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Abstract: Modern forestry systems rely on typologies of forest types (FTs). In Argentina, several
proposals have been developed, but they lack unified criteria. The objective was to compare different
approaches, specifically focusing on (i) phenoclusters (functional forests based on vegetation phe-
nology variations and climate variables) and (ii) forest canopy cover composition by tree species.
We conducted comparative uni-variate analyses using data from national forest inventories, forest
models (biodiversity, carbon, structure), and regional climate. We assessed the performance of phe-
noclusters in differentiating the variability of native forests (proxy: forest structure), biodiversity
(proxy: indicator species), and environmental factors (proxies: soil carbon stock, elevation, climate).
Additionally, we proposed a simple FT classification methodology based on species composition,
considering the basal area of tree species. Finally, we compared the performance of both proposals.
Our findings showed that classifications based on forest canopy cover composition are feasible to
implement in regions dominated by mono-specific forests. However, phenoclusters allowed for the
increased complexity of categories at the landscape level. Conversely, in regions where multi-specific
stands prevailed, classifications based on forest canopy cover composition proved ineffective; how-
ever, phenoclusters facilitated a reduction in complexity at the landscape level. These results offer
a pathway to harmonize national FT classifications by employing criteria and indicators to achieve
sustainable forest management and conservation initiatives.

Keywords: native forests; forest resources; phenoclusters; forest structure and function; sustainable
forest management

1. Introduction

Forest management and conservation planning are crucial for maximizing imple-
mentation efficiency across territories and contributing to both national and international
agreements [1–3]. Argentina, in particular, has emerged as a global priority for urgent
conservation action due to its rich biodiversity, essential ecosystem services, and decreasing
rates of habitat loss [4,5]. While various assessments of global management and conserva-
tion priorities exist, such as sustainable forest management practices (e.g., silvopastoral
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systems) or expanding protected area networks to enhance biodiversity conservation [6,7],
developing optimal management and conservation strategies necessitates a deeper un-
derstanding of natural ecosystems [8–10]. To design effective forest management and
conservation strategies, specific tools based on ecological and functional characteristics are
essential. Mapping forest tree species and forest types (FTs) plays a crucial role in habitat
and biodiversity assessment, as well as in proposing specific management strategies for
natural forest resources [9,11–15]. However, mapping FT for large areas (e.g., the country
level) using ground-based data is often logistically challenging [12,16], being more fre-
quent in temperate cold forests with simple and predictable stand structures than complex
rainforests in the tropics [17,18].

Argentina promulgated National Law 26,331/07, known as “Minimum Budgets for
Environmental Protection of the Native Forests”, which includes forest management pro-
posals aimed at social awareness, changes in forest covers, administrative restrictions on
forest removal, and long-term forest policies considering resilient socio-economic pro-
posals [1]. Many tools were developed to improve the management and conservation of
native forests, e.g., land cover [19,20], forest structure variables [21], potential biodiversity
indices [22], soil carbon stocks [23], hotspots of biodiversity conservation concern [24],
or human footprint modeling [7]. The National Government of Argentina has proposed
seven administrative regions for the nearly 40 million hectares of native forests [25,26],
facilitating regional policies and the implementation of goals outlined in National Law
26,331/07 across the territory [6,27]. However, various institutions have implemented their
own criteria for forest management, leading to differences in implementation approaches,
e.g., National Parks Administration [27–29]. Furthermore, Argentina has signed interna-
tional agreements such as the Kyoto Protocol and the Paris Agreement, implementing the
“National Plan for Adaptation and Mitigation to Climate Change”, with key targets focused
on native forests using initiatives like REDD+ (Reducing Emissions from Deforestation
and Forest Degradation). They propose actions that include reducing deforestation and
degradation and promoting sustainable management. In this framework, national and
provincial governments need accurate information to develop specific policies.

Current global forest maps (e.g., [30,31]) provide valuable information without consider-
ing differences in FT. Nonetheless, they still contribute to various conservation efforts [32–34].
In Argentina, mapping natural ecosystems (e.g., forest and non-forest areas) has been
ongoing for the past 50 years, initially based on floristic and physiographic characteristics
(e.g., [35–38]). Recent advancements in remote sensing and landscape modeling have
enhanced these initial efforts. For instance, Morello et al. [29] categorized Argentina into
115 distinct units, integrating social and biophysical perspectives. Oyarzabal et al. [39] fur-
ther refined this by proposing phyto-geographic units in digital format. Derguy et al. [40]
introduced a novel approach based on Holdridge life zones, incorporating climate and soil
characteristics. More recently, Silveira et al. [14] introduced a ground-breaking perspective
by incorporating vegetation phenology variations (e.g., event timing and greenness) within
FT and species or climate variation (hereafter named phenoclusters) to classify native
forests using remote sensing. Phenoclusters require a combination of land surface phenol-
ogy (both vegetation phenological events and greenness measures) and climate variables to
characterize functional rather than structural or compositional characteristics of ecosystems
while considering the geographical distributions of species [14]. The advantage of using
phenoclusters to characterize native forests is that they capture phenology and climate
gradients among and within FTs and/or tree species in places with no field data. The cyclic
and seasonal greenness information provided by phenoclusters is useful for management
efforts for biodiversity, particularly to inform strategic location planning, and can be useful
for places where forest ecological information is limited and conservation needs are high,
such as in many developing countries [14]. This product was developed for the native
forests of Argentina, dividing them into 54 categories across the different forest regions in
high-resolution maps (30 m pixel).
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Zoning serves as a vital tool for the Argentinian Government to regulate human
activities in native forests, where provinces are required to define land use zones, which are
updated every five years. However, the lack of precise tools for classifying forests across
landscapes poses a significant challenge. There are considerable differences in the interpre-
tation of the “forest” concept across various administrative processes in Argentina (see [41]).
Consequently, ensuring the effectiveness of sustainable forest policies remains a primary
challenge for governments, necessitating the exploration of new alternatives to bridge this
knowledge gap. Presently, existing classifications operate at large scales, often resulting
in the inadequate representation of many ecosystems within national forest regions [6].
Modern rational forestry systems rely on forest typologies [42] for their implementation.
One traditional approach involves classifying forest ecosystems into FTs characterized
by distinctive attributes and composed of specific sets of tree species within a particular
area [43], where each country may adapt this system to suit its unique circumstances
and needs [44]. For this, many alternatives can be implemented by including taxonomy,
assemblage of species, phenology, growth and development phases, soil, topography, etc.
(e.g., [45–48]). While many classifications are theoretically grounded, few explore practical
implementation issues allowing for the feasibility of implementation in the field. Huertas
Herrera et al. [49], for example, proposed an alternative FT classification in Southern Chile
based on the contribution of the basal area (BA) of each species in the stand. This approach
utilizes forest inventory data and can be readily replicated by technicians or researchers.

