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Abstract: A calcareous deposit is a by-product of the cathodic polarization in seawater environments.
This study presents the results of evaluating the anticorrosion and anti-macro-biofouling effectiveness
of a calcareous deposit layer on the surface of the cathodically polarized AH36 structural steel in
tropical seawater. The polarization is induced with initial current densities at which the calcareous
deposit layer formed with both aragonite and brucite for 12 months continuously. The protective
properties of the layer were compared with those of the passive layer from corrosion products under
the same environmental conditions. The macro-biofouling in the tropical seawater is observed in
the closed and open surfaces of the steel. The comparison of the anticorrosion property shows that,
to some degree, the calcareous deposit layer contributes to surface passivation, as in the case of the
corrosion product layer. In addition, the composition of the brucite and aragonite in the calcareous
layer in the study plays a role as a macro-biofouling growth-limiting factor.

Keywords: calcareous deposit layer; marine corrosion; AH36 structural steel; macro-biofouling;
tropical seawater

1. Introduction

AH36 steel has been widely used as the substrate material for the submerged static
structures in the marine environment, where the substrates are affected by both corrosion
and biofouling. One of the most common corrosion protection techniques for such struc-
tures is cathodic polarization using an impressed current. The advantage of this technique
is that it can be applied to large and structurally complex projects, especially structures
submerged in seawater. Until the present time, the effectiveness of the technique has been
widely acknowledged [1–5]. The research carried out on this technical platform also extends
towards improving the polarization efficiency or optimizing the energy use, as well as
exploiting possible results from the application of the protection mechanisms above [6–8].

In the process of polarization, the protected objects play a role as cathodes. The
by-product that appears from the beginning of the polarization process on the surface
of the protected objects is a calcareous deposit layer of some precipitates of calcium and
magnesium ions from natural seawater, in which the ions exist in abundant quantities
and move freely among the electrodes [9–14]. The mechanism of the precipitation is the
increasing pH locally on the surfaces of the cathode from the oxidation–reduction reactions,
which is the favorable condition of the series of reactions, with the last products containing
CaCO3 and Mg(OH)2 [15–18].

The formation of the calcareous layer is influenced by environmental factors, including
the environmental temperature, salinity, pH, dissolved oxygen concentration, calcium and
magnesium ions concentration, etc., and microbial factors, with the result that the character-
istic components can only be formed in the natural environment. However, to facilitate the
monitoring and processing evaluation, studies on this phenomenon are conducted in the
laboratory with both natural and artificial seawater [19,20]. The formation process of the
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calcareous layer, as well as the current density dependent on the deposition, were widely
published through the laboratory studies. The published analytical results show that the
main component of the calcareous deposit layer is brucite. In addition, depending on the
current density maintained between the cathode and anode, the precipitation products of
the calcium ions can be calcite, aragonite, or vaterite [21–26].

In this study, the calcareous deposit layer was formed on the surface of AH36 structural
steel with cathodic polarization in natural seawater. The bare AH36 steel was exposed par-
allelly in the same environmental conditions, and the process of the corrosion of the AH36
structural steel happened such that the comparison of the anticorrosion properties between
the layer of the calcareous deposit and the layer from the corrosion products was induced.
The conditions for the deposition of the precipitates were created in which the composition
of the resulting precipitates was chosen to favor a durable coating and was recommended
for the investigation by previous research groups in a laboratory setting [15,21]. This means
that the current density between the electrodes is maintained at a certain range consistent
with the previous publications. With the resulting surfaces of the cathodically polarized
AH36 steel, we tried to characterize the calcareous layers from the precipitates of CaCO3
and Mg(OH)2 by the SEM and XRD techniques, and the electrochemical performance of
the surfaces of the AH36 steel was then studied. In addition, the macro-biofouling on the
layer was evaluated through 12 months of polarization.

