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Abstract: Ti3C2Tx MXene, as a common two-dimensional material, has a wide range of applications
in electrochemical energy storage. However, the surface forces of few-layer or monolayer Ti3C2Tx

MXene lead to easy agglomeration, which hinders the demonstration of its performance due to the
characteristics of layered materials. Herein, we report a facile method for preparing monolayer
Ti3C2Tx MXene on nickel foam to achieve a self-supporting structure for supercapacitor electrodes
under high electrostatic fields. Moreover, the specific capacitance varies with the deposition of
different-concentration monolayer Ti3C2Tx MXene on nickel foam. As a result, Ti3C2Tx/NF has
a high specific capacitance of 319 mF cm−2 at 2 mA cm−2 and an excellent long-term cycling
stability of 94.4% after 7000 cycles. It was observed that the areal specific capacitance increases,
whereas the mass specific capacitance decreases with the increasing loading mass. Attributable to
the effect of the high electrostatic field, the self-supporting structure of the Ti3C2Tx/NF becomes
denser as the concentration of the monolayer Ti3C2Tx MXene ink increases, ultimately affecting its
electrochemical performance. This work provides a simple way to overcome the agglomeration
problem of few-layer or monolayer MXene, then form a self-supporting electrode exhibiting excellent
electrochemical performance.

Keywords: monolayer Ti3C2Tx MXene; high electrostatic fields; electrostatic spray deposition; self-
supporting electrode; supercapacitor

1. Introduction

With the rapid development of electronic devices, the demand for portable energy
storage devices is steadily increasing [1]. Supercapacitors, recognized for their high power
density and rapid charge–discharge capabilities, have attracted extensive research inter-
est [2–4]. Moreover, electrode materials play a pivotal role in the performance of superca-
pacitor devices [5,6]. Therefore, the development of high-performance electrode materials
is crucial to realize the ultimate goal of making supercapacitors practical and efficient.

Two-dimensional (2D) materials are extensively researched due to their high specific
surface area, outstanding electrical properties, and tunable interlayer characteristics [7–9].
There are various 2D materials, including graphene, transition metal dichalcogenides
(TMDs), black scales, transition metal carbides and nitrides (MXenes), and so on [10].
MXenes are produced through the selective etching of the original MAX phase materials by
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hydrofluoric acid (HF), defined by a chemical formula of Mn+1AXn, where n can be 1, 2,
or 3 (M2AX, M3AX2, or M4AX3) [11]. MXene, as a highly attractive electrode material for
supercapacitors, possesses several advantageous properties, like its excellent conductivity,
high specific surface area, abundant functional groups, noticeable pseudocapacitance
working mechanism, and good hydrophilicity [12–14].

To further enhance the electrochemical performance of MXene, various strategies
are currently being implemented, such as surface modification, doping impurity atoms,
microstructure control, heterostructure preparation with other materials, and monolayer
treatment [15]. A reduction in interlayer spacing and ion diffusion can be directly achieved
through monolayer treatment [16]. Larger interlayer spacing allows for greater ion intercala-
tion or deintercalation in the electrolyte, while short-distance ion diffusion can enhance ion
diffusion kinetics [17–19]. Over the past decade, several strategies, including mechanical
exfoliation and lithium ion intercalation, have been developed to obtain single-layer or
few-layer MXene from bulk sources [20–22]. Unfortunately, exfoliated MXene layers tend
to self-aggregate during operation, leading to the loss of their electrochemical benefits and,
ultimately, resulting in low specific capacitance, which significantly limits their standalone
application [23,24]. Therefore, combining single-layer or few-layer MXene with other
substrate materials as a scaffold can help overcome the aggregation issue associated with
layered materials.