Currently, various FT classifications are in use for zoning and planning native forests
at national or regional scales in Argentina. However, these classifications lack unified
criteria across different levels and are often based on limited field data (e.g., legends used
by MAyDS during the implementation of different initiatives) [25,26]. Many of these classi-
fications highlight the underrepresentation of certain FT classes in the landscape or include
dominant species with little effective representation within the native forests. In this context,
there is a need to develop a unified methodological proposal for determining, classifying,
and characterizing the different FTs of native forests in Argentina. This proposal should be
based on easily measurable metrics obtained during forest inventories at different scales.
The objective was to compare two different approaches to FT classification in Argentina
based on (i) functional forests (phenoclusters) and (ii) forest canopy cover composition by
tree species. The aim was to create country-level FT classifications that emphasize the role
of native forests in different regions, ranging from temperate forests to rainforests. These
classifications should be valuable for decision-making, management and conservation
policies, and scientific research and should be flexible enough to accommodate updates,
considering the potential impact of climate change and human modifications on the original
characteristics or distributions of tree species. The specific objectives were to (i) determine
the performance of phenoclusters to differentiate the variability of native forest characteris-
tics (proxy: forest structure), potential biodiversity (proxy: potential habitat of indicator
species), and environment where they grow (proxies: soil carbon stock, elevation, regional
climate); (ii) determine the performance of phenoclusters to capture different ecological
relationships among the studied variables; (iii) propose a simple classification methodology
based on forest canopy cover composition by tree species; and, finally, (iv) compare both
approaches of FT classifications and discuss the feasibility of implementation across Ar-
gentina. By addressing these objectives, we aimed to develop a robust and comprehensive
FT classification system that enhances our understanding of native forests in Argentina
and supports informed decision-making and conservation efforts.

2. Materials and Methods
2.1. Study Area

The study area was the native forests of Argentina, distributed between 20◦ and 60◦ SL
and between 50◦ and 80◦ WL across 24 administrative provinces. The National Government
of Argentina has divided the native forests into distinct administrative regions [6], including
(Figure 1A) (i) Andean–Patagonian forests composed of insular forests of Tierra del Fuego
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(TDF) and continental forests along the Andes Mountains (PAT); (ii) Delta and the islands
of Paraná river (DEL), which occupy a narrow strip of forests from north to south in NE
Argentina; (iii) Espinal forests (ESP); (iv) Monte forests (MON); (v) Parque Chaqueño
forests (PCH); (vi) Yunga rainforests (YUN); and (vii) Atlantic forests (AF) [25,26]. We used
a mask of native forest cover for further analyses, as proposed by Silveira et al. [14], which
included areas with trees taller than 5 m in height and with 10% canopy cover using the
Global Forest Change dataset [30].
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Figure 1. (A) Plot distribution of the Second National Forest Inventory by forest region
(TDF = Tierra del Fuego forests, PAT = continental forests along the Andes Mountains, ESP = Es-
pinal forests, MON = Monte forests, PCH = Parque Chaqueño forests, YUN = Yunga rain-
forests, AF = Atlantic forests) and (B) diversity of forest types (n every 250 km2, FT-1) (see
Supplementary Material Tables S1–S3).

2.2. Forest Type Classification Based on Phenoclusters

The first FT classification proposal used the functional forest categories (phenoclusters)
proposed by Silveira et al. [14] based on land surface phenology, climate patterns, the
normalized difference vegetation index (NDVI), and other related indexes, and is available
in a GRID of 30 m spatial resolution. This layer included 54 categories, divided by forest
regions as described before. To test the performance of the phenoclusters as potential
FT classifications, we used different available products for the forest regions across Ar-
gentina, including the following. (i) The potential biodiversity index (RICH) developed
by Martinuzzi et al. [22] for the different forest regions, except the Monte forests, where
few available native forest data exist. A layer presented one index (0–100) based on the
potential habitat of indicator species by forest region (n = 80 high-profile species of trees,
birds, and mammals associated with native forests and representative of each specific forest
region) and is available in a GRID of 1 km spatial resolution. (ii) Soil organic carbon stock
(SOC, ton·ha−1 in the first 30 cm soil layer) developed by Peri et al. [23] for the different
forest regions, which is available in a GRID of 200 m spatial resolution. (iii) Forest structure
variables modeled by Silveira et al. [21], including BA (m2·ha−1), crown cover (CC, %),
dominant tree height (DH, m), and total over bark volume (TOBV, m3·ha−1) for the different
forest regions, which are available in GRIDs of 30 m spatial resolution. (iv) Elevation (ELE,
m.a.s.l.) was derived from the SRTM (shuttle radar topography mission) [50], which is
available in GRIDs of 30 m spatial resolution. (iv) Climate variables, where we extracted
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the annual mean temperature (AMT, ◦C), iso-thermality (ISO), and annual precipitation
(AP, mm·yr−1) from WorldClim 2 [51], available in GRIDs of 1 km spatial resolution.

For data extraction of these layers, we employed the hexagonal binning technique, a
spatial methodology that offers the advantage of integrating different pixels (e.g., averaging
values for each pixel) within polygonal regions to effectively capture spatial patterns [52].
We implemented a hexagonal binning process that involved one spatial matrix dividing the
territory of Argentina into hexagonal areas of 5000 ha each [13,53]. We excluded hexagons
that presented less than 10% of native forest cover (e.g., <500 ha at each hexagon). Then,
we obtained the mean data values for the different studied variables, and the most frequent
phenocluster category at each hexagon was selected for further analyses.

2.3. Forest Type Classification Based on Forest Canopy Cover Composition by Tree Species

For the second FT classification proposal, we used forest canopy cover composition
by tree species as the main variable to construct a classification. We obtained the forest
structure information and tree species assemblages from 3788 field plots (Figure 1A),
corresponding to the Second National Forest Inventory (NFI2, 2015–2020) collected by the
National Government of Argentina [54]. Detailed information on NFI2 is at SGAyDS [26].
This inventory was carried out on a systematic grid of 10 km × 10 km, measuring all trees
classified at the species level. From this, we calculated the total basal area (BA, m2·ha−1),
tree density (DEN, n·ha−1), dominant tree height (DH, m), mean tree height (MH, m), and
tree regeneration (REG, n·ha−1). Elevation (ELE) and regional climate variables (AMT, AP)
were also extracted to characterize these plots (see [13]).

For this second FT classification proposal, each categorization was defined as the
contribution of different tree species to the total BA in each plot, regardless of the tree
dominance. Firstly, we determined the tree canopy composition, defining a minimum
threshold (70% of BA) to analyze each plot, following Huertas Herrera et al. [49]: (i) the
stands were considered as mono-specific (MONO) when at least 70% of BA was achieved
by a single tree species, (ii) bi-specific (BI) when two tree species were necessary to achieve
at least 70% of BA, and (iii) multi-specific (MULTI) when more than two tree species were
necessary to reach at least 70% of BA.

