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Abstract: Moving fast by high-speed planing craft (HSPC) is advantageous for some special missions,
though it causes severe hull vibrations and shocks that can transfer to the human body and increase
health and comfort risks. This study reviews the current safety standards to avoid human safety
risks affected by whole-body vibrations (WBVs), as well as the safety status of HSPC occupants. In
addition, the efficiency of motion-reduction devices (trim tab and interceptor) and shock/vibration-
mitigation devices (shock-mitigation seat) in improving the safety of HSPC occupants is examined
according to existing documents. The research methodology was based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRIS-MA) method, and published papers in the
Scholar, Scopus, and Web of Science databases were analyzed. Because most of these publications are
academic research, issues of bias in the eligible publications were not of particular interest. During
this systematic review, many gaps and challenges in current information on safety improvement
devices were found that need to be addressed in future studies, such as a lack of information on
motion-reduction devices and shock-mitigation seat performance in reducing lateral and fore-and-aft
motions. Referring to these gaps and challenges can be valuable as a suggestion to improve current
knowledge in research and reduce safety risks.

Keywords: literature study; high-speed craft; motion-reduction device; shock-mitigation seat; whole-body
vibration; onboard crew safety

1. Introduction

High-speed planing crafts (HSPCs) are types of small high-speed crafts with length
Froude numbers higher than 1 that can skim over the water surface. Although operation
at high speeds by HSPCs offers significant advantages, it can also result in severe hull
motions and intense shocks when encountering rough waters. These conditions pose safety
concerns, leading to potential human injuries and disabilities for HSPC crews, as observed
in previous studies [1–3]. Therefore, it is essential to improve HSPC occupants’ safety by
understanding the performance of the safety improvement devices and implementing them
more effectively.

Figure 1 shows the literature trend for published documents using the terms “high-
speed craft” and “human safety” in their abstracts for every five years from 1987 to 2023.
Since the entirety of 2024 annual data is not yet available, it was not considered in this
annual output. According to Figure 1, before 1992, safety on board HSPCs was not given as
much attention, while the number of publications indicates an upward trend with time.
Considering various reports of health risks on board these vessels [4–6], this upward trend
demonstrates the increasing importance of the safety improvements of HSPCs.

There is numerous evidence demonstrating that the main reason for safety risks on
board HSPCs is severe hull motions in different directions [7–13]. As hull motions occur in
different directions with varying acceleration magnitudes and frequencies, HSPC occupants
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might experience intense shocks and vibrations in all directions. These kinds of mechanical
vibrations that can transfer to the human body and lead to safety risks and discomfort are
known as whole-body vibrations (WBVs). WBVs can cause various safety risks for humans,
such as pain in different parts of the human body, chronic stress, musculoskeletal problems,
and nervousness [14–18].
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Figure 1. Annual scientific outputs contain “high-speed craft” and “human safety” in their abstracts.

During high-speed operations, fly-over phenomena with harsh impact shocks are
probable [19], which lead to harsh shocks in both vertical and fore-and-aft directions. In
these conditions, having a small roll angle during the impact causes severe lateral accelera-
tion with serious effects on human nerve fibers, precipitating back pain and sciatica [20].
Figure 2 shows some examples of HSPC accelerations provided in previous research on an
Atlantic 75 RIB boat operating in a mixture of head, beam, and following seas at speeds
between 7.7 and 10.3 ms−1.
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According to Figure 2, the highest acceleration is related to the vertical direction, with
a maximum impact acceleration of 8× g (here, g represents gravitational acceleration).
In addition, maximum impact acceleration in fore-and-aft and lateral directions is 3× g
and 4× g, respectively. These high fore-and-aft and lateral acceleration peaks occur at
the same time with high vertical acceleration. Therefore, it is expected that high vertical
impact shocks could cause impact shocks in fore-and-aft and also lateral directions. The



J. Mar. Sci. Eng. 2024, 12, 845 3 of 27

effect of vertical vibrations recorded by Allen et al. [21] on human safety are analyzed later,
considering the current safety standards.

Although vertical impact shocks are associated with impact shocks in fore-and-aft and
lateral directions, the highest value of vibrations is in the vertical direction, which can even
exceed 20× g [22].

Hull motions in different directions can be transmitted to the human body and cause
various safety risks. The effects of WBVs on the human body exposed to vibrations can
be evaluated using current safety standards. These standards recommend a safe range for
WBVs, considering the vibration direction, magnitude, and frequency, to avoid human
health and discomfort risks. There are various published studies to evaluate human safety by
comparing vibrations on board these vessels against the standard allowable ranges [23,24].
Although they have focused on vertical vibration and ignored other directions of vibrations,
their results demonstrate that WBVs on board HSPCs are often higher than allowable safe
ranges. Therefore, again, it implies the importance of the safety improvement of HSPCs to
reduce human health issues.

1.1. Classification of Previous Studies on Safety Improvement of High-Speed Crafts

Generally, the preceding step to safety improvement is safety assessment. The previous
studies on the safety assessment of humans on board HSPCs have been conducted by
collecting crews’ self-reports or safety evaluations using existing standards. The results of
self-reported studies are qualitative, and they do not determine which kinds of vibrations
and directions cause reported risks. However, the results of safety evaluations by employing
safety standards are quantitative in terms of RMS and VDV values, which could be useful
in finding the main reason for health issues and appropriate methods to avoid them.
Consequently, the first part of this literature study will focus on safety standards and
a summary of their applications to provide a basis for further discussions on motion
reduction and shock-mitigation devices.

Since the main cause of human health risks are vibrations and shocks resulting
from hull motions in rough water, two approaches are reviewed to improve human
safety on board HSPCs: reducing hull motions (motion-reduction devices) and mitigating
shock/vibration (shock-mitigation seats).