Ti3C2Tx is one of the common types of MXenes, being distinguished by its chemical
stability, and it is commonly employed as an electrode material for supercapacitors [25–27].
Ti3C2Tx is obtained by the HF etching of Ti3AlC2, where T represents the surface functional
groups (-OH/-F/-O) [28–30]. Ti3C2Tx MXene has excellent conductivity, which is beneficial
for improving the performance of supercapacitors [31]. In recent years, many studies
have been conducted on Ti3C2Tx MXene as an electrode material for supercapacitors. Hu
and co-workers prepared d-Ti3C2Tx MXene, which displays a high specific capacitance of
400 F g−1 at 2 mV s−1 [32]. Kayali and colleagues synthesized Ti3C2Tx MXene, showing
a specific capacitance of 435 F g−1 at 2 mV s−1 [11]. Yu et al. prepared AC/Ti3C2Tx as a
supercapacitor electrode, exhibiting a specific capacitance of 126 F g−1 at 0.1 A g−1 [33].
Pathak et al. synthesized a Ti3C2Tx MXene-decorated porous carbon nanofiber which
shows a high specific capacitance of 572.7 F g−1 at 1 A g−1 [34].

Herein, an effective method involving the enrichment of monolayer Ti3C2Tx MXene on
nickel foam (NF) through electrostatic spray deposition (ESD) is reported. This method pre-
vents aggregation, exposes more active sites, and produces a self-supporting electrode that
displays the intrinsic characteristics of electrode materials. Monolayer Ti3C2Tx MXene at
varying concentrations was deposited on NF, and the supercapacitor performance was eval-
uated. The Ti3C2Tx/NF-2.0 electrode exhibited a high specific capacitance of 319 mF cm−2

at 2 mA cm−2 and a superior cycling stability of 94.4% after 7000 cycles. Furthermore,
the relationship between loading mass and specific capacitance was investigated. This
operational strategy effectively addresses the issue of aggregation in layered materials to
achieve enhanced specific capacitance.

2. Materials and Methods
2.1. Preparation of Ti3C2Tx MXene

The Ti powder, Al powder, and C powder were mixed in a ratio of 3:1.1:2 and ball-
milled for 1 h to achieve a uniformly mixed powder. Subsequently, the obtained powder
was compressed into cylindrical particles with a 13 mm diameter under a pressure of 1 GPa.
These particles were then subjected to a gradual heating process in a tube furnace, starting
at a rate of 9 ◦C/min up to 1000 ◦C, followed by further heating to 1400 ◦C at a rate of
5 ◦C/min for 2 h under a continuous flow of argon. Upon cooling to room temperature,
the sample was manually ground and crushed into powder. Slowly adding 40% HF to
the sample, the mixture was stirred for 24 h. In the case of centrifugation, the sample
underwent repeated washing with deionized water until the pH value of the supernatant
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exceeded 6. Finally, the resulting black product was placed in a vacuum drying oven for
12 h.

2.2. Preparation of Ti3C2Tx MXene Ink

The sediment was re-dispersed in 200 mL of deionized water and bath-sonicated
(Shanghai Kedao Ultrasonic Instrument Co., Ltd., Shanghai, China, model SK5200HP,
53 kHz) under argon bubbling in an ice water bath for 1 h. A stable Ti3C2Tx dispersion was
obtained by collecting the top 80% supernatant after centrifugation at 3500 rpm for 30 min.
An appropriate amount of the Ti3C2Tx MXene dispersion underwent further centrifugation
at 5000 rpm for an additional 20 min. The resulting sediment was then collected and re-
dispersed in 10 mL of deionized water through vigorous hand shaking for 15 min, yielding
a viscous Ti3C2Tx MXene ink.

2.3. Preparation of Ti3C2Tx/NF

Ti3C2Tx on nickel foam (NF) (Ti3C2Tx/NF) was successfully obtained using electro-
static spray deposition (ESD) technology under high potentials (6–9 kV) in open air.