The FT classification proposal based on forest canopy cover composition by tree
species included three levels. (i) The most general level (Level 1, FT-1) classified the forest
typologies using only the name of the most dominant and representative tree genus or
the name of the most frequent botanical family involved in plots (e.g., Prosopis + others,
Myrtaceae + others). (ii) The intermediate level increased the number of categories (Level 2,
FT-2) and considered the scientific name of the most abundant tree species in the BA
contribution or, in some cases, we used the most frequent botanical family (e.g., Prosopis
alba + others, Euphorbiaceae + others). (iii) Finally, the more detailed classification (Level
3, FT-3) considered the scientific names of the most important tree species (e.g., Prosopis
alba, Prosopis nigra + Vachellia caven + Geoffroea decorticans). These levels increased in a
number of categories and complexity for different purposes, e.g., as a tool for policymakers
in the proposal design of forest management and conservation at the regional scale (FT-1),
planning at the regional or local scale (FT-2), or more specific uses, as for technical–scientific
studies (FT-3).

Native tree species were classified according to their respective taxonomic divisions
and botanical families following the Catalogue of Vascular Plants of the Southern Cone [55].
Exotic tree species (e.g., Ligustrum lucidum) or species without taxonomic determination
within the database were not considered in the calculations. However, none of these
particular cases was detected as dominant trees in any of the analyzed plots.

2.4. Statistical Analyses

One-way analysis of variance (ANOVA) was conducted to determine the performance
of the FT classification based on phenoclusters in order to differentiate the variability
of native forest characteristics by forest regions (TDF, PAT ESP, MON, PCH, YUN, AF),
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comparing potential biodiversity index (RICH), soil organic carbon stock (SOC), forest
structure (BA, CC, DH, TOBV), elevation (ELE), and regional climate (AMT, ISO, AP). FT
classification based on phenoclusters was also graphically compared at the country level
according to elevation (ELE) and regional climate variables (AMT, ISO, AP) to identify
the gradients of the different categories for each forest region. FT classification based on
phenoclusters was compared across gradients of SOC and forest structure variables (BA, CC,
DH, TOBV), identifying relationships among them and the performance of phenoclusters
categories. These relationships were described through linear models and their r2-adj.

FT classification based on forest canopy cover composition by tree species was cate-
gorized using the NFI2 plots (n = 3741) in the seven forest regions (TDF, PAT, ESP, MON,
PCH, YUN, AF). We quantified how many categories of FT existed for the three defined
levels (FT-1, FT-2, FT-3) and their canopy composition (MONO, BI, MULTI) for the entire
country and by forest regions, including the categories of FT classification based on phe-
noclusters. These analyses were mapped into a geographical information system (GIS)
for each forest region. The means and standard deviations (SDs) for Level 1 (FT-1) were
graphically compared for the different forest regions (AMT vs. AP). Finally, we graphically
determined the diversity of FT based on forest canopy cover composition by tree species
at the landscape level, using Level 1 (FT-1) of the proposed classification based on forest
canopy cover composition by tree species. For this, we applied a 33 × 33 pixel moving
window within a 50 km × 50 km grid based on NFI2 plots (n = 3741) into the GIS. Through
this analysis, we could assign a number of different FTs at each window by referring to
its central pixel. We chose this moving window size because it accommodated an area
large enough to encompass animals’ territories while capturing relatively fine-resolution
landscape features [14,56]. To obtain the final map, we crossed this analysis with the forest
cover mask described before. The resulting map varied between values from 0 to 14, where
the diversity of FT was expressed for each pixel in a surrounding area of 50 km × 50 km,
allowing us to determine the diversity of FT at the landscape level.

3. Results
3.1. Forest Type Classification Based on Phenoclusters

The number of phenocluster categories (n = 54) obtained during modeling changed
across the different forest regions of Argentina, e.g., TDF (n = 6), PAT (n = 7), DEL (n = 3),
ESP (n = 5), MON (n = 4), PCH (n = 17), YUN (n = 6), and AF (n = 6). Some of these
phenocluster categories were not analyzed in our study due to their limited occurrence in
the landscape, e.g., phenocluster categories of the DEL region, one category at PAT, and
one category at AF, which did not include plots of NFI2 (Figure 2). The FT classification of
phenoclusters presented significant differences for all the studied variables in the studied
forest regions, except in MON for mean annual temperature (AMT) (Table 1), where no
differences were found. In Tierra del Fuego forests (TDF), the phenoclusters at the lowlands
presented higher RICH than at the mountains, with higher AMT and lower ISO and AP.
The climate and relief influence over the SOC and forest structure of phenoclusters showed
a north–south gradient. In the continental forests along the Andes Mountains (PAT), greater
RICH and SOC were found in phenoclusters of mountains than in those of valleys and
ecotone forests with the steppe, presenting higher forest structure values. In this region,
the climate changed across two gradients: north–south due to latitude and west–east due
to relief. These gradients greatly influenced phenoclusters too as some categories only
occurred in northern Patagonia, where the climate is less harsh. In Espinal forests (ESP), the
xeric phenoclusters presented lower values of RICH, SOC, and forest structure compared
to those phenoclusters growing in humid areas. In Monte forests (MON), the phenoclusters
slightly differed, where SOC was associated with lower forest structure values growing
at middle elevations and annual rainfall. In Parque Chaqueño forests (PCH), RICH was
greater in phenoclusters occurring in northeast areas, while SOC was greater in northwest
phenoclusters, decreasing to the south. Iso-thermality and RCH were closely related among
phenoclusters. Forest structure greatly varied among the different phenoclusters, but, in
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the general trend, the forest structure variables of the phenoclusters were related to SOC
and influenced by regional climate (drier in the west than the east). In Yunga rainforests
(YUN), phenoclusters located at the center and center-east presented higher RICH and
SOC than at higher elevations. Phenoclusters presented higher SOC in closed (CC) and
taller (HD) forests. Finally, in the Atlantic forests (AF), the phenoclusters with higher RICH
presented also higher SOC and forest structure values, where these phenoclusters occurred
in more temperate areas but with higher ISO and AP.
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Table 1. Analyses of variance comparing phenocluster categories (PHE) at each forest region
(TDF = Tierra del Fuego forests, PAT = continental forests along the Andes Mountains, ESP = Espinal
forests, MON = Monte forests, PCH = Parque Chaqueño forests, YUN = Yunga rainforests, AF = At-
lantic forests). We analyzed potential biodiversity index (RICH), soil organic carbon stock (SOC,
ton·ha−1 30 cm), basal area (BA, m2·ha−1), crown cover (CC, %), dominant tree height (DH, m), total
over bark volume (TOBV, m3·ha−1), elevation (ELE, m.a.s.l.), annual mean temperature (AMT, ◦C),
iso-thermality (ISO), and annual precipitation (AP, mm·yr−1).

