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Abstract: The combination of higher-order topological insulators and valley photonic crystals has
recently aroused extensive attentions due to the great potential in flexible and efficient optical field
manipulations. Here, we computationally propose a photonic device for the 1550 nm communication
band, in which the topologically protected electromagnetic modes with high quality can be selectively
triggered and modulated on demand. Through introducing two valley photonic crystal units without
any structural alteration, we successfully achieve multi-dimensional coupled topological states thanks
to the diverse electromagnetic characteristics of two valley edge states. According to the simulations,
the constructed topological photonic devices can realize Fano lines on the spectrum and show
high-quality localized modes by tuning the coupling strength between the zero-dimensional valley
corner states and the one-dimensional valley edge states. Furthermore, we extend the valley-locked
properties of edge states to higher-order valley topological insulators, where the selected corner
states can be directionally excited by chiral source. More interestingly, we find that the modulation
of multi-dimensional coupled photonic topological states with pseudospin dependence become
more efficient compared with those uncoupled modes. This work presents a valuable approach for
multi-dimensional optical field manipulation, which may support potential applications in on-chip
integrated nanophotonic devices.

Keywords: optical microcavity; multi-dimensional coupled topological states; higher-order photonic
topological insulators; valley photonic crystals; pseudospin dependence

1. Introduction

The discovery of Chern insulators and a series of proposed topological effects in con-
densed matter physics has driven the development of topological photonics [1–3], which
brings new avenues for transmitting and localizing light [4,5]. Photonic crystals are analogs
of conventional crystals that replace the atomic lattice with a periodic medium, providing
an excellent platform for topological physics due to the controllability band structure [6].
In practice, defects and impurities are inevitably introduced in the sample preparation,
leading to energy loss and signal distortion. In the face of the above difficulties, the topo-
logically protected photonic states are proposed and demonstrated to be of benefit for the
dissipationless transport dynamics of light [7–10]. More recently, photonic higher-order
topological insulators (HOTIs) with bulk-edge-corner correspondences have been exten-
sively studied for their ability to control light in multi-dimensions, in which the topological
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index can be characteristic by the vectored Zak phase and Wannier center [11–16]. In
addition, by introducing coupling effects between a series of topological states, the quality
of a nanocavity can be further improved, which also brings extra freedom to manipulate
light [17–20]. However, the photonic topological edge states and lower-dimensional corner
states in HOTIs tend to be discrete in spectrum. To realize multi-dimensional coupling, the
structure needs to introduce unit distortion or more complex artificial design, which would
narrow the bandgap of bulk and limit the development of related applications.

Valley photonic crystals (VPCs) with non-zero Berry curvature in momentum space [21–23]
provide a new method to realize higher-order topological phases, which has already been
successfully demonstrated in many lattice structures such as kagome lattices [24], triangular
lattices [25], honeycomb lattices [26], and square lattices [27]. Among them, the supported
valley corner states (VCSs) are robust and valley-locked-dependent [28–30]. Based on
this feature, several interesting optical devices have been designed, such as topological
all-optical switches [31] and topological rainbows [32]. By combining HOTIs and valley
freedom, the structure can both support diverse types of topological states, which may
support potential applications in topological lasers, topological optical switches, and on-
chip integrated optical circuits.

In this work, we computationally propose an on-chip photonic device for the 1550 nm
communication band, in which the multi-dimensional coupled topological states are
achieved with two types of VPCs unit. By optimizing the coupling strength between
the zero-dimensional VCSs and the one-dimensional valley edge states (VESs), the trans-
mission spectrum presents a typical Fano line, showing as a high-quality localized mode.
Furthermore, we extend the valley Hall effect of light to a high-order version, and success-
fully visualize the directed excitations of coupled VCSs with different chiral sources. The
simulated results provide a versatile way to manipulate light based on VCSs and VESs,
which can also extend to other electromagnetic wave ranges by adjusting the structure
size. By the way, the valuable approach for multi-dimensional optical field manipulation
can extend to other material systems, such as GaAs or InP, as long as we replace the
corresponding refractive index parameters and fine-tune the structure parameters.