1.1.1. Standards

As mentioned before, some HSPC motions can be transferred to the human body and
cause various health risks. Therefore, some national and international organizations have
defined various safety guidelines and standards that can be used for the evaluation of
the safety risks for humans exposed to WBVs. Some of these standards are defined by
the International Standard Organization (ISO), European Union (EU), British Standards
Institute (BSI), American National Standards Institute (ANSI), and Japanese Industrial
Standards Committee (JISC). By implementing these standards in the context of HSPCs,
safety-related issues can be accurately identified, enabling effective safety improvements.

Current safety standards for safety assessments consider different weighting factors
for acceleration in each direction according to their frequency. Then, the root mean square
(RMS) and vibration dose value (VDV) of weighted frequency accelerations should be
calculated to compare against the allowable range for human health and comfort. In cases
where RMS or VDV exceeds the allowable range recommended by standards, reducing
WBVs is essential to avoid human health risks and discomfort.

Hull parameters such as deadrise angle, L/B ratio, and displacement have an impact
on the hydrodynamic performance of an HSPC, including hull motions and accelera-
tions [25–27]. Consequentially, when designing an HSPC, the consideration the safety
issues is very important. However, for existing hulls, other safety improvement methods
need to be considered.

Although reducing hull speeds may be the first action taken for crew safety, it is
crucial to prioritize the well-being of the entire human–machine system and the mission. In
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addition to reducing operation speeds, the use of various motion and vibration reduction
tools and devices on HSPCs can be introduced as a preventive measure to reduce human
health and comfort risks on board the HSPC.

1.1.2. Motion-Reduction Devices

HSPCs can be equipped with motion reduction equipment that actively or passively
modulates body motion and improves not only crew safety but also calm water perfor-
mance [28–31]. Although there are various types of motion-reduction devices, trim tabs and
interceptors are used most commonly on HSPCs due to numerous published documents
emphasizing their performance in reducing hull motions. Therefore, this study reviews
current published studies on the effect of using these devices in HSPC motions to provide
a deeper understanding of their performance and efficiency in safety improvements.

1.1.3. Vibration/Shock-Mitigation Devices

In addition, WBVs can be reduced by mitigating vibrations to avoid transferring them
to the human body [32,33]. Shock-mitigation seats are effective devices for mitigating
vibrations and shocks to improve the safety of seated humans. This study reviews the
various studies that examine the efficiency of shock-mitigation seats in reducing WBVs
using sea trial tests, drop-tower tests, and mathematical simulations.

1.2. Paper Ojective and Structure

This paper aims to provide a systematic review of occupant safety on board HSPCs
and the performance of safety improvement devices and methods that can be implemented
to reduce safety risks. This systematic review plays an important role in identifying
existing gaps and challenges that need to be addressed in future studies to enhance current
knowledge of the safety improvement of high-speed crafts. This aim can be achieved
through the following objectives:

• Analyzing the current safety standards, considering the occupants’ safety on board
HSPCs.

• Investigating the influence of motion-reduction devices on the safety improvement of
HSPC occupants.

• Examining shock-mitigation seat performance for the safety improvement of HSPC
occupants.

• Identifying current research gaps and challenges in the safety improvement of small
high-speed crafts.

This study is categorized into eight sections. Section 1 contains an introduction to the
importance of safety improvements of HSPCs, considering the effects of WBVs on human
safety risks. The literature review methodology for reviewing the safety of HSPC occupants
is described in Section 2. In Sections 3–5 the selected documents are reviewed to answer
the research questions and identify existing gaps and challenges. Section 3 reviews current
safety standards to avoid human health risks, discomfort, and motion sickness as well as
previous safety evaluations of HSPCs conducted by previous researchers. If vibrations on
board an HSPC exceed the allowed range recommended by safety standards, it is crucial
to reduce WBVs to avoid human safety risks. Therefore, Section 4 investigates motion-
reduction devices and their effects on safety improvement. Additionally, the effectiveness
of shock-mitigation seats in mitigating WBVs is analyzed in Section 5 by considering
published studies based on seat trials, drop-tower tests, and mathematical simulations.
Finally, Section 6 presents identified gaps and challenges in the safety improvement of
HSPCs. The last section, Section 7, gives a summary of current information and future
outlooks regarding required information that should be prioritized in future studies based
on the identified gaps and challenges. Through this analysis, the paper strives to foster
the implementation of effective safety measures to ensure a safer and more comfortable
environment for HSPC crew members.
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2. Literature Review Methodology

This systematic review follows the updated version of the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) method, presented by Page et al. [34],
based on a 27-item checklist. Figure 3 indicates the searching strategy for this review, which
was a multi-step process of searching in different databases. The main research questions,
inclusion and exclusion criteria, and defined keywords will be discussed later.
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According to Figure 3, from the collected relevant documents found for selected
keywords, a search procedure on their cited references and keywords is conducted to find
other documents that might not have been indexed in considered databases and defined
keywords. The last step involves studying and analyzing all the collected references to
provide appropriate answers to each research question.
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2.1. Main Research Questions

There are many questions that might be raised by HSPC researchers, designers, and
users regarding human safety that could cover a wide range of studies from various
perspectives. In this paper, four main research questions are provided considering the
objectives of this systematic review on the effects of WBVs on humans, as follows:

• RQ1. What are the current safety standards considering human safety on board
HSPCs?

• RQ2. What is the effect of motion-reduction devices on improving the safety of HSPC
occupants?

• RQ3. What is the effect of shock-mitigation seats on improving the safety of HSPC
occupants?

• RQ4. What gaps and challenges exist in the current knowledge of safety improvement
devices and methods that need to be addressed in future studies?