2. Materials and Methods
2.1. Materials

The AH36 structural steel plate used for cathode material was cut into the size of
150 mm × 100 mm × 3 mm with the compositions in wt% as shown in [27]. Before im-
mersion and polarizing in seawater as a cathode, the plates were polished with SiC paper
and cleaned in acetone. The cleaned plates were then immersed in solution consisting
of 0.35 wt% hexamethylenetetramine and 0.5 M HCl for 30 min and then cleaned with
distilled water and dried at room temperature for 8 h.

For the purpose of analyzing the layers formed on the surface of the samples through
potentiostat Metrohm PGSTAT 204N Autolab electrochemical device (Metrohm Autolab
BV, Utrecht, The Netherlands), a glass cut from the PVC tube with an inner diameter of
34 mm was fixed on the surface of the AH36 steel plate by the 2-component epoxy glue.
The working electrode from AH36 steel was then determined as a definite zone limited
by a circle and joined in a three-electrode cell with the platinum auxiliary electrode and
Ag/AgCl reference electrode.

2.2. Polarizing Method

A power supply is used to polarize the AH36 steel plates in natural seawater at Dam
Bay Marine Climatic Testing Station (12◦11′49.8′′ N, 109◦17′26.2′′ E), Nha Trang, Khanh Hoa.
AH36 steel plate is cathodically polarized by a DC power source with initially stabilized
current (initial current density is fixed). The potential is constant through the process,
and the downward trend of the current induced through cathode was monitored. Bias
voltage and current values are recorded by dataloggers SD910 and SD 900 (EXTECH)
3 real-time channels.

The cathodic protection potential between the electrodes is maintained in accordance
with BS EN 12495:2000 and DNV-RB-B401, in which the protection potential ranges from
−1.1 to −0.8 V vs. Ag/AgCl.

2.3. Sampling Methods and Analysis Techniques

After being polarized in natural seawater, the test samples were dried using a UN260
oven (Memmert GmbH, Schwabach, Germany) at a temperature of 80 ◦C for 4 h. The mass
of the test sample before and after the polarization was determined using the technical
scale PA 4102, OHAUS.
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The surface morphology of scale deposits on AH36 steel substrate was photographed
and analyzed under a scanning electron microscope (SEM, Hitachi, S-4800) associated
with energy dispersive X-ray spectroscopy. Calcareous deposit components were analyzed
through X-ray diffraction spectroscopy (XRD, PANalytical, X’Pert-PRO MPD, Almelo, The
Netherlands) using Cu-K emission source.

3. Results and Discussion
3.1. Characteristics of the Calcareous Deposit

After cathodic polarization for 4 h with a current density of 3 A/m2, the filled steel
surface by the calcareous deposit was analyzed. The SEM image shows the formation of the
deposit at the beginning of the polarization process. The EDS spectrum shows the apparent
trace element peaks of magnesium, oxygen, and calcium, especially magnesium in the
initial period of polarization (Figure 1). The magnesium-rich layer of the calcareous deposit
revealed the priority in the precipitation of Mg(OH)2 in the beginning of the deposition
process. The polarization is maintained for months with a range of initial current density
from 2 to 4 A/m2. After 6 months, the polarization forms a thick layer of a compound of
calcium and magnesium; the crystal structure is found under the XRD patterns presented
in Figure 2.
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current densities, where, after favoring the same amount of magnesium ion precipitation, 
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pound from aragonite and brucite was found to be the most adhesive to the substrate 

Figure 1. The SEM image and the EDS spectrum of the calcareous deposit layer formed on the surface
of the cathode for the first 4 h with current density of 3 A/m2.