2. Results and Discussion

The designed VPC sample is a silicon on insulator (SOI) with a 220 nm thick silicon
layer and specific periodic holes. As shown in Figure 1a, the valley photonic structure
is arranged in a honeycomb lattice with a = 470 nm period, and there are two rounded
equilateral triangular air holes with side lengths of l1 and l2 in a single cell, where δ = l1 − l2
and l1 + l2 = a. For triangular holes, VPC has a larger band gap compared to the circular
holes. And the effective refractive index of silicon is defined as 2.83. In all numerical
calculations, we use the commercial software COMSOL Multiphysics 5.4 based on the finite
element method. The periodic boundary conditions and scattering boundary conditions
are used for corresponding interfaces. And the mesh is set up as the build-in physical
field segmentations. The calculated band structures of VPCs under transverse electric
(TE) polarization are as shown in Figure 1. When δ = 0, the VPC has C6v symmetry and
the corresponding band structure presents an obvious degenerate Dirac point at the K(K′)
valley. When δ ̸= 0, the VPC changes to C3 symmetry and the Dirac cone can be gapped
out, leading to two valley states with opposite circularly polarized chirality at the two
unequal K(K′) valleys. For l1 > l2, the K valley state in the first band is a right-handed
circularly polarized (RCP) mode and the K valley state in the second band is a left-handed
circularly polarized (LCP) mode. For l1 < l2, the two chiral polarizations of the K valley
state are inverted, indicating the topological phase transition. Here, we designed two VPC
units with δ = 0.6a (VPC1) and δ = −0.6a (VPC2), which have the same band structure but
different topological phases. Furthermore, we numerically calculated the Berry curvature
of the first band:

Ωn(k) = ∇k × An(k) =
∂Ay(k)

∂kx
− ∂Ax(k)

∂ky
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where An(k) = i⟨un,k|∇k|un,k⟩ is the Berry connection and |un,k⟩ is the Bloch periodic
function. Although the VPCs do not break the time-reversal symmetry, the Chern number
of the band is zero and the valley Chern number at the K(K′) valley is nonzero due to the
breaking of the space-reversal symmetry. As shown in Figure 1d, the Berry curvature of
VPC1 near the K(K′) valley is greater (less) than zero, while the Berry curvature of VPC2
near the K(K′) valley is less (greater) than zero. For the same band, the VPC1 and VPC2
satisfy Ω(k) = −Ω(−k). The integral of the Berry curvature is calculated as shown below:

CK/K′ =
1

2π

∫
HBZK/K′

Ωn(k)d2 k
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Next, we demonstrate two topological VESs based on the 𝑉𝑃𝐶ଵ and 𝑉𝑃𝐶ଶ. For type 
I splicing interface, as shown in the left of Figure 2c, the larger triangular holes at the 

Figure 1. Topological phase transition and band structure. (a) Schematic of the VPC; the red dashed
lines are the initial unit cell of the VPC. (b) A phase diagram showing the variation of the band gap as
a function of δ. The inset shows the field distribution and Poynting vectors at selected points, shown
with green and blue points; the rose and blue area corresponds to two opposite topological phases.
(c) The band structures for VPCs. (d) Distribution of Berry curvature around K valley and K′ valley
for VPC1 and VPC2.

The valley Chern number of our system is half-integer, CK = −CK′ = 1/2 for VPC1
and CK = −CK′ = −1/2 for VPC2, indicating two opposite topological phases.

Next, we demonstrate two topological VESs based on the VPC1 and VPC2. For type I
splicing interface, as shown in the left of Figure 2c, the larger triangular holes at the splicing
interface are edge to edge. Meanwhile, for type II splicing interface, as shown in the right
of Figure 2c, the larger triangular holes at the splicing interface are cusp to cusp. The
projected band structures of two types of splicing structure are as shown in Figure 2; there
is a bandgap between the type II VES (dashed line) and upper bulk states, which provides
a possible coupling effect between VCS (orange dashed line) and another type I VES (solid
line). In this case, the structure does not need to introduce any unit distortion or more
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complex artificial design. In addition, the valley-dependent VESs have opposite group
velocities and vortices near the K valley and K′ valley, which originates from the valley
pseudospin-momentum locking. In order to visualize this physical feature, we calculated
the two edge states at the K valley (labeled with different colored diamond symbols in
Figure 2a) with the Poynting vectors and Hz phases as in Figure 2c. For the upper and lower
interfaces of the splicing interface, the energy flow direction and phase vortex direction
at K valley are opposite. And the dependencies for two types of VESs are also opposite,
indicating the valley-momentum locking properties. Due to the time-reversal symmetry,
the K′ valley of the same structure has similar dependencies, as shown in Figure S1.
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Figure 2. Topological projection band diagrams of VESs and valley-momentum locking phenomenon.
(a) Band structure for the type I and type II interfaces; the solid and dashed line are the eigenmode
of type I and II VES, respectively. And the grey area is bulk modes. (b) Normalized energy flow at
the left or right ports when an RCP source is at positions 1, 2, and 3. (c) Valley-momentum locking
properties of two types of VESs at K valley, which is selected from (a). (d) Positional dependence of
the normalized Stokes S3/S0 parameter and the field distributions with the RCP source at positions 1,
2, and 3.