Regarding these questions and previous studies, appropriate keywords were selected
that will be explained in Section 2.2. The next step involved exploring published studies
containing selected keywords in their text in several scientific databases, including Google
Scholar, Scopus, and Web of Science.

2.2. Search Keywords

Table 1 shows the initial research keywords selected according to the previous back-
ground, and the number of papers found in databases for each keyword combination. These
results were found until February 2024, and some papers were repeated in two or three
databases and even in two keyword groups. The first chosen keyword was “high-speed
craft,” specified by “whole-body vibration”, because numerous documents confirmed that
the main reason for human health risk on board HSPCs are WBVs. It could be useful to
gather current evidence on WBVs on board HSPCs and their effect on human safety. In
this step, some papers that studied the effect of WBVs on HSPCs’ structure were excluded
because they did not correspond to the aim of this study. Analyzing the results found
revealed that most of them referred to using specific safety standards, including ISO 2631-
1 [15], ISO 2631-5 [35], Directive 2002 [36], and BS 6841 [37]. Therefore, in the next stage, the
guidance for these standards and their combination with “high-speed craft” was searched.
Most of the papers found in this stage demonstrated that WBVs on HSPCs exceed the
allowable range suggested by these standards. In such cases, it is necessary to minimize
WBVs. Thus, various WBV reduction devices on board HSPCs were investigated using
two approaches: reducing hull motions with motion-reduction devices and mitigating
vibration with shock-mitigation seats, which both reduce the vibrations transmitted to the
human body.

Motion-reduction devices introduced for high-speed crafts included transom flaps
(interceptor and trim tab). Hence, the combination of “high-speed craft” with “inter-
ceptor” and “trim tab” was searched to find their efficiency in reducing hull motion
and, consequently, WBV. In addition, the keywords “high-speed craft” combined with
“shock-mitigation seat” were investigated as an effective means for mitigating WBVs and
improving safety for a seated person. Shock-mitigation seats on board a vessel can be
examined using sea trial tests, drop-tower tests (also called impact tests), and mathematical
simulations. These keywords were searched in combination with “shock-mitigation seat” to
ensure that no article was missed. Although the most reliable results for shock-mitigation
seats on vessels are sea trial tests, Table 1 shows that current published studies in this
field are limited. Hence, the combination of “shock-mitigation seat” with “drop-tower
test”, “impact test”, and “mathematical model” were also examined. Using these keywords
caused us to find some research on shock-mitigation seats in other vehicles, which were
not excluded because we believe that these mathematical models and drop tests can be
developed for HSPCs and sea states. Consequently, papers that contained those keywords
were included in this study, even for other vehicles.
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Table 1. Results of searching for keywords in different databases.

Keyword Group Keywords Searches Google Scholar Scopus Web of Science

Safety evaluation

High-speed craft, whole-body vibration 243 16 4
High-speed craft, ISO 2631-1 128 3 2
High-speed craft, ISO 2631-5 80 4 3

High-speed craft, BS 6841 61 0 0
High-speed craft, Directive 2002 61 1 1

Motion reduction
High-speed craft, trim tab 153 6 3

High-speed craft, interceptor 269 53 16
High-speed craft, transom flap 53 8 0

Shock/Vibration
reduction

High-speed craft, shock-mitigation seat 34 9 2
High-speed craft, suspension seat 76 11 1

Shock-mitigation seat, sea trial 5 1 1
Shock-mitigation seat, drop-tower test 2 1 4

Shock-mitigation seat, impact test 11 10 12
Shock-mitigation seat, mathematical model 13 4 5

Figure 4 presents the percentage of documents found in each section of this review.
According to this figure, 31% of existing research on HSPC safety evaluates human safety
using current standards, and 46% focuses on improving safety. From all of the published
studies on safety evaluations, the majority (39%) considered the ISO 2631-1 [15] standard
as a safety regulation for humans exposed to WBVs.
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To improve the safety of HSPCs, most researchers studied motion-reduction devices
(55% interceptor and 32% trim tabs), while current information on shock-mitigation seats
is limited (13%) because motion-reduction devices are also efficient in drag reduction.
Figure 4 shows that investigating shock-mitigation seat performance is usually conducted
mathematically (42%), which might be due to the lower cost and time associated with
this approach. In addition, there are no CFD simulations of HSPCs containing a shock-
mitigation seat. For instance, there are numerous hydrodynamic simulations of HSPCs
in wave conditions using the Star CCM+. In addition, Star CCM+ has the opportunity to
model mass, spring, and damper, though there are no CFD simulations of HSPCs combined
with the shock-mitigation seat model.
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2.3. Eligibility Criteria

After removing duplicates from the documents found for the search keywords, they
were analyzed to exclude ineligible documents, considering defined exclusion criteria.
Ineligibility criteria for this research included (a) some documents studied high-speed
crafts that did not implement planning characteristics, (b) safety risk assessment documents
related to other reasons than WBVs, (c) documents that studied the effects of vibration on
structure, and (d) documents published by manufacturers of motion-reduction devices and
shock-mitigation seats that could affect this research’s bias.

Eligible papers for this review were (a) safety assessments of HSPC occupants con-
sidering the effects of WBVs, (b) hydrodynamic investigations of motion-reduction device
performance on HSPCs, and (c) analyses of performance of various shock-mitigation seat
models. Notably, the current studies of shock-mitigation seat performance in other vehicles,
which were conducted using drop-tower tests or mathematical simulations, were also included
because they can be useful to identify the lack of information in the marine environment.