REGION PHE RICH SOC BA CC DH TOBV ELE AMT ISO AP

TDF

1 80.2 bc 154.4 b 41.9 ab 66.4 a 18.6 b 299.7 ab 421.2 d 3.5 a 51.6 c 655.6 e
2 61.4 a 163.3 b 37.8 a 74.1 c 20.9 c 207.5 a 217.0 bc 4.3 bc 51.2 c 506.5 c
3 88.1 c 163.6 b 56.7 d 69.3 ab 20.7 c 373.9 b 203.9 b 4.6 c 49.9 b 448.1 b
4 90.1 c 140.5 a 44.9 b 67.7 a 15.7 a 238.1 a 107.2 a 5.1 d 48.6 a 385.6 a
5 70.1 b 160.3 b 52.9 cd 66.4 a 18.7 b 331.5 b 382.9 d 3.7 a 51.0 c 533.6 d
6 57.5 a 161.9 b 42.6 ab 73.3 bc 21.6 c 258.7 a 289.7 d 4.1 ab 51.1 c 521.7 cd

F
(p)

77.54
(<0.001)

51.45
(<0.001)

22.66
(<0.001)

9.64
(<0.001)

34.56
(<0.001)

26.02
(<0.001)

36.20
(<0.001)

41.66
(<0.001)

132.00
(<0.001)

345.81
(<0.001)

PAT

7 62.4 b 137.9 c 34.3 a 70.0 c 18.7 bc 250.4 a 1062.5 a 7.0 c 52.4 c 1046.7 d
8 66.6 b 154.8 e 36.8 a 71.7 c 19.1 c 254.9 a 1013.4 a 6.8 c 51.0 b 1167.5 e
9 66.3 b 150.1 d 43.6 b 72.4 c 20.6 d 333.2 b 1123.2 a 6.1 b 51.4 b 1273.9 f

11 48.3 a 127.0 b 34.2 a 65.5 b 17.0 b 243.2 a 1385.1 b 5.8 ab 52.4 c 785.0 b
12 49.1 a 126.7 b 34.6 a 65.8 b 17.7 b 235.7 a 1355.2 b 6.1 b 52.5 c 899.0 c
13 49.5 a 119.1 a 36.6 a 62.3 a 15.2 a 240.0 a 1078.9 a 5.5 a 49.3 a 588.9 a

F
(p)

31.41
(<0.001)

183.20
(<0.001)

11.08
(<0.001)

67.19
(<0.001)

64.57
(<0.001)

17.23
(<0.001)

35.62
(<0.001)

24.53
(<0.001)

61.28
(<0.001)

932.19
(<0.001)

ESP

17 19.5 b 39.0 b 10.3 a 46.4 b 7.7 b 45.9 b 315.0 d 15.9 b 48.6 c 576.3 b
18 3.2 a 33.9 a 10.2 a 37.6 a 6.9 a 35.8 a 155.2 c 15.1 a 47.5 a 445.3 a
19 39.0 cd 81.6 d 17.2 d 66.4 e 12.4 e 118.1 e 47.7 a 18.7 c 47.9 ab 1226.0 d
20 36.2 c 73.1 c 13.5 c 60.7 d 9.8 d 91.6 d 80.4 b 18.8 c 48.0 b 1068.8 c
21 39.2 d 77.3 d 12.4 b 55.9 c 8.4 c 82.5 c 58.5 a 18.9 d 47.5 a 1064.1 c

F
(p)

733.59
(<0.001)

5368.24
(<0.001)

182.12
(<0.001)

1118.24
(<0.001)

468.36
(<0.001)

1323.15
(<0.001)

824.95
(<0.001)

4599.80
(<0.001)

196.28
(<0.001)

6567.81
(<0.001)

MON

22 -- 36.5 a 5.9 a 27.9 a 6.2 ab 28.0 ab 185.1 a 15.5 48.4 a 292.9 b
23 -- 39.4 b 6.3 a 28.5 a 6.0 a 25.6 a 448.5 b 15.4 48.3 a 289.9 b
24 -- 36.6 a 7.6 bc 30.4 b 6.3 b 35.8 c 1461.7 c 15.6 50.4 b 194.6 a
25 -- 36.8 a 8.3 c 32.7 b 6.5 b 31.9 bc 202.1 a 15.6 48.1 a 361.4 c

F
(p) -- 7.99

(<0.001)
18.49

(<0.001)
6.70

(<0.001)
8.58

(<0.001)
38.13

(<0.001)
196.66

(<0.001)
0.98

(0.400)
40.17

(<0.001)
207.66

(<0.001)

PCH

38 30.6 f 58.6 f 13.8 i 60.5 c 10.7 f 81.9 jk 858.3 f 17.5 b 50.1 cd 596.2 b
39 30.1 f 69.0 k 11.6 ef 66.6 e 9.5 bc 66.1 fgh 71.4 a 19.9 d 49.8 c 987.2 j
40 35.3 g 58.0 f 13.6 hi 64.3 d 11.2 gh 85.5 k 638.7 e 19.4 c 51.7 gh 642.4 de
41 18.3 b 41.5 b 10.7 d 45.4 a 7.6 a 55.5 d 925.3 g 16.8 a 49.3 b 527.7 a
42 56.2 j 61.6 h 12.6 g 73.2 i 10.1 d 66.1 gh 131.7 b 22.4 k 54.3 j 847.7 i
43 29.9 f 60.9 gh 11.4 e 66.9 ef 10.1 d 57.5 de 155.0 b 21.4 fg 51.3 fg 801.7 h
44 42.4 h 59.8 fg 12.0 f 70.0 h 10.7 ef 64.8 fg 215.1 c 22.1 i 52.5 i 766.2 g
45 23.9 d 48.7 d 10.0 c 60.7 c 9.5 b 47.1 c 305.9 d 20.6 e 50.2 cd 621.5 cd
46 34.9 fg 69.6 k 11.7 ef 65.9 de 10.0 cd 59.5 de 280.5 bcd 22.3 jk 51.5 fgh 791.7 gh
47 20.8 c 53.8 e 9.8 c 59.6 c 9.4 b 45.8 c 232.9 cd 20.5 e 50.3 d 662.9 e
48 26.5 e 47.0 c 9.2 b 59.7 c 9.5 b 42.4 b 253.4 d 21.4 fg 50.7 e 609.7 bc
49 5.6 a 36.7 a 7.3 a 48.1 b 7.9 a 26.9 a 223.0 cd 20.4 e 48.0 a 530.4 a
50 39.1 g 62.5 hi 12.6 g 68.5 fg 10.3 d 68.1 h 334.7 d 21.8 hi 51.9 h 708.3 f
51 49.1 i 64.3 ij 13.6 i 68.2 g 11.3 h 81.0 j 78.4 a 21.7 gh 51.5 g 1126.7 k
52 39.3 gh 53.8 e 14.7 j 76.1 j 11.7 h 86.1 jk 256.3 bcd 22.3 hij 53.1 i 652.3 cde
53 38.1 g 64.6 j 13.3 h 66.7 e 10.9 fg 76.9 i 77.1 a 21.5 fgh 51.4 fg 1160.3 l
54 29.8 ef 66.4 jk 11.8 ef 63.0 d 10.3 de 61.0 ef 112.9 ab 20.4 e 50.9 ef 1017.8 j