Based on the feature, we can achieve a directional transmission of light by using differ-
ent circular polarizations of light. Here, we define the Stocks parameter to quantitatively
analyze the unidirectional transmission ability of VESs as shown below [33,34]:

D =
PR − PL
PR + PL

=
S3

S0
=

2Im
(

E∗
x Ey

)
|Ex|2 +

∣∣Ey
∣∣2

Taking the type I VES as an example, S0 = |Ex|2 +
∣∣Ey

∣∣2 and S3 = 2Im
(

E*
xEy

)
indicates

the circular polarization point of the local polarization as the RCP (LCP), respectively. PR
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(PL) represent the energy of light transmitting to the right (left) and D = ±1 represents
that, ideally, light is transmitted completely to the right or left.

As shown in Figure 2b,d, we place an RCP source in three typical areas near the
splicing interface; position 1 and 3 are the upper zone with D = 1 and the bottom zone
with D = −1, respectively. Position 2 is the center of the interface with D = 0, which means
that the unidirectional transmission of energy becomes worse. In simulation, we detected
the energy of light at left or right ports to verify the directional transmission capability and
the simulated field distributions agree well with the theoretical predictions. When an RCP
source is placed at position 1, the energy of electromagnetic waves from frequency 164 to
198 THz will transmit to the right, where the light leaves through the right output port.
And the energy will transmit to the left when the RCP source is placed at position 3 or is
replaced by LCP source. When the RCP source is put to position 2, the transmission of light
to both sides is almost equal.

The valley-momentum locking mentioned above can be understood from the quan-
tized valley Chern number of the VESs. For the type I VES, the valley Chern number can
be defined as CIK = CVPC2K − CVPC1K = −0.5 − 0.5 = −1,CIK′ = CVPC2K′ − CVPC1K′ = 1.
Similarly, the valley Chern number of the type II edge state can be defined as CIIK =
CVPC1K − CVPC2K = 0.5 − (−0.5) = 1, CIIK′ = CVPC1K′ − CVPC2K′ = −1. Valley Chren
numbers with the same sign have consistent valley dependence properties and vice versa.
More importantly, the quantizable valley-momentum locking properties of VESs and the
naturalness of coupling with VCSs are the keys to the next realization of nanocavities with
high responsiveness and high performance.

By combining the HOTI and valley degrees of freedom, the splicing corners of two
VPCs with different valley Chern numbers can excite the VCS modes due to the valley–
valley interactions of the VESs. Here, we construct a trapezoidal splicing structure, where
the VPC1 unit is surrounded by VPC2 unit. As shown in Figure 3a–c, although there are
four splicing corners here, only two VCS can be support in the eigenmodes simulations.
And the 60-degree splicing corner appears obvious, while 120-degree angle disappears.
The selective activation of VCS is related to the sign flip of the valley Chern number at
the splicing corners and more details can be found in our previous work [31]. Due to the
collective coupling effects of two VCSs, the equivalent corners of the structure appear to be
two asymmetric VCSs, leading to spectrum division. The bonding coupled VCS with lower
frequency presents two synchronous nanocavities, named as φ+

C = φ1 + φ′
1. Meanwhile,

for the anti-bonding coupled VCS with higher frequency, the adjacent nanocavities present
a π phase difference, named as φ−

C = φ1 − φ′
1. The physics behind this can be referred to

the electrodynamics theory; when two electric dipoles in the same direction end to end
are close to each other, the two dipoles attract each other to form a bond and the energy of
the coupled system decreases, corresponding to the bonding coupled modes with lower
eigenfrequency. Similarly, when two dipoles in the opposite direction end to end are close
to each other, the two dipoles are mutually exclusive to form an anti-bond. Furthermore, we
have extended the valley Hall effect of light to a high-order version, as shown in Figure 3d–f.
When an RCP source is placed on the center of the splicing interface, the intensity at point
B is slightly stronger than point A. The directional excitation of the nanocavity will be
reversed once the LCP source is placed on the same position. This interesting phenomenon
is related to the valley-momentum locking and pseudospin polarization of the two coupled
VCSs. It is worth noting that, although there are two eigenvalues of the VCS in our system,
only one resonant peak is observed, which might be attributed to the small difference
between the two eigenfrequencies. Next, we have calculated the quality factor Q of the
nanocavity, which can be expressed as Q = ω0τ