3. Existing Safety Standards

Various transportation vehicles, including high-speed crafts (HSPCs), operate at dif-
ferent speeds and encounter environmental vibrations that can affect human health. To
evaluate the effects of these vibrations on occupants, national and international committees
have developed guidelines for human safety [15,35–40]. These guidelines consider factors
such as vibration magnitude, frequency, direction, duration, and the individual characteris-
tics of the occupants’ bodies based on previous studies [41,42]. By measuring vibrations in
different vehicles, such as trains, planes, cars, helicopters, and vessels, the potential risks
for occupant health, comfort, and motion sickness can be assessed. Some of these standards
are ISO 2631-1 [15], ISO 2631-5 [35], BS 6841 [37], and EU Directive 2002 [36], as well as ISO
2041 [38] and ISO 5805 [39] for vibration and shock terminology, and ISO 10326-1 [40] for
vehicle seat vibration evaluation.

ISO 2631-1 [15] and BS 6841 [37] play a crucial role in guiding the measurement of WBV
effects on human health, performance, comfort, perception, and motion sickness. These
standards consider motion frequencies in the range of 0.1 to 80 Hz as effective vibrations on
human bodies, while vibrations outside of this range have insignificant effects. Moreover,
since vibrations can occur in different directions and have varying effects on the human
body, weighted frequency signals are used to amplify hazardous frequencies and suppress
non-hazardous ones in the time history of acceleration. Then, the effect of WBVs on human
health, comfort, and motion sickness can be evaluated by calculating RMS and VDV for
weighted accelerations in each direction. The RMS and VDV formulations can be found in
Equations (1) and (2), considering ISO 2631-1 [15]:

RMS =

{
1
T

∫ T

0
a2

w(t)dt
} 1

2

(1)

VDV =

{∫ T

0
[aw(t)]

4dt
} 1

4
(2)

where aw(t) is the frequency-weighted acceleration and T is the time period of the measure-
ment. Figure 5 presents the safety evaluation process for different standards regarding the
RMS and VDV values.
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3.1. Human Health Assessment

Current safety standards consider human health problems as any injury to different
parts of the body resulting from WBVs and use RMS and VDV for evaluating the possibility
of human safety risks. ISO 2631-1 [15] suggests RMS as a criterion to assess human health
risks and introduces a caution zone when the crest factor (maximum peak/weighted RMS)
is lower than 9. The crest factor (CF) is a dimensionless parameter that is calculated by
dividing the maximum instantaneous peak of the frequency-weighted acceleration by its
RMS value.

A higher CF indicates harsh impact shocks in acceleration time history. In the case of
using RMS individually to estimate human risks, impact shocks might be underestimated
because occasional shocks can have a serious effect on the human body. Therefore, studying
CF is as important as RMS to estimate human health risks.

According to ISO 2631-1 [15], RMS8h > 0.43 ms−2 demonstrates a potential health
risk, and if it exceeds 0.86 ms−2, the likelihood of health risks escalates. Moreover, for
CF > 9 with severe slam impact, using eVDV (estimated VDV; see the equation in [15]) or
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VDV has been suggested. In this case, VDV > 8.5 ms−1.75 indicates an action level, and
VDV > 17.0 ms−1.75 is a limitation level for human health risks. Similarly, BS 6841 [37]
proposes VDV < 15 ms−1.75 as allowable ranges to avoid human health injuries, which can
be used for CFs lower and higher than 6.

The EU Directive 2002 [36] considers a wider range for RMS and VDV8h to avoid
human health risks. As is shown in Figure 5, RMS > 0.5 ms−2 demonstrates the ac-
tion level, and RMS > 1.15 ms−2 the limitation range for human health. It also specifies
VDV8h > 9.1 ms−1.75 as an action value and VDV8h > 21 ms−1.75 as a limitation value
for vibration.

3.2. Human Comfort Assessment

Improving the comfort of occupants on board an HSPC is another crucial aspect of
safety enhancement. According to current standards, an RMS value below 0.315 ms−2

indicates a comfortable condition for the crew. However, this comfort level changes to an
uncomfortable situation when the RMS ranges from 0.8 to 1.8 ms−2 and becomes extremely
uncomfortable for RMS values greater than 2.0 ms−2. Similar to the health limitation
ranges, these comfort criteria apply only for CF values less than 6.0 in BS 6841 [37] and
less than 9.0 in ISO 2631-1 [15]. However, both standards do not provide predictions for
crew comfortability for higher CF values, emphasizing the importance of considering these
factors when assessing occupant comfort on HSPCs.

3.3. Motion Sickness Assessment

Motion sickness is a common issue faced by crews on board HSPCs, particularly
within the motion frequency range from 0.1 to 0.5 Hz (BS 6841 [37] and ISO 2631-1 [15]).
Both standards provide a similar prediction method for motion sickness, aiming to assess
the likelihood of vomiting during vertical motions by calculating the motion sickness dose
value (MSDVz) of vertical vibrations (see the equation in ISO 2631-1 [15]).

ISO 2631-1 [15] states that the possibility of motion sickness may be higher in children
and women compared to adult individuals and men. Therefore, it is crucial to consider
individual human characteristics when evaluating the occurrence of motion sickness.
However, human gender and age are not considered in evaluating the motion sickness
dose value. Additionally, MSDVz is calculated for vertical accelerations, and the effect of
vibrations in other directions is neglected, while various studies showed the high possibility
of motion sickness during pitch and roll and lateral vibrations [43–45].

3.4. Assessing Long-Term Effects of WBVs

In addition to the effects of WBVs on human health, comfort, and motion sickness, it
is crucial to consider the long-term effects of vibration over an individual’s lifetime. To
address this, ISO 2631-5 [35] introduced a method to measure the effect of environmental
vibrations on the bony vertebral endplate, considering the daily acceleration dose.

In ISO 2631-5 [35], two factors, Sed and R, are utilized to predict the effects of environ-
mental vibrations on human health over a lifetime. Sed is used to assess adverse health
effects based on the daily acceleration dose, while R evaluates these effects over a specific
number of years of exposure. The equations for Sed and R can be found in ISO 2631-5 [35].