F
(p)

460.20
(<0.001)

784.09
(<0.001)

588.23
(<0.001)

725.22
(<0.001)

369.69
(<0.001)

739.89
(<0.001)

1044.68
(<0.001)

963.78
(<0.001)

331.25
(<0.001)

2617.41
(<0.001)
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Table 1. Cont.

REGION PHE RICH SOC BA CC DH TOBV ELE AMT ISO AP

YUN

32 65.9 e 84.9 e 17.9 c 78.9 d 18.1 c 140.8 c 1187.5 c 17.6 c 53.3 b 729.3 c
33 54.2 c 69.9 ab 15.7 a 75.8 bc 15.8 a 119.3 a 765.2 b 19.5 d 52.0 a 742.5 c
34 73.5 e 74.2 bc 18.1 c 78.1 d 18.0 c 137.8 c 616.8 a 20.8 e 51.5 a 861.7 d
35 60.4 d 75.6 c 17.6 bc 77.8 d 17.1 b 136.1 c 620.4 a 21.1 e 51.5 a 987.9 e
36 6.6 a 81.3 d 19.4 d 71.5 a 15.3 a 156.0 d 2564.8 e 12.5 a 55.8 c 285.9 a
37 28.1 b 67.6 a 17.3 b 75.3 b 15.9 a 129.6 b 1438.8 d 16.8 b 53.1 b 528.9 b

F
(p)

242.15
(<0.001)

90.63
(<0.001)

73.63
(<0.001)

49.23
(<0.001)

59.12
(<0.001)

58.91
(<0.001)

477.84
(<0.001)

524.01
(<0.001)

45.07
(<0.001)

1919.23
(<0.001)

AF

26 77.9 c 95.9 c 19.5 c 77.4 d 21.1 c 134.1 c 511.9 e 18.6 a 57.7 d 1856.4 e
27 64.2 b 98.1 d 18.7 b 75.1 bc 20.3 b 122.4 b 199.5 b 20.3 c 54.9 b 1596.2 a
29 77.1 c 96.6 cd 19.3 c 76.0 c 21.0 c 135.4 c 331.2 d 19.7 b 56.0 c 1724.4 c
30 68.7 b 93.0 b 18.7 b 74.7 b 20.4 b 122.9 b 254.2 c 20.1 c 55.2 b 1737.9 d
31 33.4 a 82.7 a 17.6 a 73.1 a 18.2 a 112.2 a 156.9 a 20.7 d 52.9 a 1649.1 b

F
(p)

142.20
(<0.001)

78.96
(<0.001)

87.54
(<0.001)

32.12
(<0.001)

63.44
(<0.001)

117.01
(<0.001)

275.91
(<0.001)

268.19
(<0.001)

206.00
(<0.001)

893.30
(<0.001)

F = Fisher test, p = probability. Different letters show differences by Tukey test at p < 0.05.

The relationships between elevation and regional climate did not present global
tendencies for the different phenocluster categories (Figure 3). However, there were positive
and negative trends among phenocluster categories for each forest region. Phenoclusters
in TDF, YUN, and AF had decreased ISO when AMT increased, while PCH increased
ISO when AMT increased (Figure 3A). Phenoclusters in TDF and AF had decreased AP
when AMT increased, while PAT, ESP, and YUN had increased AP when AMT increased
(Figure 3B). Phenoclusters in TDF, PCH, YUN, and AF had decreased ELE when AMT
increased (Figure 3C). Finally, phenoclusters in MON, PCH, and YUN had decreased ELE
when AP increased, while TDF and AF had increased ELE when AP increased (Figure 3D).
The relationships among SOC and forest structure variables presented significant global
tendencies for the different phenocluster categories (Figure 4), where most of them had
increased forest structure values with increased SOC (r2-adj. = 0.64 to 0.92).
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Figure 3. Comparison of the different phenocluster categories at each forest region (TDF = Tierra
del Fuego forests, PAT = continental forests along the Andes Mountains, ESP = Espinal forests,
MON = Monte forests, PCH = Parque Chaqueño forests, YUN = Yunga rainforests, AF = Atlantic
forests). (A) annual mean temperature (AMT, ◦C) and iso-thermality (ISO), (B) AMT and annual
precipitation (RAI, mm·yr−1), (C) AMT and elevation (ELE, m.a.s.l.), and (D) RAI and ELE.
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Figure 4. Comparison of the different phenocluster categories at each forest region (TDF = Tierra
del Fuego forests, PAT = continental forests along the Andes Mountains, ESP = Espinal forests,
MON = Monte forests, PCH = Parque Chaqueño forests, YUN = Yunga rainforests, AF = Atlantic
forests). (A) Soil organic carbon stock (SOC, ton·ha−1 30 cm) and crown cover (CC, %), (B) SOC and
basal area (BA, m2·ha−1), (C) SOC and dominant tree height (DH, m), and (D) SOC and total over
bark volume (TOBV, m3·ha−1).

3.2. Forest Type Classification Based on Forest Canopy Cover Composition by Tree Species

NFI2 plots were unequally distributed across the different forest regions, where PCH
was concentrated in 72.3% of the forest inventory plots, YUN had 7.8%, Espinal forests
had 6.7%, Andean–Patagonian forests had 6.1% (4.6% in the continental lands and 1.5% in
Tierra del Fuego), AF had 4.3%, MON had 2.4%, and DEL had 0.4% (Figure 1A). During
sampling, 441 tree and palm species were identified corresponding to 74 botanical families
(Supplementary Material Figure S1 and Table S1).