From the XRD patterns, the aragonite and brucite are identified with PDF numbers
0-003-0425 and 01-073-8391 accordingly. The relative proportions of the phases of aragonite
and brucite using the X-ray diffraction (XRD) patterns are typically 32:68 and 16.8:83.2 in
the samples with current densities of 3 A/m2 and 2 A/m2. The difference in the aragonite
and brucite composition ratios can be explained by the higher precipitation rate at higher
current densities, where, after favoring the same amount of magnesium ion precipitation,
the precipitate of calcium will continue above the magnesium precipitate layer. No peaks
regarding the other compounds, for example calcite or vaterite, were found. The compound
from aragonite and brucite was found to be the most adhesive to the substrate AH36 steel,
and the washing phenomena in seawater environments at different flow rates are limited,
and the calcareous layer is suitable for evaluating the protective property, as well as
biofouling [15,21].
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Figure 2. XRD patterns collected on the surface of polarized AH36 structural steel at different current
densities with diffraction peaks of aragonite (A) and brucite (B).

3.2. Electrochemical Performance
3.2.1. Polarization Curves

The AH36 steel plates were polarized in the natural seawater with current densities
of 3 A/m2. After a definite period of time, the area inside the PVC tube was observed to
be deposited with a calcareous layer. Figure 3 presents the Tafel polarization curves of the
AH36 bare steel and AH36 cathode in natural seawater for 1, 5, 9, and 12 months. After
9 months, the surface of the AH36 steel was covered under a passive film of corrosion
products and biofouling [27–29]; the surface of the polarized AH36 steel was filled with
white precipitates. The shift in the curves towards more positive potentials for the AH36
steel samples immersed in seawater indicates that passivation is established for the cor-
roded AH36 steel containing corrosion products on the surface. However, the shift in the
curves in the opposite direction for the polarized steel from the fifth month onwards may
be related to the altered porous nature of the surface calcareous layer, while the aragonite
precipitated more. In the case of an increased aragonite accumulation, the calcareous layer
must still facilitate the maintenance of charge exchange, so it is not entirely correct to say
that further accumulation of aragonite makes the calcareous layer more condensed. The
presence of aragonite at this stage is proven by the XRD analysis results presented above.
From the Tafel extrapolation results in Table 1, the changes in the corrosion potential and
corrosion current density are shown in Figure 4, in which the changes in these quantities are
presented during the same test period for the immersed AH36 steel and polarized AH36
steel in natural seawater. There is a clear difference at the beginning of the polarization and
immersion in seawater for bare steel AH36; however, near the end of the testing period
(1 year), the values of the corrosion current density and potential corrosion in both cases
were nearly equivalent. This proves that the steel surface in the two test conditions is
passivated to a similar extent.
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Figure 3. Polarization curve shifts of AH36 steel and cathodically polarized AH36 steel in natural
seawater.

Table 1. Electrochemical parameters extrapolated from the polarization curves of the AH36 steel
cathode samples and unprotected AH36 steel samples with initial current density 3 A/m2.

Parameters from
Extrapolation

AH36 Steel Cathode Samples/Unprotected AH36 Steel Samples AH36 Bare
Steelfor 1 Month for 5 Months for 9 Months for 12 Months

Corrosion potential (mV) −581/−738 −634/−693 −663/−635 −670/−658 −736
Corrosion current density

(µA/cm2) 5.4/57.9 21.1/33.8 13.1/28.5 12.5/14.5 58.5

Polarization resistor (Ω) 1991/65.7 496/188 372/65.6 373/76 65.6
Anode slope βa (mV/dec) 347/107 355/148 149/109 180/359 109

Cathode slope βc (mV/dec) 638/306 565/1311 317/303 213/657 303
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Figure 5 shows the round areas on the two kinds of samples in the electrochemical
analysis after 5 months. Corrosion products exist on the surface of the AH36 steel, causing
the passivation of the surface. The surface selected for the investigation with the electro-
chemical equipment in this case does not contain macro-biofouling that would interfere
with the investigated parameters. In the case of polarized AH36 steel, the surface con-
taining white precipitates also showed no signs of biofouling. The parameters from the
Tafel extrapolation are shown in Table 1 with the exposing period. At the beginning of the
polarization, the corrosion current density from the cathode is significantly smaller than
that from the bare steel, while the corrosion potentials change in the range of 150 mV, so the
calcareous deposit layer on the cathodes has a role regarding the inhibition of the corrosion
process in natural seawater to some degree.
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3.2.2. Electrochemical Impedance