According to ISO 2631-5 [35], adverse health effects are less likely for Sed values lower
than 0.5 MPa, whereas they become more prevalent for Sed values higher than 0.8 MPa.
Similarly, R values lower than 0.8 indicate a lower possibility of health problems over the
specified exposure time, while R values higher than 1.2 suggest a higher likelihood of
adverse health effects during an individual’s lifetime.

3.5. Safety Evaluations of HSPCs

There is some evidence from the safety assessment of HSPCs that indicates the high
possibility of human health risks on board these vessels. Table 2 presents the measured
RMSz and VDV8h,z for conventional HSPCs in various sea states provided by previous
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researchers. It is worth mentioning that conventional HSPC, in this study, refers to the
common hull form employed for monohull high-speed planing crafts, because there are
special types of HSPCs that are designed especially to be more comfortable with lower
WBVs, such as catamarans, trimarans, and some HSPCs with suspension decks.

Table 2. Safety evaluation of conventional HSPCs.

Speed (ms−1) Sea State RMS(ms−2) VDV(ms−1.75) Sed-8h (Mpa) Reference

7.72 to 10.3
1 - 62.03 -

[21]2 - 35.15 -

20.57 - 2.0 51 - [23]

25.7

1 1.9 65.2 5.7

[24]
2 2.2 63.1 4.2
3 1.9 49.5 3.8
4 2.8 79 6.3
5 3 81 6.1

15.0

1 4.9 - -
2 8.5 - -
3 9.4 - - [46]
4 7.7 - -
5 4.9 - -

12.9
403 1.92 - -

[47]

411 1.73 - -

15.4 404 2.35 - -

18.0
405 0.85 - -
410 1.87 - -
416 0.55 - -

According to Table 2, in all considered sea states and speeds, VDV8h,z is extremely
higher than the range recommended by standards. In addition, the RMSzs presented in all
case studies are in “very uncomfortable” to “extremely uncomfortable” zones, which can
cause discomfort issues for the occupants. Similarly, the Sed calculated by Garme et al. [24]
demonstrates a high prevalence of adverse health effects (additional results for other sea
states can be found in [24,46]). According to these results, WBVs in the vertical direction in
all investigated HSPCs are higher than the safe ranges suggested by standards. Therefore,
there is a high possibility of safety risks for the occupants, and improving the safety of
conventional HSPCs is essential to avoid safety risks.

It is also worth noting that most previous studies on safety evaluations of HSPCs have
focused on vertical vibrations, and current information on the effects of other directions
of vibration on human safety is limited. Therefore, current information is not enough to
provide a general view of how much other directions of vibration could affect human safety.
However, Ullman et al.’s [6] survey indicated that most of the human injuries occurred
during the impact shock, which contained fore-and-aft and lateral accelerations.

4. Safety Improvement with Motion-Reduction Devices

The effects of WBVs on human safety can be assessed using current safety standards;
thus, in the case of exceeding the recommended allowable range to avoid human injuries, it
is essential to improve safety by reducing WBVs. To enhance human safety and comfort on
board HSPCs, the focus lies on reducing WBVs through the implementation of various WBV
reduction devices. For an HSPC, WBVs have a hydrodynamic source resulting from hull
motions in rough water that are associated with severe accelerations. As a result, decreasing
WBVs in HSPCs can be accomplished by reducing hull motions using motion-reduction
devices such as trim tabs and interceptors.
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In this section, we will focus on motion-reduction devices designed to mitigate the
adverse effects of hull motions and vertical/lateral accelerations experienced by HSPC
occupants, even during straight-line navigation in calm water conditions. These devices aim
to suppress undesirable motions and accelerations to improve crew safety. The arrangement
and general effect of these motion-reduction devices on the boat’s hydrodynamics can be
understood from Figure 6. To provide a comprehensive understanding, we will review
previous studies on the implementation of these devices and compare their performance
and effectiveness in reducing WBVs and enhancing the overall riding experience for
onboard crews. The focus will be on the trim tab and interceptor.
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4.1. Trim Tab

The trim tab is a motion-reduction device that reduces hull motions by creating an
additional lift force at the transom. Figure 6a,b illustrate the comparison of hydrodynamic
force distribution over the hull bottom with and without the trim tab. Without the trim tab,
the high-pressure region in the stagnation line creates a high lift force acting at ×1 distance
from the CG (Center of Gravity), resulting in a bow-up torque that increases the trim angle
and leads to severe slamming. However, when a trim tab is added at the transom, it creates
another high-pressure region near the transom and generates a bow-down torque to reduce
the trim angle [30]. This implementation of the trim tab helps in reducing hull motions and,
consequently, acceleration to enhance crew safety and comfort on HSPCs.

Various studies have investigated the effects of trim tabs on reducing the trim angle [45–51]
and avoiding porpoising in calm water [52–55]. These studies collectively demonstrate
the significant role of trim tabs in improving hull stability and reducing motion in various
water conditions. Furthermore, it should be considered that trim tab efficiency is influenced
by factors such as trim tab geometry, dimension, and angle [56–59]. Careful consideration
of these factors is crucial for achieving optimal results in WBV reduction and the overall
safety enhancement for HSPCs.

Indeed, while reducing trim angle and avoiding porpoising in calm water may be
effective in reducing vertical motions and acceleration in waves, when using a fixed trim tab,
designing an optimal trim tab for every wave condition is challenging, even when assuming
a constant speed. Wang [52] demonstrated that a fixed trim tab can effectively reduce
vertical hull acceleration in certain wave conditions. However, in scenarios with higher
wave frequencies or lower speeds, it can result in excessive pitch motion and increased
vertical acceleration. This limitation highlights the need for adaptive or controllable trim
tab systems that can dynamically adjust to varying wave conditions and vessel speeds to
ensure the optimal reduction of vertical acceleration and improve overall crew comfort and
safety during HSPC operations. Such adaptive systems can play a vital role in mitigating
the effects of hull acceleration and enhancing the onboard experience for the crew in a
variety of sea states.