2 = ω0
∆ω in terms of the resonance frequency

(ω0) and the decay time of the electromagnetic energy in the cavity (τ) or the resonance
linewidth (∆ω) and the normalized field-strength spectrum, which shows that the quality
factor of the nanocavities are around 375. On the other hand, the energy conversion from
source to the VCSs is also weak.
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Figure 3. Pseudospin dependence of VCSs. (a) Eigenvalues of the bulk, edge, and corner states.
(b,c) Field distribution of the coupled VCSs; arrows represent the direction of current. (d) Field
distributions with different chiral sources at resonance frequencies, red (blue) stars are right-handed
(left-handed) sources, respectively. (e,f) Field intensity at points A and B with an RCP or LCP source
at the center position.

To further enhance the quality factor and response of VCSs, we have designed a
waveguide-nanocavity coupled structure based on the VPC1 and VPC2, as shown in
the inset of Figure 4a, where the zero-dimensional corner state and one-dimensional
edge state can be naturally coupled. Here, the VES with an odd or even symmetric
field distribution are defined as φ+

E or φ−
E . Since the two wave functions with different

symmetries are orthogonal to each other,
〈

φ
+(−)
C

∣∣∣φ−(+)
E

〉
= 0, there are only four multi-

dimensional coupled modes in our system, as shown in Figure 4. For Mode1 = φ+
C + φ+

E ,
the eigenfrequency is obviously lowest, corresponding to the bonding coupling between
VES and VCS. And the eigenfrequency of Mode4 = φ−

C − φ−
E is highest, corresponding to

the anti-bonding coupling between VES and VCS. As for the multi-dimensional coupled
topological states with frequencies in between, the modes are defined as Mode2 = φ−

C + φ−
E

and Mode3 = −φ+
C + φ+

E . These multi-dimensional coupled topological states can be
distinguished from the field distributions, where the energy of Mode1 and Mode4 are
mainly concentrated in the VESs, shown as bright modes, while the energy of Mode2
and Mode3 are mainly concentrated in the VCSs, shown as dark modes. By introducing
coupling effects between the VCS and VES, the quality of nanocavities can be further
improved, which also brings extra freedom to manipulate light on chip.
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Figure 4. Characteristic of multi-dimensional coupled topological states. (a) Eigenvalues of the
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As shown in Figure 5, the quality factor and directional transmission capability of
coupled VCSs have been significantly improved. When an RCP source is placed at position
1, the field intensity at the right corner is much stronger than the left corner in a wide wave
range. If an LCP source is used, only the left and right corners are switched due to the
time-reversal symmetry. When we only change the spatial position of the RCP source on
the splice interfaces, the other structures are unchanged. And the results show that the field
intensities of the right and left corner states are almost the same no matter which chiral
source is placed at position 2. When RCP source is placed at position 3, the intensity of the
left corner is much stronger than the right corners in a wide wave range. In the meantime,
the intensity at corresponding corners is increased by 2–3 orders of magnitude compared to
uncoupled VCS, as visualized in Figures 3 and 5. The reason for this high responsiveness
and higher-order topological valley-locked characteristic is because the energy of the VCS
at this point is directly affected by the selective coupling of the topological waveguide, and
the responsiveness of the chiral source to the selective excitation of the VCS is equivalent to
perturbation, i.e., the unidirectional transmission capability of the VES determines the field
strength ratio at the two splice corners on both sides.

It is worth noting that, when the frequency of the excitation source is near the resonance
frequency of the nanocavity, the field strengths on both sides of the splice corners are almost
the same, which is due to the fact that the introduction of the nanocavity inevitably disrupts
the overall symmetry of the lattice, and the unidirectional transmission ability of the
VES is limited at the resonance frequency of the VCS, as shown in Figure 5e,g, where
the topological waveguide still maintains a good unidirectional transmission capability,
while the magnitude of the energy flow density on both sides is almost the same near the
resonance frequency. In order to further characterize the excellent performance of the valley
nanocavities, we calculate their quality factors, and the results show that both sides of the
nanocavities have very high-quality factors in all three cases up to about 20,000, which is
nearly 50 times higher than that of the previous uncoupled system.
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Figure 5. Pseudospin dependence of high-quality multi-dimensional coupled topological states. (a–c)
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RCP source at the 1, 2, and 3 positions. (e–g) Transmission spectrum at the left or right ports when an
RCP source is at positions 1, 2, and 3.

