maw), and the addresses are
sent to the server as they are stored in I(mi) for m = 1, . . . , aw. The inference of document
identifiers containing the search keyword from TimeDB(w) is carried out by the Sim. This
is carried out when a keyword search is completed. Sim is used here to prove the security
of our scheme. □

Game0. In this hybrid, it deals with the real system DSSEReal, as shown in the following
figure.

 b ← DSSEReal
Π
Aq(λ)

1: N ← A
(

1λ
)

; (KSKE, ∂0, EDB0) ← Initialise
(

1λ, N
)

;

2: for n = 1 to q do
3: (typen, indn, wn) ← A

(
1λ, EDB0, t1, . . . , tn−1

)
;

4: if typen = search then
5: (∂n, DB(wn); EDBn) ← Search(KSKE, wn, ∂n−1; EDBn−1)
6: else if typen = update then
7: (∂n; EDBn) ← Update(KSKE, op, (indn, wn), ∂n−1; EDBn−1)

11: b ← A
(

1λ, EDB0, t1, . . . , tq

)
;

12: return b;

P
[

DSSERealΠ
Aq(λ) = 1

]
− P[Game0 = 1] = 0

Game1. This hybrid is the same as for the previous game, except for one difference. A key‑
word’s value G

(
Kg, w

∣∣∣∣ keyCnt[w]
∣∣∣∣m)

 is computed during an update for m and is either
zero or one, and the values are chosen randomly from the range of the function G. q entries
are maintained in a list I. In the case where the i‑th operation is an update, the entry
I(j) = (Addr, Val, w, ind) will be used to save the sampled random values along with
the operation input (w, ind) for j = 1, …, q. If it is not an update operation, the entry
will contain a null value. When searching for a particular keyword w, the game initiates
a scan of I to find entries that are a match for w. Subsequently, the game sends the as‑
sociated Addr values to the server and awaits a response. Afterward, the game conducts
another scan of I to infer Res, which denotes the collection of documents that currently
hold w. This set is then transmitted to the server.

The security of the PRF ensures that Game1 cannot be differentiated from Game0, since
the PRF is never evaluated with the same input during updates in Game0.

P[Game0 = 1]− P[Game1 = 1] ≤ Apr f
G (λ) ≤ negl(λ)

Game2. The game referred to as DSSEIdeal is formally defined in Figure 3a, and utilizes
the Sim simulator as described above. It is evident that the generated transcript adheres to
the same probability distribution as the one created during Game1.

This is because the leakage functions correspond to identical values computed in that
game, and when a uniformly random value rv is selected, the resulting ind||op⊕ rv also
follows a uniform random distribution.

J. Sens. Actuator Netw. 2024, 13, 12 13 of 18

 b ← DSSEIdeal
Π
A,Simq(λ)

1: N ← A
(

1λ
)

; (∂Sim, EDB0) ← SimInitialise
(

1λ, N
)

;

2: for n = 1 to q do
3: (typen, indn, wn) ← A

(
1λ, EDB0, t1, . . . , tn−1

)
;

4: if typen = search then
5: (∂Sim; tn, EDBn) ← SimSearch

(
∂Sim, Lsrch(w n

)
; EDBn−1)

6: else if typen = update then
7: (∂Sim; EDBn) ← SimUpdate

(
∂Sim, Lupdt(wn); EDBn−1

)
11: b ← A

(
1λ, EDB0, t1, . . . , tq

)
;

12: return b;

P
[

DSSEReal
Π
Aq(λ) = 1

]
− P

[
DSSEIdeal

Π
A,Simq(λ) = 1

]
≤ Apr f

G (λ) ≤ negl(λ)

In regard to the accuracy of our approach, it should be mentioned that if G is not a
pseudorandom function (as it is in our implementation), there is a possibility of collisions
arising when calculating Addr and Val for various w and ind pairs. This probability can
be significantly reduced by expanding the range of G.