The EIS measurements were performed in situ after the AH36 steel was polarized
continually. This means that the AH36 steel will be examined with different surfaces
containing corrosion products and containing calcareous deposits. The Nyquist diagrams
of the AH36 steel cathode are shown in Figure 6 with frequency covers ranging from
10−2 Hz to 105 Hz. For the AH36 bare steel, the equivalent circuit can be described as the
series of electrolyte resistance Re and a double-layer element in which the charge transfer
resistance RCt is in parallel with the double-layer capacitance Cdl. The equivalent circuit of
impedance for the polarized steel can be illustrated using the five-element model [26,30] in
Figure 7. In this five-element model, the double-layer element, consisting of double-layer
capacitance CPE1 in parallel with the charge transfer resistance RCt, is in series with the
electrolyte resistance Rf in the thin pore. The above series connects parallelly to a capacitive
element CPE2 to model the calcareous layer with a dielectric nature. The last element,
electrolyte resistance Re, is connected in series with the calcareous layer modeling element.
The fitting results are shown in Table 2. The value of Rf (the finite conductivity of the
electrolyte in the thin pores) is increased and reaches stability. Re (electrolyte resistance) and
RCt (charge transfer resistance) increased with the time of polarization. The value of RCt,
reached stability after 9 months, showing that the calcareous deposit layer is more stable
over time. This may be attributed to the fact that the brucite-Mg(OH)2 formed initially and
then a layer was added with more aragonite -CaCO3, through which the calcareous layer is
more stable [19].
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calcareous deposits.

Table 2. The EIS fitting results with various periods of polarization for AH36 steel.

Parameters AH36 Bare Steel AH36-1 AH36-5 AH36-9 AH36-12

Re (Ω.cm2) 1.3 1.93 6.08 15.86 32.2

Rct (Ω.cm2) 65.6 50.23 45.94 70.39 70.6

Rf (Ω.cm2) - 9.53 15.31 13.33 13.88

CPE1 * (µF.cm−2) - 53,463 29,137 45,294 14,250

CPE2 * (µF.cm−2) - 1180 1652 481 726

Cdl (µF.cm−2) 1159 - - - -

* CPE1: the model of double-layer capacitance; CPE2: the model of the calcareous deposit capacitance.
Cdl: double-layer capacitance on the surface of bare AH36 steel.

3.3. The Macro-biofouling

The macro-biofouling was monitored through two kinds of surfaces: the surface
surrounded inside the PVC tube, which is used for electrochemical analysis, and the
open surface of the whole 150 × 100 × 3 mm of the cathode. The surfaces are filled with
precipitates of magnesium ions at the beginning and then precipitates of calcium ions
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accumulated on the surfaces containing brucite. The composition of this compound, as
examined by the XRD technique, is mainly brucite and aragonite. The properties of the
surface make the precipitates non-uniformly distributed [31]. In general, our research
group found no clear evidence of macro-biofouling on the monitored surface, as shown in
Figure 8.
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Not only in closed surfaces but also in open ones, the development of the calcareous
deposit invaded the appearance of the macro-biofouling. If the bacterial activity appeared
to change the preferential formation of the calcareous deposits and impeded the formation
of the aragonite and brucite, then the composition of the brucite and aragonite formed
within a certain current density range around 3 A/m2 in this study, playing an essential
role regarding the macro-biofouling growth-limiting factor on the surface.
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4. Conclusions

Via electrochemical performance comparison, the calcareous deposit layer formed
through the process of cathodic polarization is found to have barrier properties similar
to the corrosion product layer on the surface of the AH36 steel in natural seawater. In
addition, the presence of a calcareous deposit layer containing both aragonite and brucite
limits the macro-biofouling development on the surface when the polarized AH36 steel is
immersed in tropical seawater.
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