2.4. Material Characterizations

XRD spectra were acquired using a Philips X′pert PRO X-ray diffractometer with Cu
K radiation (λ = 0.154 nm). X-ray Photoelectron Spectroscopy (XPS, Thermo ESCALAB
250Xi, Breda, The Netherlands) was carried out with a monochromatic Al Kα source at
1486.6 eV. Nanostructure characterizations for the materials were carried out using Field
Emission Scanning Electron Microscopy (FE-SEM, Quanta 200FEG, Peabody, MA, USA),
Energy-Dispersive X-ray Spectroscopy (EDS, Oxford EDS with INCA software INCA V7.5),
and Transmission Electron Microscopy (TEM, JEM-2100, Tokyo, Japan).

2.5. Electrochemical Measurement

Electrochemical data were generated using the Dutch Ivium (Vertex.C.DC) electro-
chemical station in 1 M Na2SO4 electrolyte, allowing for the acquisition of cyclic voltam-
metry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spec-
troscopy (EIS) measurements. EIS was conducted by applying an open-circuit potential
with an amplitude of 5 mV across a frequency range from 100 kHz to 0.01 Hz. The three-
electrode system consists of a counter electrode, a reference electrode, and a working
electrode. Among them, the 1 × 1 cm−2 platinum foil electrode serves as the counter
electrode, Ag/AgCl (in 1 M KCl) is used as the reference electrode, and the prepared
sample acts as the working electrode.

3. Results and Discussion

As shown in Figure 1a, the monolayer Ti3C2Tx MXene was successfully synthesized
through solid-phase reaction, HF treatment, and bath sonication. As shown in Figure 1b,
Ti3C2Tx/NF electrodes can be prepared by depositing viscous Ti3C2Tx MXene ink under
the assistance of high electrostatic fields (6–9 kV). Different self-supporting electrodes can
be prepared by varying the concentrations of monolayer Ti3C2Tx MXene ink. The ones
constructed in this study are named Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0.

To verify the crystal structure of all the samples, X-ray diffraction (XRD) was applied.
From Figure 2a, the (002) peaks of the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-
3.0 electrodes are located at 6.2◦; the interlayer spacing is 14.2 nm. The wide interlayer
spacing not only allows for more ions to be intercalated or deintercalated but also effectively
shortens the diffusion path of the ions. Obviously, the intensity of the (002) peak gradually
decreases with the increasing concentrations of monolayer Ti3C2Tx MXene ink, owing to
the significant internal strain. It is clear that the peaks located at 44.6◦, 51.8◦ and 76.3◦

represent the characteristic peaks of NF as an excellent and common collector [35]. In
addition, the intensity of these peaks also gradually decreases, which indicates that the
structure becomes denser.
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Information regarding element valence state was collected by X-ray Photoelectron
Spectroscopy (XPS). As shown in Figure 2b, for the high-resolution Ti 2p spectrum of
Ti3C2Tx/NF-2.0 electrode, some peaks are located at 461.8, 454.5, 464.4, and 458.6 eV. Firstly,
the former two represent the Ti-C bond of Ti3C2Tx, reflecting the integrity of the crystal
structure. Secondly, the latter two correspond to the Ti-O bond. In addition, the peak
shown at a lower bonding energy of 457.4 eV is related to the Ti ion with the bond state
of TixOy, suggesting the formation of TiO2 with oxidation because of monolayer Ti3C2Tx
MXene being prone to oxidation in air. From the high-resolution C 1s and O 1s spectra in
Figure 2c,d, the bonding of C-Ti-O, Ti-C, Ti-O, and Ti-O-H can be seen clearly, reflecting the
stable existence of monolayer Ti3C2Tx MXene after electrostatic spray deposition on NF.

The morphology of all samples was observed by Scanning Electron Microscopy (SEM).
As shown in Figure 3, monolayer Ti3C2Tx MXene is uniformly deposited on the NF sub-
strate under the assistance of high electrostatic fields to form a self-supporting structure,
effectively combining active materials with the collector through electrostatic force. NF,
a porous framework substrate, not only provides high conductivity but also promotes
contact between the electrode materials and the electrolyte [36,37]. Furthermore, the self-
supporting structure formed has more voids when the concentration of monolayer Ti3C2Tx
MXene ink is low, allowing for more ions to move in and out of the electrolyte. In con-
trast, the self-supporting structure becomes denser and more stable as the concentration of
Ti3C2Tx MXene ink gradually increases.