6.2. Performance Evaluation
The SSMDO [23] and Naja f i [24] share similarities with our proposed approach in

terms of achieving privacy for multiple users, and we, therefore, compared the execution
times of these algorithms. This comparison included evaluating the time taken for index
generation, client storage, and the search process. We carried out these experiments on a
single computer, and the encrypted database was kept in the memory of the same com‑
puter, without the need for a WAN network. Two computers in different countries (Iraq
and the UAE) were used to calculate the round‑trip time for the data, and the result was
approximately 2 ms. Our main focus was to calculate the time spent on searching and
updating operations, in addition to the communication size and the amount of storage
required for each plan on the client side.

To implement the proposed scheme and assess its efficiency, we used the Java lan‑
guage on the Windows 11 operating system, with an x64‑based processor. The compari‑
son schemes were applied to a real dataset called Enron [31]. The selected ranges in the
experimental evaluation, including dataset size, dictionary size, and other parameters, are
pivotal for comprehending the performance and generalizability of the proposed (DSSE)
scheme in real‑world scenarios. The dataset comprises an extensive collection of textual
email exchanges among Enron employees. Notably, the dataset is characterized by its
considerable size, offering a diverse and realistic sample that proves valuable for testing
information retrieval systems. The test resultswere obtained on a computer equippedwith
an Intel(R) Core(TM) i5‑10210U CPU@ 1.60GHz 2.11 GHz, 8GB of RAM, and a 512 GB SSD
hard disk. To enable a comparative analysis of our proposed scheme with existing ones,
the time cost and running time results for SSMDO and Al‑Najafy, as reported in [24], have
been referenced.

Metrics include index generation time, measuring the efficiency of the setup process;
search process efficiency, evaluating the time complexity of the search algorithm; commu‑
nication overhead, quantifying data transmission during operations; storage requirements,
analyzing client‑side storage; and round‑trip time for data transfer, simulating real‑world
scenarios. The Enron [31] dataset served as the foundation for evaluations, conducting ex‑
periments on computers across various countries to authentically assess communication
expenditures. Recognized as an authentic database and a live illustration of the system’s
application in a real‑world environment, this approach allowed for a comprehensive and
realistic evaluation of the system’s performance. The results, analyzed in the experimental
evaluation, reveal the DSSE scheme’s remarkable efficiency in index generation, outper‑

J. Sens. Actuator Netw. 2024, 13, 12 14 of 18

forming existing methodologies. The search process efficiency, communication overhead,
and storage requirements demonstrate the lightweight nature of the design. The round‑
trip time for data transfer showcases the scheme’s practicality in a distributed environment.
The DSSE scheme ensures privacy preservation and exhibits superior efficiency. The com‑
prehensive experimental evaluation validates the approach, with future work focusing on
enhancing system security through a verification mechanism for the authenticity and in‑
tegrity of results.

Index generation. In the proposed scheme, the encrypted index is created by performing
a continuous update process for each keyword. The index is represented as a set of ordered
pairs consisting of a value and a key. We note that our scheme utilizes symmetric encryp‑
tion. The updating procedure exhibits a time complexity of O(1), indicating that as the size
of the encrypted index increases, the required time for the process does not escalate linearly.
This aspect is straightforward in our scheme. In the SSMDO and Naja f i methodologies for
constructing encrypted indexes, the index data structure comprises two numerical compo‑
nents along with a vector component. It also keeps track of the size of the dictionary used in
the system.

The Naja f i approach has two additional numerical components in the index struc‑
ture, meaning that more exponentiation operations need to be performed. The time it
takes to generate the index is influenced by two factors: the number of documents in the
dataset and the total number of keywords defined in the system.

FromFigure 2, we can see the variations in the time it takes to generate an index due to
changes in these two factors across the three different schemes (SSMDO, Naja f i, and our
proposed scheme). By comparing the diagrams, we can see that our scheme performs the
index generation process in a shorter amount of time than the other schemes, indicating
that it is the most efficient in terms of index generation.

J. Sens. Actuator Netw. 2024, 13, x FOR PEER REVIEW 14 of 18

results, analyzed in the experimental evaluation, reveal the DSSE scheme’s remarkable
efficiency in index generation, outperforming existing methodologies. The search pro-
cess efficiency, communication overhead, and storage requirements demonstrate the
lightweight nature of the design. The round-trip time for data transfer showcases the
scheme’s practicality in a distributed environment. The DSSE scheme ensures privacy
preservation and exhibits superior efficiency. The comprehensive experimental evalua-
tion validates the approach, with future work focusing on enhancing system security
through a verification mechanism for the authenticity and integrity of results.