FT classification based on forest canopy cover composition by tree species identified
50 categories for Level 1 (FT-1), 115 categories for Level 2 (FT-2), and 1990 categories for
Level 3 (FT-3) (Table 2, Supplementary Material Tables S2 and S3). At the country level, most
of the identified FTs of Level 3 were multi-specific (41.9%), followed by bi-specific (32.2%)
and mono-specific (25.9%). The analyses across the different regions presented different
trends from south to north. TDF presented only three FTs in all levels, predominantly
mono-specific, compared to the six phenocluster categories. Most of the phenoclusters
were associated with 2–3 FTs, showing that functional forests were not only related to forest
canopy cover composition. PAT had five FTs in the first two levels (FT-1 and FT-2) and
increased in Level 3 to 25 categories (FT-3) compared to the six phenoclusters identified for
the region. The FTs were predominantly monospecific (86.0%) or bi-specific (13.4%), with
few examples of multi-specific (0.6%). Most of the phenoclusters were associated with more
than one FT, showing that functional forests are not only related to their forest canopy cover
composition. However, some phenocluster categories were related to mono-specific FTs in
areas with extreme environments (e.g., category 13 associated with pure Nothofagus forests
in the southernmost regions of Argentina), while other categories were mainly bi-specific
or multi-specific (e.g., category 7 associated with the Valdivian temperate forests, which
were characterized by a mixture of several tree species) (Figure 2).
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Table 2. Plots of the Second National Forest Inventory classified by forest region (TDF = Tierra
del Fuego forests, PAT = continental forests along the Andes Mountains, ESP = Espinal forests,
MON = Monte forests, PCH = Parque Chaqueño forests, YUN = Yunga rainforests, AF = Atlantic
forests) and phenocluster categories (PHE) identifying the number of forest types using different
classification levels (FT-1, FT-2, FT-3) and tree canopy composition (MONO = mono-specific, BI = bi-
specific, MULTI = multi-specific) (see Supplementary Material Tables S2 and S3).

REGION PHE Plots FT-1 FT-2 FT-3 MONO BI MULTI

Country 3741 50 115 1990 25.9% 32.2% 41.9%

TDF

Total 56 3 3 3 100.0% 0.0% 0.0%

1 1 1 1 1 100.0% 0.0% 0.0%
2 7 2 2 2 100.0% 0.0% 0.0%
3 23 2 2 2 100.0% 0.0% 0.0%
4 12 3 3 3 100.0% 0.0% 0.0%
5 8 3 3 3 100.0% 0.0% 0.0%
6 5 2 2 2 100.0% 0.0% 0.0%

PAT

Total 172 5 5 25 86.0% 13.4% 0.6%

7 20 4 4 12 45.0% 50.0% 5.0%
8 28 5 5 11 82.1% 17.9% 0.0%
9 21 5 5 6 90.5% 9.5% 0.0%

11 21 2 2 4 95.2% 4.8% 0.0%
12 38 4 4 8 86.8% 13.2% 0.0%
13 44 3 3 3 100.0% 0.0% 0.0%

ESP

Total 251 6 11 112 49.0% 36.7% 14.3%

17 99 2 4 21 82.8% 17.2% 0.0%
18 11 1 3 6 72.7% 27.3% 0.0%
20 57 6 8 47 21.0% 47.4% 31.6%
21 84 6 7 52 25.0% 53.6% 21.4%

MON

Total 87 4 10 32 72.4% 26.4% 1.2%

22 1 1 1 1 100.0% 0.0% 0.0%
23 58 4 9 24 69.0% 31.0% 0.0%
24 23 4 7 12 73.9% 21.7% 4.4%
25 5 1 2 2 100.0% 0.0% 0.0%

PCH

Total 2725 30 73 1462 18.7% 35.3% 46.0%

38 85 14 26 66 27.1% 43.5% 29.4%
39 75 15 23 59 17.3% 32.0% 50.7%
40 37 11 16 36 18.9% 24.3% 56.8%
41 159 8 22 73 47.8% 42.1% 10.1%
42 149 14 21 129 14.1% 23.5% 62.4%
43 116 13 21 98 11.3% 35.3% 53.4%
44 373 23 34 281 9.9% 30.0% 60.1%
45 187 12 23 126 14.4% 48.2% 37.4%
46 42 10 13 37 7.1% 31.0% 61.9%
47 259 14 27 171 18.6% 37.8% 43.6%
48 455 16 27 248 16.0% 42.6% 41.4%
49 139 8 11 56 33.1% 54.0% 12.9%
50 109 14 24 101 11.0% 32.1% 56.9%
51 282 25 46 236 15.6% 20.9% 63.5%
52 40 12 16 36 25.0% 35.0% 40.0%
53 146 19 32 129 19.2% 27.4% 53.4%
54 72 13 21 47 40.3% 25.0% 34.7%
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Table 2. Cont.

REGION PHE Plots FT-1 FT-2 FT-3 MONO BI MULTI

YUN

Total 289 25 41 242 20.4% 29.8% 49.8%

32 80 15 18 74 15.0% 26.2% 58.8%
33 49 15 17 45 18.3% 32.7% 49.0%
34 19 12 14 19 5.3% 26.3% 68.4%
35 62 15 21 60 8.1% 27.4% 64.5%
36 14 4 4 5 85.7% 0.0% 14.3%
37 65 18 22 57 30.8% 41.5% 27.7%

AF

Total 161 19 28 160 4.4% 13.0% 82.6%

26 31 12 14 31 0.0% 12.9% 87.1%
27 21 9 10 21 9.5% 9.5% 81.0%
29 43 13 17 43 0.0% 16.3% 83.7%
30 49 17 20 49 6.2% 12.2% 81.6%
31 17 11 11 17 11.8% 11.8% 76.4%

ESP presented six FTs in the first level (FT-1) and increased to 11 in Level 2 (FT-2) and
112 categories in Level 3 (FT-3) compared to the four phenoclusters identified for the region.
The FTs were predominantly mono-specific (72.7–82.8%) in the south and bi-specific in
the north (47.4–53.6%), where most of the phenoclusters were associated with many FTs
(north > south), showing that functional forests are not only related to forest canopy cover
composition. MON presented four FTs in the first level (FT-1) and increased to 10 in Level 2
(FT-2) and 32 categories in Level 3 (FT-3) compared to the four phenoclusters identified for
the region. The FTs were predominantly mono-specific (69.0–100.0%), where most of the
phenoclusters were associated with more than one category. PCH presented 30 FTs in the
first level (FT-1) and abruptly increased to 73 in Level 2 (FT-2) and 1462 categories in Level 3
(FT-3). This large number of FTs coincided with the large number of phenoclusters identified
for the region (n = 17). Most of the FTs were multi-specific (65% of the phenocluster
categories) or bi-specific (24% of the phenocluster categories), where all the phenoclusters
were associated with many FTs (>8 categories), showing that functional forests are not only
related to forest canopy cover composition.