The microstructure of Ti3C2Tx MXene was studied by Transmission Electron Mi-
croscopy (TEM). From Figure 4a, it is obvious that a monolayer structure is presented,
suggesting the successful preparation of monolayer Ti3C2Tx MXene. As shown in Figure 4b,
there is one visible interlayer spacing of 0.3 nm in the single-layer structure, which is con-
sistent with the (103) lattice plane of hexagonal Ti3C2Tx MXene, confirming the successful
preparation of monolayer Ti3C2Tx MXene again. As illustrated in Figure 4c, the Energy
Dispersive X-ray (EDX) spectrum confirms the presence of elements Ti, C, O, and Cl on the
Ti3C2Tx MXene.

To evaluate the supercapacitor performance of the electrodes, the cycle voltammogram
(CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy
(EIS) curves were all tested. As shown in Figure 5a, the potential windows are from −0.9
to −0.3 V for the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes. In
addition, the areal surrounded by CV curves represents the specific capacitance for each
electrode. The Ti3C2Tx/NF-2.0 electrode possesses the biggest areal, which indicates it has
a higher areal specific capacitance than the other two electrodes. As shown in Figure 5b, the
Ti3C2Tx/NF -3.0 electrode has the biggest areal, suggesting it has the highest mass specific
capacitance. According to Figure 5c, the loading masses of Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-
2.0, and Ti3C2Tx/NF-3.0 are 1, 2.5, and 2.1 mg, respectively. When the concentration of
monolayer Ti3C2Tx MXene ink is low, the loading mass gradually increases under the
effect of the electrostatic force. However, the loading mass reaches a certain threshold
at high concentrations. As a result, the areal specific capacitance, as shown in Table 1,
increases first and then decreases, while the mass specific capacitance gradually decreases
at the same scan rate of 20 mV s−1 with the increase in loading mass. This is mainly
determined by the self-supporting structure after ESD. On the one hand, the areal specific
capacitance is affected by the loading mass on the electrodes. On the other hand, the
areal specific capacitance and mass specific capacitance are affected by the structure of
the active substances on the electrodes. In Figure 5d, the areal specific capacitances of all
electrodes at a current density of 2 mA cm−2 are displayed in the form of GCD curves; we
calculated values of 143, 319, and 255 mF cm−2, respectively. Additionally, the areal specific
capacitances of the Ti3C2Tx/NF-2.0 electrode, shown in Figure 5e for the same current
densities of 2, 3, 5, 7, 10, 15, and 20 mA cm−2, are higher than those of the Ti3C2Tx/NF-
1.0 and Ti3C2Tx/NF-3.0 electrodes, indicating the excellent supercapacitor performance
for Ti3C2Tx/NF-2.0 electrode. In addition, the performance rates of the Ti3C2Tx/NF-1.0,
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Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes, as shown in Figure 5f, are 47.1%, 53.5%,
and 28.3%, respectively.
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Figure 3. (a–f) SEM images of Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes.

Table 1. The loading mass, areal capacitance, and mass capacitance values of the Ti3C2Tx/NF-1.0,
Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes.