Index generation. In the proposed scheme, the encrypted index is created by per-
forming a continuous update process for each keyword. The index is represented as a set
of ordered pairs consisting of a value and a key. We note that our scheme utilizes sym-
metric encryption. The updating procedure exhibits a time complexity of 𝑂(1), indicat-
ing that as the size of the encrypted index increases, the required time for the process
does not escalate linearly. This aspect is straightforward in our scheme. In the 𝑆𝑆𝑀𝐷𝑂
and 𝑁𝑎𝑗𝑎𝑓𝑖 methodologies for constructing encrypted indexes, the index data structure
comprises two numerical components along with a vector component. It also keeps track
of the size of the dictionary used in the system.

The 𝑁𝑎𝑗𝑎𝑓𝑖 approach has two additional numerical components in the index
structure, meaning that more exponentiation operations need to be performed. The time
it takes to generate the index is influenced by two factors: the number of documents in
the dataset and the total number of keywords defined in the system.

From Figure 2, we can see the variations in the time it takes to generate an index due
to changes in these two factors across the three different schemes (𝑆𝑆𝑀𝐷𝑂, 𝑁𝑎𝑗𝑎𝑓𝑖, and
our proposed scheme). By comparing the diagrams, we can see that our scheme performs
the index generation process in a shorter amount of time than the other schemes, indi-
cating that it is the most efficient in terms of index generation.

(a) (b)

Figure 2. (a) The impact of dataset size variations with a constant dictionary size of n = 50. (b) The
effects of dictionary size variations while maintaining a constant dataset size of m = 262.

Figure 2 shows the time taken to generate an encrypted index in two different sce-
narios. Figure 2a shows the impact of varying the dataset size while keeping the dic-
tionary size constant at n = 50, while Figure 2b shows the effect of varying the dictionary
size while maintaining a constant dataset size of m = 262. The figures provide insights
into how the index generation time changes in relation to these factors.

Trapdoor generation. It should be noted that the schemes under comparison out-
perform our proposed scheme for trapdoor generation. This distinction arises from the
fact that our scheme calculates the locations of values in the encrypted database for a
specific keyword at the client before initiating the search query for that keyword. In

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 0 0 4 0 0 6 0 0 8 0 0

TI
M

E
 FO

R
IN

DE
X

GE
NE

RA
TI

ON
(0

.1
03

 S
)

NO. OF DOCUMENTS IN DATABASE

Najafi_scheme
SSMDO scheme
our_scheme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 0 4 0 6 0 8 0 1 0 0

TI
M

E
FO

R
IN

DE
X

GE
NE

RA
TI

ON
(0

.1
03

 S
)

NO. OF KEYWORDS IN DICTIONARY

SSMDO scheme
Najafi_scheme
our_scheme

Figure 2. (a) The impact of dataset size variations with a constant dictionary size of n = 50. (b) The
effects of dictionary size variations while maintaining a constant dataset size of m = 262.

Figure 2 shows the time taken to generate an encrypted index in two different scenar‑
ios. Figure 2a shows the impact of varying the dataset size while keeping the dictionary
size constant at n = 50, while Figure 2b shows the effect of varying the dictionary size while
maintaining a constant dataset size of m = 262. The figures provide insights into how the
index generation time changes in relation to these factors.

J. Sens. Actuator Netw. 2024, 13, 12 15 of 18

Trapdoor generation. It should be noted that the schemes under comparison outper‑
form our proposed scheme for trapdoor generation. This distinction arises from the fact
that our scheme calculates the locations of values in the encrypted database for a specific
keyword at the client before initiating the search query for that keyword. In contrast, in
our scheme, the time expended by the server in retrieving results is notably quicker than
in comparable schemes. This discrepancy underscores the efficiency of our scheme in the
subsequent comparison.