Rainforests followed the same pattern, considering that YUN and AF occupied a
small portion of the native forest coverage. YUN presented 25 FTs in the first level (FT-1),
increasing to 41 in Level 2 (FT-2) and 242 categories in Level 3 (FT-3) compared to the
six phenoclusters identified for the region. The FTs were predominantly multi-specific
(49.0–68.4%), where a few exceptions, e.g., phenocluster category 36 was predominantly
mono-specific (85.7%), were related to the highland forest of Alnus acuminata. AF presented
19 FTs in the first level (FT-1) and increased to 28 in Level 2 (FT-2) and 160 categories in
Level 3 (FT-3) compared to the five phenoclusters identified for the region. The FTs were
mostly multi-specific (76.5–87.1%), showing that functional forests are not only related to
forest canopy cover composition, especially in these rainforests.

The diversity of FTs in Level 1 (FT-1) was higher in the northern areas of Argentina
(Figure 1B). The diversity was mainly higher in rainforests (e.g., YUN and AF) but also in
northern PCH near the Bermejo and Pilcomayo rivers. This diversity decreased towards
southern and xeric forest regions. Spatially, the higher diversity of FTs could be associated
with higher AMT and AP, as well as areas close to rivers and wetlands. However, these
FTs presented different requirements of AMP and AP (Supplementary Material Figure S1),
highlighting that different FT classifications based on forest canopy cover composition by
tree species occurred in different regional climates. For example, in the Andean–Patagonian
forests (TDF + PAT), the different FTs occurred along an increasing gradient of AMT and
AP. The same trend was observed for ESP, where the more xeric area (southern forests)
were dominated by the Prosopis + others category. MON and PCH did not present a clear
trend between AMT and AP, showing a gradual change from one FT to another. YUN
presented the same trend of Andean–Patagonian forests and ESP, from mono-specific (low
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AMT and AP) to multi-specific (high AMT and AP). Finally, AF presented a different trend,
from higher AP to lower AMT, influenced by the relief that dominated the region.

4. Discussion

Forests exhibit diverse structures and functions worldwide [57], influenced by envi-
ronmental and topographic gradients. At a broad scale, vegetation units sharing common
formation characteristics are termed vegetation types [58]. Usually, FTs are often derived
from vegetation proxies or land use types, with climate-based vegetation classifications
highlighting vegetation distribution and land use classifications emphasizing land cover
and human activity [14,59,60]. These proxies were initially based on the assumption that
similar climates and topographies support similar plant forms, therefore facilitating the as-
sociation of resulting types with climate-based variables [61], e.g., the Holdridge life zones
that were employed to model Argentina regions [40]. Eco-regions rely on climate data,
expert judgment, and species assemblages, and were utilized by the Argentine Government,
assuming a close relationship between functional vegetation types and climate variables
(e.g., [26]). However, these methods may not always align with current vegetation distri-
bution as it is influenced by interactions between potential vegetation and various factors,
including human activities, species interactions, and biogeographical history [57,62]. The
second proxy used in FT classifications was land use or land cover types, primarily based
on satellite imagery [7,22,33,63], utilizing indices like the normalized difference vegetation
index (NDVI) and other derived indexes [64,65]. However, the coarse resolution of data
and limited representation of vegetation types resulted in relatively low accuracy in FT
distribution [57]. In this context, many proposals clarify and extend the term of FTs by
changing the concept of forest in terms of composition and structure, e.g., considering FTs
in terms of their origin (genesis) and development processes and dynamics (temporal ho-
mogeneity), which prevail over their composition and structure (spatial homogeneity) [42].
This approach is essential for preserving biodiversity, providing ecosystem services, and
facilitating effective forest management and planning [8,57,66,67].

Advancements in technology, particularly in remote sensing, advanced forest mod-
eling, and forest inventory databases, have provided new opportunities for developing
methods for forest ecosystem classification and monitoring [68,69]. In Argentina, most poli-
cies and planning initiatives have been implemented at the regional level, with proposals
such as silviculture, management, and conservation strategies executed at the landscape
level. However, despite the evident differences in native forest ecosystems, these initiatives
have often been implemented with a lack of accuracy due to the absence of available
information for developing precise FT classifications. Experience worldwide suggests that
FT classifications must be tailored to the specific needs of each country and its users [69].
This underscores the importance of leveraging new technology and data sources to develop
accurate and context-specific methods for classifying and monitoring forest ecosystems.
By utilizing advanced tools and data, Argentina can enhance its capacity to delineate and
characterize FTs, facilitating more targeted and effective forest management, conservation,
and planning efforts.

In our study, we compared FT classifications based on phenoclusters and forest canopy
cover composition by tree species. We found that a map based on forest phenoclusters
can be particularly valuable for regions where forest ecological information is limited and
conservation needs are high, as in many developing countries [14]. Advanced technolo-
gies such as high-resolution images [70], hyperspectral data [24], LiDAR [71], and radar
data [72] provide detailed insights into vegetation structural and compositional complexity
(e.g., the modeling of forest structure developed by Silveira et al. [21]), enhancing our
understanding of forest ecosystems. Phenoclusters successfully captured many variables
typically included in FT classifications, such as forest structure, climate, and topography.
Additionally, they incorporated variables not commonly considered in previous studies,
such as SOC and biodiversity. We also evaluated the performance of FT classification based
on phenoclusters across Argentina, spanning from complex rainforests like the Yungas
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and Atlantic forests to temperate monodominant forests in Tierra del Fuego. Our results
revealed that these FT classifications effectively identified the diversity of FTs across the
landscape, closely aligning with studied proxies like SOC content [23] and species rich-
ness [22]. These findings support existing research indicating the close relationship between
SOC and biodiversity at the landscape level [73,74], as well as the significant role of SOC
in supporting the structure and productivity of native forest ecosystems (e.g., [75,76]). By
leveraging advanced technologies and incorporating comprehensive datasets, our study
contributes to a more nuanced understanding of forest ecosystems and provides valuable
insights for conservation and management efforts in diverse forest landscapes.

Phenoclusters primarily focus on proxies associated with the functionality of different
natural forests (e.g., metrics that measure the growing season characteristics), with less
emphasis on specific tree species [14,21,23]. On the other hand, the second approach exclu-
sively relies on tree species composition, defining FTs based on forest canopy cover compo-
sition (e.g., balance among the BA of tree species) [49]. In the phenoclusters method, factors
like the timing of tree growth influence the components of each category (e.g., [77,78]),
while the dominant tree species plays a crucial role in the second method [45]. For instance,
in Southern Patagonia, stands of Nothofagus antarctica with the highest site quality may
be categorized similarly to stands of lower site quality of N. pumilio according to its func-
tionality [6], and it can be included in the same phenocluster category. However, stands
at the tree-line (e.g., less than 1 m height growing >600 m.a.s.l.), characterized by distinct
functionality due to environmental factors [79,80], must be classified differently. In the
second proposal, forests with similar species compositions will be included in the same
category, e.g., mono-dominant N. antarctica or N. pumilio forests growing from Tierra del
Fuego (56◦ SL) to Neuquén provinces (33◦ SL) [81,82].