1 mg mL−1 2 mg mL−1 3 mg mL−1

Loading mass 1 mg 2.5 mg 2.1 mg
Areal capacitance

(20 mV s−1) 120.8 mF cm−2 249.6 mF cm−2 151.8 mF cm−2

Mass capacitance
(20 mV s−1) 120.8 F g−1 99.8 F g−1 72.3 F g−1

EIS is also a crucial parameter reflecting the electrochemical performance of the
material. In EIS data, high frequency and low frequency represent different electrochemical
processes. The high-frequency range typically corresponds to charge transfer resistance
(Rct), indicated by the diameter of a semicircle and ion migration in the electrolyte and
equivalent series resistance (ESR), while the low-frequency range usually corresponds to
the double-layer capacitance on the electrode surface. After fitting, it was found that the
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Rct values of Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 are 6.1, 4.2, and 2.2 Ω,
respectively. Obviously, Rct decreases with the increase in the concentration of monolayer
Ti3C2Tx MXene ink, demonstrating that Ti3C2Tx MXene has high conductivity. Additionally,
the Ti3C2Tx/NF-2.0 electrode holds a small ESR, which benefits the adsorption of Na+ ions
in the porous structure.
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Long-term cycle measurement at a high current density is of great significance for
supercapacitors. The performance stability and lifespan characteristics of supercapacitors
under high loads and prolonged operation can be evaluated, providing important reference
and validation for practical applications. Figure 5h demonstrates the cycling stability of
the Ti3C2Tx/NF-2.0 electrode. After 7000 charge–discharge cycles at 20 mA cm−2, the
self-supporting electrode can still retain 94.4% of the initial capacitance, which indicates
excellent cycling stability.

In Figure S1, the CV and GCD curves of all the as-prepared electrodes show nearly
rectangular and triangular shapes, demonstrating capacitive electrochemical behaviors.
To ascertain the accuracy of this finding, the value of b of all electrodes was calculated
by fitting. Furthermore, charge storage mechanisms were studied for the Ti3C2Tx/NF
electrodes. The relationship between the current at the potential (I(V)) and the scan rate
(v) is suggested to be as follows: I(V) = avb. Here, a and b represent the constant, and v
represents the scan rate. In electrochemical research, for the b-value fitting calculation, the
value close to 0.5 indicates that the electrochemical process is diffusion-controlled, while
the value close to 1 indicates that the electrode material has capacitive-like behavior [38–40].
In Figures 6a and S2, the b-values of the Ti3C2Tx/NF-1.0 and Ti3C2Tx/NF-2.0 electrodes
range from 0.78 to 0.97, suggesting capacitive-like behavior. However, the b-value of the
Ti3C2Tx/NF-3.0 electrode ranges from 0.65 to 0.77, which results from the disappearance
of porous self-supporting structures caused by high concentrations of monolayer Ti3C2Tx
MXene ink and the oxidation of high concentrations of monolayer Ti3C2Tx MXene ink.



Nanomaterials 2024, 14, 887 8 of 12

Nanomaterials 2024, 14, x FOR PEER REVIEW 8 of 12 
 

 

found that the Rct values of Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 are 6.1, 4.2, 
and 2.2 Ω, respectively. Obviously, Rct decreases with the increase in the concentration of 
monolayer Ti3C2Tx MXene ink, demonstrating that Ti3C2Tx MXene has high conductivity. 
Additionally, the Ti3C2Tx/NF-2.0 electrode holds a small ESR, which benefits the 
adsorption of Na+ ions in the porous structure. 

 
Figure 5. (a) The cycle voltammogram (CV) curves of the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and 
Ti3C2Tx/NF-3.0 electrodes for areal specific capacitance at 20 mV s−1. (b) The CV curves of the 
Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes for mass specific capacitance at 20 mV 
s−1. (c) The loading mass of the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes. (d) 
The galvanostatic charge–discharge (GCD) curves of the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and 
Ti3C2Tx/NF-3.0 electrodes at 2 mA cm−2. (e,f) The performance rates of the Ti3C2Tx/NF-1.0, 
Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes. (g) The electrochemical impedance spectroscopy 
(EIS) curves of the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes. (h) The 
capacitance retention of Ti3C2Tx/NF-2.0 after 7000 cycles at 20 mA cm−2. 