The implementation of a controllable trim tab, where the tab can rotate around the
connection point while maintaining constant span and chord length, has shown promising
results in reducing vertical motions in wave conditions. Previous studies revealed that a
controllable trim tab can effectively reduce the amplitude, velocity, and impact acceleration
of vertical motions [52,60]. Katayama et al. [61] demonstrated a significant reduction in
pitch motion, with a 25% decrease in wavelength at 1.3 LOA (the overall length of the hull)
and an approximately 70% reduction in pitch amplitude in irregular waves.
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Moreover, Santos et al. [62] employed a fuzzy controller system for transom trim
tabs and a T-foil near the bow to address vertical motions and enhance safety at different
speeds. Their study showed that the control system led to a remarkable reduction in vertical
acceleration, with an approximately 67% decrease in pitch acceleration, thereby reducing
the possibility of motion sickness.

Table 3 provides a concise summary of previous research findings on the efficiency
of trim tabs in reducing various HSPC motions and accelerations in waves. These studies
collectively indicate that controllable trim tabs offer a promising solution to effectively
mitigate the adverse effects of hull motions in different sea states, enhancing crew comfort
and safety on board high-speed crafts.

Table 3. Effects of trim tab on motion reduction of various HSPCs.

FrL Wave Result References

1.2 Regular wave

50% reduction in pitch amplitude in resonance wave
17% reduction in heave amplitude in high wavelengths

22% reduction CG acceleration in high wavelengths
22% increase CG acceleration in short wavelengths

26% bow acceleration reduction

[52]

1.4 Regular wave

60% reduction in pitch amplitude
30% reduction in heave amplitude in high wavelengths
20% reduction in CG acceleration in high wavelengths

35% increase CG acceleration in short wavelengths
40% bow acceleration reduction

[52]

2.9 Irregular wave 25% reduction in vertical bow acceleration [29]

2.3 Irregular wave 26.1% reduction in pitch acceleration
35.5% reduction in motion sickness incident [62]

3.1 Irregular wave 41.1% reduction in pitch acceleration
56.14% reduction in motion sickness [62]

7.8 Regular wave 10–25% reduction in pitch amplitude [55]

While vertical accelerations are a significant concern for onboard crew injuries in
HSPC, it is essential to acknowledge that longitudinal and lateral accelerations also play
crucial roles in influencing human safety. Studies have primarily focused on the trim tab’s
efficiency in reducing HSPC roll motion, as demonstrated by Hughes and Weems [63].
However, there is still limited information available on the trim tab’s effect on reducing
longitudinal and lateral accelerations.

Addressing the reduction of longitudinal and lateral accelerations is vital, as they can
lead to discomfort, motion sickness, and potential injuries for the crew. Further research
and studies are required to explore and quantify the trim tab’s impact on minimizing
longitudinal and lateral accelerations. Understanding these effects will be valuable in
designing more comprehensive and effective solutions to enhance crew safety and comfort
on board HSPCs.

4.2. Interceptor

The interceptor is a vertical transom flap installed symmetrically in the transom to
reduce hull motion and acceleration. Similar to the trim tab, the interceptor creates a
high-pressure region near the transom, as shown in Figure 6c, resulting in a large lift force
that helps reduce vertical hull motions and acceleration, thereby improving HSPC safety
and fuel consumption [64].

Numerous studies have demonstrated the interceptor’s effectiveness in reducing the
trim angle and hull motions [65–67]. While the interceptor’s behavior resembles that of the
trim tab, researchers have compared the two devices to identify the most effective solution
for reducing hull motions.
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Some studies demonstrated that interceptors are superior in trim reduction [68], while
others showed that trim tabs result in more trim reduction [56]. These differences could be
attributed to variations in the dimensions and configurations of the trim tab and interceptor
used in each study. Similar to trim tabs, the performance of interceptors is highly influenced
by their geometry, including position, span, and height. As a result, the effect of interceptors
on reducing hull trim angle may vary significantly depending on their specific dimensions,
even when applied to the same hull at the same speed [69].

Increasing the height of interceptors can lead to a reduction in trim and resistance
in calm water conditions [70–76]. However, caution is necessary, as using an interceptor
height exceeding 60% of the boundary layer thickness around the hull may induce negative
trim angles, increase hull resistance, and pose safety concerns [30,71].

Furthermore, Avci and Barlas [77,78] explored the impact of interceptor position on
trim reduction and found that a full-length interceptor, covering the entire width of the
transom, is more effective. Nevertheless, they noted that a full-length interceptor with a
height-to-waterline length ratio (h/L) greater than 0.15 could lead to negative trim angles
at high speeds. To address these issues and optimize performance, the use of controllable
or active systems for interceptors has been suggested by researchers such as Katayama
et al. [61] and Park et al. [79]. With a controllable system, the interceptor height can be
adjusted based on the operating speed and sea conditions, providing an efficient and
adaptable solution for trim reduction and enhanced safety on HSPCs.

Several studies have demonstrated the effectiveness of installing interceptors on the HSPC’s
transom in reducing vertical hull motions and acceleration in wave conditions [80–82]. However,
it should be noted that the efficiency of interceptors in wave conditions is influenced by hull
speed and wave frequency, which can lead to a negative trim angle at certain wavelengths
and speeds. To address this issue and optimize the interceptor’s performance, the use of a
controllable or active system has been suggested [29,61,83].