Search process. The selection of dataset size and dictionary size for experimental
variations is a nuanced process influenced by practical considerations and relevance to
real‑world scenarios. The chosen ranges (100 to 800 for dataset size and 30 to 100 for the
number of keywords) are motivated by several factors. They may reflect realistic expec‑
tations in the application domain, mirroring document or record quantities in a typical
database, and the diversity of searchable terms. Additionally, the ranges enable scalability
assessments, testing the system’s performance with varying dataset and dictionary sizes.
Considerations for resource constraints, trade‑off analysis, benchmarking against other
schemes, and statistical significance underscore the deliberate and comprehensive nature
of the experimental design.

The figures presented above illustrate a direct correlation between the size of the re‑
sult set and the corresponding search time across all schemes, indicating a linear increase in
search time as result size grows. Bilinear pairing plays an important role in the search algo‑
rithm for both the SSMDO andNajafi schemes; however, this imposes a significant compu‑
tational overhead, and the frequency of its application directly impacts the time complexity
of the search algorithm. From Figure 3, we can observe how the time complexity changes
for each scheme as we increase two key factors: the dataset size and the dictionary size.
For all of the executions, our scheme consistently outperformed the Najafi scheme, which
is the only other scheme with the same type of information leakage. The predominant
portion of the time is allocated to client‑side operations within our proposed scheme, with
the server primarily tasked with retrieving precomputed location results, thus minimizing
its computational workload. Figure 3a demonstrates that as the dataset size increases, the
time cost of the search process also increases almost linearly. Interestingly, despite using
the same number of pairings, the SSMDO and Naja f i schemes show a steeper increase
in the search time cost compared to our scheme. This suggests that the search algorithm
used in our approach is more efficient. Furthermore, Figure 3b shows that the time cost
of the search algorithm remains relatively independent of the size of the dictionary; in
other words, the size of the dictionary does not significantly impact the time required for
the search process. Overall, these findings highlight the efficiency and effectiveness of the
proposed scheme’s search algorithm in comparison to the SSMDO and Naja f i schemes,
considering the computational overhead of the bilinear pairing map. This result is not sur‑
prising, since the SSMDO and Naja f i schemes rely on bilinear pairings to achieve privacy
in both directions, whereas our scheme uses symmetric encryption. Figure 3 shows the
time taken for a search operation, measured in terms of the time cost. Figure 3 is divided
into two parts: Figure 3a represents the variations in search time with different dataset
sizes while maintaining a constant dictionary size of n = 50, and Figure 3b showcases the
changes in search time with different dictionary sizes while keeping the dataset size con‑
stant at m = 262. These figures help us understand how the search time is influenced by
these factors.

J. Sens. Actuator Netw. 2024, 13, 12 16 of 18J. Sens. Actuator Netw. 2024, 13, x FOR PEER REVIEW 16 of 18

(a) (b)

Figure 3. (a) The relationship between search time and different dataset sizes, holding a constant
dictionary size of n = 50. (b) The impact of various dictionary sizes on search time, with a fixed
dataset size of m = 262.

7. Conclusions
This paper has presented a searchable symmetric encryption scheme that can be

used to achieve effective access control in a dynamic multi-user environment. We must
contend with two essential properties when designing an SSE scheme: (forward and
backward) privacy and efficiency. Since granular access control faces problems when
used in similar scenarios, an SSE based on simple tools was introduced to achieve high
security and retrieval speed. We also noted the importance of advanced privacy in mul-
ti-user scenarios and showed that our scheme achieved forward and backward privacy
preservation through a security analysis. Extensive experiments also indicated that our
proposed scheme was feasible for real-world scenarios involving multiple users due to
the accounts, storage, and connections used, which meant that our build was lightweight.

The paper identifies potential limitations and outlines areas for future research in
the proposed scheme. It acknowledges the risk of collisions in the pseudorandom func-
tion (𝐺) when calculating 𝐴𝑑𝑑𝑟 and 𝑉𝑎𝑙, suggesting future research to mitigate these
risks through strategies like expanding the function range. Another avenue for im-
provement involves implementing a verification mechanism to ensure the authenticity
and integrity of results, warranting the exploration of robust mechanisms. This addi-
tional layer of security will provide a robust defence against any potential attacks, mak-
ing the system completely secure and reliable. Scalability, resource utilization, real-world
deployment challenges, and extension to different use cases are highlighted as further
research areas. The proposed scheme can also be integrated with fine-grained access
control technology. Additionally, a call for a more quantitative analysis of security
guarantees in various threat models is emphasized for future investigations, aiming to
enhance the proposed scheme’s contributions and practical applicability.