Our analyses revealed distinct trends across forest regions based on latitude and
climate gradients. Different classification levels (FT-1 to FT-3) resulted in varying numbers
of categories, ranging from 50 to 1990, reflecting the diversity of phenoclusters across the
different forest regions. Forests in extreme environments, such as temperate cold regions at
Tierra del Fuego, exhibited simpler forest structures (e.g., FTs were mostly mono-specific),
with fewer FTs within each phenocluster category (between 1 and 3). In contrast, rainforests
like the Atlantic forests displayed a more complex forest structure (e.g., multi-specific forests
represented nearly 80% of FTs), with a higher number of FTs within each phenocluster
category (between 9 and 49). The different forest regions in Argentina were identified
as highly variable in their ecological and structural characteristics across the landscape,
supporting different biodiversity values [22,27,39]. This underscores the importance of
considering both functional and compositional aspects when classifying forest types to
accurately represent the ecological diversity and conservation needs of different regions.

Mapping FTs in relatively small areas can be effectively accomplished using unmanned
aerial vehicles (UAVs) [83]. However, when it comes to mapping FTs across large regions,
significant challenges arise due to the need to model each species or group of species under
different ecological conditions [84]. While mapping a single species is feasible using habitat
modeling techniques like MaxEnt, attempting to model multi-specific forests requires
detailed field information that is often lacking for most natural forested areas [85–87].
Studies have shown large uncertainties in FT mapping efforts, indicating the need for
further improvements [88].

Despite limited studies addressing FT and composition at the regional or national
levels, the continuous modernization of remote sensing tools offers a unique opportu-
nity to overcome these challenges [89]. In extreme forest conditions where most FTs are
mono-specific, mapping based on forest canopy cover composition by tree species is feasi-
ble. However, detailed information is crucial for effective planning and management as
different management strategies may be required across the landscape for the same FT.
For example, Paredes et al. [90] reported that different management strategies must be
implemented across the landscape for the same FT. In this situation, phenoclusters offer a
valuable approach for defining different functional forests within the same mono-dominant
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FT, providing feasible scenarios for differential management and planning. In contrast, in
northern forest areas of Argentina, where FTs change significantly over relatively short
distances, mapping based on functionality using phenoclusters reduces the complexity
of natural ecosystems and facilitates feasible scenarios for management and planning
(e.g., [91]). In these regions, phenoclusters have proven to be instrumental in mapping FTs
based on functionality, simplifying the complexity of natural ecosystems and facilitating
the generation of feasible scenarios for differential management and planning across the
landscape. Through our research, we have demonstrated the relationships among phen-
oclusters and multiple variables essential for decision-making by stakeholders involved
in these tasks [6,23,53]. It is crucial to consider the FT definition outlined by the Montreal
Process, which emphasizes not only composition (tree species) and site factors (locality) but
also the necessity for each region or country to categorize FT in a suitable system [42,48].
For instance, in Italy, various FT classifications exist (e.g., [46,92]), ranging from a few
classes to hundreds depending on the scope and coverage of each classification [48]. This
flexibility in FT classification allows for the collection and organization of information on
forests within a given territory, tailored to understanding differences relevant to specific
uses and management strategies. Accurate FT classification is imperative for national-level
monitoring and forest inventory efforts [25,26] as the formulation of indicators relies on
scientifically supported data for each forest type [48]. Additionally, it is essential to address
shortcomings in FT classification related to anthropogenic impacts [42], such as selective
cuts targeting valuable dominant tree species (e.g., [93,94]). Strategies like incorporating
different dynamic stages of natural stands can help mitigate these impacts and improve
the accuracy and utility of FT classification for sustainable forest management (e.g., [68]).
By adhering to robust FT classification methods and considering the multifaceted aspects
of forest ecosystems, we can better understand, manage, and conserve our forests for
future generations.

5. Conclusions

Modern rational forestry systems rely heavily on forest typologies, which serve as
fundamental frameworks for guiding management and conservation efforts. The database
compiled during the Second National Inventory of Native Forests (NFI2) presents a valuable
and up-to-date resource to support the objectives outlined in this study. The FTs developed
in our study effectively differentiate forests across different regions, offering a tool to
define new silvicultural treatments, management strategies, and conservation approaches
over time. This ensures the sustainable production of goods and services demanded
by society while maintaining the integrity of forest ecosystems. Our study compared
two approaches, each suited to the intrinsic characteristics of different forest regions.
In regions dominated by mono-specific forests, classifications based on forest canopy
cover composition by tree species are feasible. However, in areas with complex forest
structures characterized by multiple tree species interactions (multi-specific stands), such
classifications become impractical. For instance, in rainforests, the sheer diversity of forest
types makes implementation in the field challenging. In such cases, functional forest
classifications (phenoclusters) offer a more effective solution by reducing complexity at the
landscape level, grouping FTs into similar functional categories (e.g., combining FTs into
similar functional groups). These findings hold significant implications for both scientific
research and practical forest management. By harmonizing national FT classifications
using relevant criteria and indicators, we can advance sustainable forest management and
conservation initiatives. By incorporating scientific insights and practical considerations,
our approach aims to optimize the utilization of forest resources while safeguarding their
long-term ecological integrity.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/resources13050062/s1: Figure S1: Characterization of forest types
(Level 1, FT-1) at each forest region (TDF+PAT = Tierra del Fuego and continental forests along the
Andes Mountains, ESP = Espinal forests, MON = Monte forests, PCH = Parque Chaqueño forests,

https://www.mdpi.com/article/10.3390/resources13050062/s1
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YUN = Yunga rainforests, AF = Atlantic forests) according to annual mean temperature (AMT, ◦C) and
annual precipitation (AP, mm·yr−1). Red dots indicate means and bars show the standard deviation
for both axes. Acronyms are presented in Table S3; Table S1: Taxonomy of the tree forest species
identified in the plots of the Second National Forest Inventory; Table S2: Plots of the Second National
Forest Inventory classified by forest type (Level 1, FT-1) and forest region (TDF + PAT = Tierra
del Fuego and continental forests along the Andes Mountains, DEL = Delta and islands of Paraná
river, ESP = Espinal forests, MON = Monte forests, PCH = Parque Chaqueño forests, YUN = Yunga
rainforests, AF = Atlantic forests). Acronyms of each forest type are presented; Table S3: Plots of the
Second National Forest Inventory classified by forest type (Levels 2 and 3, FT-2 and FT-3) and forest
region (TDF+PAT = Tierra del Fuego and continental forests along the Andes Mountains, DEL = Delta
and islands of Paraná river, ESP = Espinal forests, MON = Monte forests, PCH = Parque Chaqueño
forests, YUN = Yunga rainforests, AF = Atlantic forests).
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