The superiority of an active interceptor over a fixed interceptor in reducing heave and
pitch motions has been demonstrated by Park et al. [79]. By employing a controllable system,
the interceptor’s height can be adjusted dynamically, allowing for better adaptability to
different sea waves and avoiding adverse effects that could arise with fixed interceptors.
Overall, using a controllable or active system for interceptors provides a more versatile and
efficient solution to reduce vertical hull motions and acceleration to enhance the safety and
comfort of occupants on board HSPCs during wave conditions.

5. Safety Improvement by Shock/Vibration-Mitigation Devices

Despite using motion-reduction devices, hull motions of high-speed crafts (HSPCs)
in rough waves cannot be entirely eliminated, subjecting onboard crews to vibrations. To
enhance human safety, shock-mitigation seats are employed to mitigate WBVs transmitted
to the human body.

Shock-mitigation seats have been developed and widely adopted in various modes of
transportation like aircraft, trains, and marine vehicles. These seats utilize a combination of
mass, spring, and damper systems to absorb vibrations and ensure comfort for the seated
person. There are four main types of suspension seats designed to mitigate accelerations
exceeding 0.001 ms−2: passive, adaptive, semi-active, and active suspension seats. Each
type differs in energy source, cost, maintenance, fixability, and efficiency across different
frequency ranges. For further details, see [84–86].

When selecting a suitable suspension seat for high-speed crafts (HSPCs), several
factors, such as lateral stability constraints, foot strap cost, and efficiency in the marine
environment, must be considered [22]. To identify the most effective models for HSPCs,
researchers have compared the efficiency of different seats. McMorris et al. [17] highlighted
the advantages of suspension seats over fixed seats in reducing fatigue and sleepiness in
HSPCs. The efficiency of suspension seats in mitigating WBVs compared to fixed seats can
also be found in [8,23,86,87]. Various approaches can be used to examine shock-mitigation
seat efficiency, considering the most dangerous vibrations for humans.
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Human injuries on board HSPCs can result from repeated continuous vibrations
and slam impact shocks. For repeated continuous vibration, typically, sea trial tests are
conducted to evaluate human safety. On the other hand, slam impact shocks are studied
using drop-tower tests, which allow researchers to predict the seat response to transient
pulses. In addition, the mathematical model of shock-mitigation seats can also be used to
simulate both repeated continuous vibration and drop-tower tests to predict seat efficiency
with lower cost and time. These distinct approaches enable a comprehensive understanding
of the effects of both mechanisms on reducing vibrations and shocks. Therefore, in the next
subsections, previous studies on shock-mitigation seats are discussed, considering their
investigation methods.

5.1. Sea Trial Tests

To estimate the effects of vibrations on human response, safety standards emphasize
considering the time duration of exposure as a critical parameter. Sea trial tests have
emerged as a well-established method for studying this aspect, extensively used by nu-
merous researchers. For instance, Allen et al. [21] conducted two sea trials on an HSPC,
varying speed and duration, and measured the VDV. Their findings revealed that the
VDV exceeded the proposed standard ranges, indicating potential safety concerns. Dobbin
et al. [23] analyzed the VDV and crest factors for both fixed and suspension seats in the
vertical direction. While both seat types showed considerably higher values than the
standards, suspension seats demonstrated the ability to reduce peak impact acceleration
by up to 57%. Additionally, Garme et al. [24] conducted 12 sea trial tests, studying human
response to vibration. These studies demonstrated that shock-mitigation seats effectively
reduce the vertical VDV and human health risks across different sea states, highlighting
the benefits of implementing such seats in HSPC operations.

Indeed, there are different perspectives on shock-mitigation seats. Riley et al. [88]
presented an alternative view based on their sea trial studies. Surprisingly, they found that
using a soft seat cushion could lead to vertical acceleration amplification [89], resulting in
an increased number of acceleration peaks or impacts. As it has been mentioned, shock-
mitigation seat performance in absorbing slam impact shock can be investigated with
drop-tower tests.

5.2. Drop-Tower Tests

Indeed, while sea trials are highly effective for studying shock-mitigation seat perfor-
mance, they come with significant costs and time requirements. Additionally, sea trials
may not adequately address harsh impact shocks and accidental conditions. To address
these limitations, researchers have proposed laboratory drop-tower tests as an alternative
method for predicting seat performance in absorbing slam impact shocks and determining
damping duration.

Various studies have explored the use of drop-tower tests for this purpose, such
as [90–96]. These laboratory-based tests offer a controlled and repeatable environment
for simulating transient pulses like slam impacts, providing valuable insights into seat
performance, and enhancing their design for improved passenger safety in challenging
conditions. In the drop-tower test method, the shock-mitigation seat is raised to a certain
height and then released to impact a surface on the ground. This test measures the seat’s
response and the time duration for damping vertical acceleration. For more details, refer
to [97].

According to Kearn’s investigations in a drop-test study from 2001, when the seat is
released, the seat base experiences vertical acceleration due to the gravity force, while the
seat cushion has no acceleration [97]. The seat pan acceleration begins when the seat base
reaches maximum negative acceleration. As a result, there is a phase difference between the
seat base and seat pan responses. This phase difference has also been confirmed by other
researchers [88,98,99]. Understanding these dynamics is crucial for accurately assessing
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the shock-mitigation seat’s performance and optimizing its design to effectively absorb
impacts during marine operations.

The experiments conducted by Kearn [97] and Alam et al. [95] were replicated at
different drop heights, and they demonstrated significant shock reduction using suspension
seats in all considered conditions. However, contrary opinions have been expressed, stating
that suspension seats could sometimes result in the amplification of relative acceleration
between the deck and the occupant [88,98,100–102].