Author Contributions: All authors have contributed equally to this article. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by the Natural Science Foundation of Top Talent of SZTU (grant
No. 20211061010016).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 0 0 4 0 0 6 0 0 8 0 0

TI
M

E
 T

AK
EN

 FO
R

SE
AR

CH

(0
.1

03
 S)

NO. OF DOCUMENTS IN DATABASE

Najafi_scheme
SSMDO scheme
our_scheme

0

0.02

0.04

0.06

0.08

0.1

0.12

3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

TI
M

E
TA

KE
N

FO
R

SE
AR

CH

(0
.1

03
 S)

NO. OF KEYWORDS IN DICTIONARY

SSMDO scheme
Najafi_scheme
our_scheme

Figure 3. (a) The relationship between search time and different dataset sizes, holding a constant
dictionary size of n = 50. (b) The impact of various dictionary sizes on search time, with a fixed
dataset size of m = 262.

7. Conclusions
This paper has presented a searchable symmetric encryption scheme that can be used

to achieve effective access control in a dynamic multi‑user environment. Wemust contend
with two essential properties when designing an SSE scheme: (forward and backward) pri‑
vacy and efficiency. Since granular access control faces problems when used in similar sce‑
narios, an SSE based on simple tools was introduced to achieve high security and retrieval
speed. We also noted the importance of advanced privacy in multi‑user scenarios and
showed that our scheme achieved forward and backward privacy preservation through
a security analysis. Extensive experiments also indicated that our proposed scheme was
feasible for real‑world scenarios involvingmultiple users due to the accounts, storage, and
connections used, which meant that our build was lightweight.

The paper identifies potential limitations and outlines areas for future research in the
proposed scheme. It acknowledges the risk of collisions in the pseudorandom function (G)
when calculating Addr and Val, suggesting future research to mitigate these risks through
strategies like expanding the function range. Another avenue for improvement involves
implementing a verification mechanism to ensure the authenticity and integrity of results,
warranting the exploration of robust mechanisms. This additional layer of security will
provide a robust defence against any potential attacks, making the system completely se‑
cure and reliable. Scalability, resource utilization, real‑world deployment challenges, and
extension to different use cases are highlighted as further research areas. The proposed
scheme can also be integrated with fine‑grained access control technology. Additionally,
a call for amore quantitative analysis of security guarantees in various threat models is em‑
phasized for future investigations, aiming to enhance the proposed scheme’s contributions
and practical applicability.

Author Contributions: All authors have contributed equally to this article. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by the Natural Science Foundation of Top Talent of SZTU (grant
No. 20211061010016).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

J. Sens. Actuator Netw. 2024, 13, 12 17 of 18

References
1. Al Sibahee, M.A.; Lu, S.; Abduljabbar, Z.A.; Liu, X.; Abdalla, H.B.; Hussain, M.A.; Hussien, Z.A.; Ghrabat, M.J.J. Lightweight

secure message delivery for E2E S2S communication in the IoT‑cloud system. IEEE Access 2020, 8, 218331–218347. [CrossRef]
2. Abduljabbar, Z.A.; Jin, H.; Ibrahim, A.; Hussien, Z.A.; Hussain, M.A.; Abbdal, S.H.; Zou, D. Secure Biometric Image Retrieval

in IoT‑Cloud. In Proceedings of the 2016 IEEE International Conference on Signal Processing, Communications and Computing
(ICSPCC), Hong Kong, China, 5–8 August 2016; pp. 1–6.

3. Hussain, M.A.; Hussien, Z.A.; Abduljabbar, Z.A.; Ma, J.; Al Sibahee, M.A.; Hussain, S.A.; Nyangaresi, V.O.; Jiao, X. Provably
throttling SQLI using an enciphering query and secure matching. Egypt. Inform. J. 2022, 23, 145–162. [CrossRef]

4. Abduljabbar, Z.A.; Jin, H.; Ibrahim, A.; Hussien, Z.A.; Hussain, M.A.; Abbdal, S.H.; Zou, D. Sepim: Secure and efficient private
image matching. Appl. Sci. 2016, 6, 213. [CrossRef]

5. Song, D.X.; Wagner, D.; Perrig, A. Practical Techniques for Searches on Encrypted Data. In Proceedings of the 2000 IEEE Sym‑
posium on Security and Privacy, S&P 2000, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.