For the well-designed topologically protected nanophotonic devices with high respon-
siveness and high performance, the system also shows a tunable asymmetric spectral line
in the transmission spectrum. And the physical mechanism behind it is the Fano resonance
phenomenon arising from coherent interference between the discrete coupled VCS and the
continuous VES near the resonance frequency, which requires that the resonance frequency
of the discrete state is in the frequency range of the continuous state. Unlike other schemes,
our structure naturally satisfies this condition without changing any parameters. As shown
in Figure 5e–g, when we place the RCP source in positions 1 or 3, the transmission spectra
at the left port present a typical Fano line shape, while the transmission spectra at the
right port shows an electromagnetically induced transparency-like (EIT-like) line shape.
If the source is placed at position 2, the transmission spectra of the ports on both sides
are EIT-like line shapes. By considering the field distribution at different wavelengths,
we can intuitively understand the above spectral response as shown in Figure S2. This
reveals that the Fano and EIT-like resonance phenomenon originates from the coherent
interference between the edge–corner coupling states with different line widths, where
the modes on the wide transmission spectral lines are all Mode1 or Mode4 with energy
concentrated in the topological waveguide, corresponding to the bright modes, and the
modes on the narrow spectral lines are all Mode2 or Mode3 with energy concentrated in the
valley nanocavity, corresponding to the dark modes. The Fano resonance is formed by the
destructive and constructive interference of the two modes. On the other hand, since the
system maintains the time-reversal symmetry, when we place the LCP source at different
positions of the splicing line, the result is only that the spectral lines are swapped, while
the other laws remain the same, as shown in Figure S3. In addition to the advantage of
tunability, our system is also extremely robust. As shown in Figure S4, where we destroy
the geometry near the nanocavity by replacing it from the original small nanopore to a large
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one, the calculation results show that only the resonance frequency of the cavity is slightly
blue shifted, while the cavity’s localization, quality factor, and higher-order valley-locking
properties are basically unaffected, and the Fano resonance spectral lines are also relatively
well protected. In conclusion, this system and modulation we have established not only
greatly improves the quality factor of the valley nanocavity and the responsiveness of the
higher-order valley-locking properties but also achieves topologically protected tunable
Fano and EIT-like resonance spectra in the same structure.

Finally, we also demonstrate the modulation of the system by changing the coupling
distance between the cavity and the waveguide. Figure 6a,c shows the evolution of the
quality factors of the left and right cavities with the coupling distance when the right-
handed chiral source is in the splicing line at positions 1 and 2, and Figure 6b,d show the
transmission spectra corresponding to the left and right ends. The relevant data when the
RCP source is at position 3 are shown in Figure S5. These results show that, as the coupling
strength decreases, the quality factor of the cavities increases roughly linearly, up to about
60,000. From the transmission spectra, we can derive that the resonance frequencies of the
dark modes are gradually blue-shifted, and the peaks of the Fano spectral line and the
EIT-like spectral line are also reduced substantially; however, their shapes are basically
maintained in the same way. In addition to the coupling distance of four cell sizes, the
transmission spectra of the RCP source are all classical Fano lines when placed at positions
1 and 3 and the transmission spectra are all EIT-like lines when placed at position 2, which
provides a new method and path for the modulation of the topological Fano transmission
spectral lines.
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(a,b) Dependence of the quality factor and transmission spectrum of the structure with different
coupling strength when the RCP source is at position 1. (c,d) Corresponding parameters when the
RCP source is at position 2.

3. Conclusions

In summary, we computationally propose a topologically protected high-quality opti-
cal nanocavity, which can be selectively triggered and modulated on demand. Based on
the mismatch in the spectrum of two valley edge states, we successfully demonstrate the
coupling effect between the zero-dimensional valley corner states and the one-dimensional
valley edge states without any structural alteration. By optimizing the coupling strength
between the valley corner states and edge states, we observe an extremely high-quality
localized mode. Furthermore, we have extended the valley Hall effect of light to a higher-
order version, where the selected photonic topological corner states can be directionally
excited with different polarizations of light and the coupled VCS with pseudospin depen-
dence become more efficient. This work visualizes an efficient and flexible electromagnetic
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mode with pseudospin dependence, which is valuable for the development of on-chip
integrated topological photonic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14100885/s1, Figure S1: Valley-momentum locking at the
K’ valley. Figure S2: Field distribution of different hybrid modes. Figure S3: Excitation of coupled
topological states with LCP source. Figure S4: Robustness of coupled topological states. Figure S5:
Effect of coupling strength on coupled topological states when RCP source is at position 3.
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