Long-term cycle measurement at a high current density is of great significance for 
supercapacitors. The performance stability and lifespan characteristics of supercapacitors 
under high loads and prolonged operation can be evaluated, providing important 
reference and validation for practical applications. Figure 5h demonstrates the cycling 
stability of the Ti3C2Tx/NF-2.0 electrode. After 7000 charge–discharge cycles at 20 mA cm−2, 

Figure 5. (a) The cycle voltammogram (CV) curves of the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and
Ti3C2Tx/NF-3.0 electrodes for areal specific capacitance at 20 mV s−1. (b) The CV curves of the
Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes for mass specific capacitance at
20 mV s−1. (c) The loading mass of the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 elec-
trodes. (d) The galvanostatic charge–discharge (GCD) curves of the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0,
and Ti3C2Tx/NF-3.0 electrodes at 2 mA cm−2. (e,f) The performance rates of the Ti3C2Tx/NF-1.0,
Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes. (g) The electrochemical impedance spectroscopy
(EIS) curves of the Ti3C2Tx/NF-1.0, Ti3C2Tx/NF-2.0, and Ti3C2Tx/NF-3.0 electrodes. (h) The capaci-
tance retention of Ti3C2Tx/NF-2.0 after 7000 cycles at 20 mA cm−2.

Calculating the capacitance contribution helps to evaluate the relative importance of
capacitance contribution compared to other electrochemical processes, such as diffusion
control, thus providing a better understanding of the electrochemical performance of
materials. The contribution of capacitance and diffusion limitations to the total capacitance
can be further quantified by the following equation: i(V) = k1v + k2v1/2. Here, k1v represents
the capacitance contribution, while k2v1/2 represents the diffusion contribution [41,42]. As
shown in Figures S3 and 6b,c, the capacitance contribution of the Ti3C2Tx/NF-1.0 electrode
increased from 72% at 30 mV s−1 to 91% at 100 mV s−1. The capacitance contribution of the
Ti3C2Tx/NF-2.0 electrode increased from 60% to 78%, while the capacitance contribution of
the Ti3C2Tx/NF electrodes increased from 42% to 59%. As shown in Figure 6d, this result
is consistent with the calculated b-values. The low concentrations of monolayer Ti3C2Tx
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MXene ink tend to help form porous structures under the effect of the high electrostatic
fields, thereby increasing the capacitance contribution. Conversely, the high concentrations
of monolayer Ti3C2Tx MXene ink result in the formation of dense self-supporting structures
under the effect of the high electrostatic fields, leading to oxidation reactions and the
generation of TiO2.
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To demonstrate the applicability of the Ti3C2Tx/NF electrodes, a symmetrical device
was assembled using two Ti3C2Tx/NF electrodes. The CV and GCD curves are shown in
Figure S4, and they were obtained by testing the supercapacitor performance. It can be
observed by viewing the CV curves that the potential window of the device is 0.6 V in
Figure S5. Furthermore, the specific capacitance of the device, based on the GCD curves,
is 201.5 mF cm−2 at 0.3 mA cm−2. The b-value of the symmetric supercapacitor device
has a range from 0.7 to 0.8, indicating capacitor-like behavior. The assembled symmetric
supercapacitor device exhibits a high energy density of 10 µWh cm−2 and a power density
of 630 µWh cm−2, values which are better than most of the previously reported devices, as
shown in Figure S6.

4. Conclusions

A self-supporting Ti3C2Tx/NF electrode structure was successfully prepared by using
monolayer Ti3C2Tx MXene ink under high electrostatic fields. This strategy can effectively
suppress the aggregation of monolayer Ti3C2Tx MXene, thereby exhibiting excellent su-
percapacitor performance, as evidenced by a high specific capacitance of 319 mF cm−2 at
2 mA cm−2 and an excellent long-term cycling stability of 94.4% after 7000 cycles. Further-
more, the different electrochemical properties of the self-supporting structure obtained by
the electrostatic spray deposition of monolayer Ti3C2Tx MXene with varying concentra-
tions were investigated, and the underlying reasons were analyzed. This method provides
a reference for the preparation of self-supporting electrodes with low aggregation and
high-performance layered materials.
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electrodes showing the capacitive contribution to the total current at select scan rates of 30 and
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