6. Cash, D.; Jarecki, S.; Jutla, C.; Krawczyk, H.; Roşu,M.‑C.; Steiner,M.Highly‑Scalable Searchable Symmetric Encryptionwith Sup‑
port for Boolean Queries. In Proceedings of the Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, 18–22 August 2013; Proceedings, Part I. Springer: Berlin/Heidelberg, Germany, 2013; pp. 353–373.

7. Lai, S.; Patranabis, S.; Sakzad, A.; Liu, J.K.; Mukhopadhyay, D.; Steinfeld, R.; Sun, S.‑F.; Liu, D.; Zuo, C. Result Pattern Hid‑
ing Searchable Encryption for conjunctive Queries. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 745–762.

8. Abduljabbar, Z.A.; Ibrahim, A.; Hussain, M.A.; Hussien, Z.A.; Al Sibahee, M.A.; Lu, S. EEIRI: Efficient encrypted image retrieval
in IoT‑cloud. KSII Trans. Internet Inf. Syst. (TIIS) 2019, 13, 5692–5716.

9. Sun, S.‑F.; Zuo, C.; Liu, J.K.; Sakzad, A.; Steinfeld, R.; Yuen, T.H.; Yuan, X.; Gu, D. Non‑interactive multi‑client searchable
encryption: Realization and implementation. IEEE Trans. Dependable Secur. Comput. 2020, 19, 452–467. [CrossRef]

10. Huaze, L.; Kaiping, X.; David, S.L.W.; Ruidong, L. An efficient multi‑user multi‑keyword fuzzy search scheme over encrypted
cloud storage. J. Univ. Sci. Technol. China 2021, 51, 1361–1382.

11. Sun, S.‑F.; Liu, J.K.; Sakzad, A.; Steinfeld, R.; Yuen, T.H. An Efficient Non‑Interactive Multi‑Client Searchable Encryption with
Support for Boolean Queries. In European Symposium on Research in Computer Security; Springer: Berlin/Heidelberg, Germany,
2016; pp. 154–172.

12. Du, L.; Li, K.; Liu, Q.; Wu, Z.; Zhang, S. Dynamic multi‑client searchable symmetric encryption with support for boolean queries.
Inf. Sci. 2020, 506, 234–257. [CrossRef]

13. Al Sibahee, M.A.; Lu, S.; Abduljabbar, Z.A.; Ibrahim, A.; Hussien, Z.A.; Mutlaq KA, A.; Hussain, M.A. Efficient encrypted image
retrieval in IoT‑cloud with multi‑user authentication. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718761814. [CrossRef]

14. Kamara, S.; Papamanthou, C. Parallel and Dynamic Searchable Symmetric Encryption. In International Conference on Financial
Cryptography and Data Security; Springer: Berlin/Heidelberg, Germany, 2013; pp. 258–274.

15. Kamara, S.; Papamanthou, C.; Roeder, T. Dynamic Searchable Symmetric Encryption. In Proceedings of the 2012 ACM Confer‑
ence on Computer and Communications Security, Raleigh, NC, USA, 16–18 October 2012; pp. 965–976.

16. Chang, Y.‑C.; Mitzenmacher, M. Privacy Preserving Keyword Searches on Remote Encrypted Data. In International Conference
on Applied Cryptography and Network Security; Springer: Berlin/Heidelberg, Germany, 2005; pp. 442–455.

17. Bost, R. ∑ oφoς: Forward Secure Searchable Encryption. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 1143–1154.

18. Stefanov, E.; Papamanthou, C.; Shi, E. Practical Dynamic Searchable Encryption with Small Leakage. Cryptology ePrint Archive
2013.

19. Etemad, M.; Küpçü, A.; Papamanthou, C.; Evans, D. Efficient dynamic searchable encryption with forward privacy. Proc. Priv.
Enhancing Technol. 2018, 2018, 5–20. [CrossRef]

20. Huang, Y.; Lv, S.; Liu, Z.; Song, X.; Li, J.; Yuan, Y.; Dong, C. Cetus: An efficient symmetric searchable encryption against file‑
injection attack with SGX. Sci. China Inf. Sci. 2021, 64, 182314. [CrossRef]

21. Bost, R.; Minaud, B.; Ohrimenko, O. Forward and Backward Private Searchable Encryption from Constrained Cryptographic
Primitives. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA,
30 October–3 November 2017; pp. 1465–1482.

22. Zhang, K.; Wen, M.; Lu, R.; Chen, K. Multi‑client sub‑linear boolean keyword searching for encrypted cloud storage with owner‑
enforced authorization. IEEE Trans. Dependable Secur. Comput. 2020, 18, 2875–2887. [CrossRef]

23. Guo, Z.; Zhang, H.; Sun, C.; Wen, Q.; Li, W. Secure multi‑keyword ranked search over encrypted cloud data for multiple data
owners. J. Syst. Softw. 2018, 137, 380–395. [CrossRef]

24. Najafi, A.; Bayat, M.; Javadi, H.H.S. Fair multi‑owner search over encrypted data with forward and backward privacy in cloud‑
assisted Internet of Things. Future Gener. Comput. Syst. 2021, 124, 285–294. [CrossRef]

25. Kim, K.S.; Kim, M.; Lee, D.; Park, J.H.; Kim, W.‑H. Forward Secure Dynamic Searchable Symmetric Encryption with Efficient
Updates. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA,
30 October–3 November 2017; pp. 1449–1463.

26. Cash, D.; Tessaro, S. The Locality of Searchable Symmetric Encryption. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2014; pp. 351–368.

https://doi.org/10.1109/ACCESS.2020.3041809
https://doi.org/10.1016/j.eij.2022.10.001
https://doi.org/10.3390/app6080213
https://doi.org/10.1109/TDSC.2020.2973633
https://doi.org/10.1016/j.ins.2019.08.014
https://doi.org/10.1177/1550147718761814
https://doi.org/10.1515/popets-2018-0002
https://doi.org/10.1007/s11432-020-3039-x
https://doi.org/10.1109/TDSC.2020.2968425
https://doi.org/10.1016/j.jss.2017.12.008
https://doi.org/10.1016/j.future.2021.06.010

J. Sens. Actuator Netw. 2024, 13, 12 18 of 18

27. Naveed, M.; Prabhakaran, M.; Gunter, C.A. Dynamic Searchable Encryption via Blind Storage. In 2014 IEEE Symposium on
Security and Privacy; IEEE: Berlin/Heidelberg, Germany, 2014; pp. 639–654.

28. Chatterjee, S.; Puria, S.K.P.; Shah, A. Efficient backward private searchable encryption. J. Comput. Secur. 2020, 28, 229–267.
[CrossRef]

29. Yang, J.; Liu, F.; Luo, X.; Hong, J.; Li, J.; Xue, K. Forward PrivateMulti‑Client Searchable Encryptionwith Efficient Access Control
in Cloud Storage. In GLOBECOM 2022‑2022 IEEE Global Communications Conference; IEEE: Berlin/Heidelberg, Germany, 2022;
pp. 3791–3796.

30. Alyousif, A.; Yassin, A.; Abduljabbar, Z.; Xu, K. Improving the performance of searchable symmetric encryption by optimizing
locality. J. Basrah Res. 2023, 49, 102–113. [CrossRef]

31. Enron Email Dataset. Available online: https://www.cs.cmu.edu/~enron/ (accessed on 10 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3233/JCS-191322
https://doi.org/10.56714/bjrs.49.1.9
https://www.cs.cmu.edu/~enron/

	Introduction
	Previous Work
	Problem Statement
	System Model
	Security Assumptions
	Design Objectives

	Preliminaries
	Notation
	Forward and Backward Privacy and Leakage Functions

	Proposed Forward and Backward Multi-User Scheme
	Overview
	Security Analysis

	Experimental Evaluation
	Comparison of the Performance of Our Scheme
	Performance Evaluation

	Conclusions
	References