Drop test studies conducted by Petersen and Riley [103] revealed the challenge of
absorbing long-duration wave impact shocks (ranging from 100 to 450 milliseconds) for
HSPC seats, and the possibility of dynamic amplification. Shock amplification by a suspen-
sion seat during slamming impact depends on the specific seat characteristics and can be
predicted by selecting an appropriate drop height in the drop-test study.

Indeed, careful assessment and understanding of suspension seat dynamics in various
scenarios are crucial for ensuring optimal design and performance, ultimately enhancing
passenger safety during high-speed marine operations. Choosing the appropriate drop
height for drop-tower tests is a critical parameter that should be determined by considering
the wave impact data obtained from sea trials, as highlighted in [89,102]. Predicting the
possibility of shock amplification that may lead to bottom impacts and human injuries is
essential for improving occupant safety in HSPCs under different sea states.

Other studies on shock-mitigation seats using drop-tower tests have been presented
in [104–106]. Although Gunston et al. [107] believed that this method might not accurately
match high-impact and stochastic conditions, Marshall and Riley [96] conducted a com-
parative study between a shock-mitigation seat’s performance in a laboratory drop test
and real sea trials. Their findings showed good accuracy in predicting the seat’s mitigation
capabilities for shock impacts.

By combining sea trial data with well-designed drop-tower tests, researchers can gain
valuable insights into shock-mitigation seat behavior, enabling improvements in seat design
and enhancing passenger safety in HSPCs under varying environmental conditions.

5.3. Mathematical Modeling of Shock-Mitigation Seat

Mathematical modeling is a reliable approach for predicting shock-mitigation seat
performance in mitigating repeated continual vibrations and impact shocks. The studies
by Olausson and Garme [108] and Marshall and Riley [96] have compared mathematical
results with both sea trials and drop-tower tests, confirming the acceptable accuracy of the
models. Other researchers have also conducted sea trial tests on shock-mitigation seats to
verify mathematical models against real sea states [87,104,109].

Selecting an appropriate seat model is a crucial step in using mathematical models
for dynamic studies of shock-mitigation seats. As mentioned earlier, shock-mitigation
seats comprise a system of mass, spring, and damper with various configurations and
properties. Therefore, considering the seat configurations and the study aim, various
mathematical models can be suggested for studying seat efficacy. For instance, to study
the seat cushion’s influence on vibrations, a model with two DOFs is required. However,
the seat cushion effect might not be the aim of some other studies, and others prefer to use
a 1DOF seat model and ignore the cushion effect to simplify the problem. The choice of
the seat model should be carefully considered to ensure that it accurately reflects the seat’s
behavior and response to different dynamic conditions, thereby providing valuable insights
for improving seat design and enhancing passenger safety in high-speed marine operations.
Table 4 shows some of the different types of shock-mitigation seat models that have been
used by previous researchers for mathematical modeling. These models are categorized
based on their complexity. It is also worth mentioning that some seat models in Table 4
have been designed for other vehicles; however, there are two reasons for including them:
current seat models for HSPCs are still limited, and these seat models can also be employed
to investigate the effects of fore-and-aft and lateral vibrations, which are significant in
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HSPCs. Therefore, it is suggested to consider these kinds of seat models for HSPCs in
future studies.

The seat model A1, with its single degree of freedom (1DOF), is the simplest repre-
sentation used by researchers to simulate the slam impact test [102,110–113]. In this seat
model, K and C are spring stiffness and damping coefficients that are used for the seat by
the manufacturer, and m1 is a summation of seat weight + cushion weight + the weight of
the upper body and thighs of the seated human body. The weight of the upper body and
thighs is 72.3% and 9.5% of the total human weight, respectively [114].

Although seat model A1 can simply model the shock-mitigation seat, it is important
to consider that Riley et al. [88] found that seat cushions may amplify vertical acceleration,
a factor that is not accounted for in this basic model. Moreover, the effects of longitudinal
and lateral acceleration cannot be studied using this model, while, according to the Ullman
et al.’s [6] study, most of the human injuries are related to impacts that contain lateral force.
As a result, more complex seat models with additional degrees of freedom are suggested
to better understand and predict the behavior of shock-mitigation seats under various
dynamic conditions.

To study the effects of both longitudinal and vertical vibrations, seat model A2 can
be used. Chen et al. [115] adopted this model, which consists of an oblique damper with
longitudinal and vertical elements to absorb vibrations in these directions. This model is
the simplest model and it can be developed to consider the effects of seat cushions.

Seat models B1 to B4, which incorporate 2 degrees of freedom (2DOFs), are recom-
mended for studying shock-mitigation seat performance with a cushion and focus on
vertical acceleration. In this model, m1 is the weight of the seat mass, and m2 is a summa-
tion of seat cushion weight (if the cushion effect is ignored) and the weight of the seated
human’s upper body and thighs. In addition, K1 and C1 are the seat model parameters,
which are the same as seat model A1. If this seat model is considered to simulate the seat
cushion, K2 and C2 can refer to the cousin parameters defined by the manufacturer. In some
studies that ignored the seat cushion, K2 and C2 have been used as human parameters.
According to Olausson and Garme, K2 is 869.40 m2 and C2 is 21.25 m2.

Model B1 was used to compare foam and suspension seats in waves, with an emphasis
on mitigating vertical acceleration [116]. In this model, the occupant’s mass (m2), cushion
stiffness (K2), and damper (C2) are considered, along with seat characteristics (m1, k1,
and c1).

Following the introduction of model B1, Alam et al. [95], Townsend et al. [16], Ereq [109],
and Ekstrom [86] used model B2 to predict seat performance in absorbing slam impacts.
Additionally, model B2 was applied by other researchers to study HSPCs in different sea
states [84,86,108,109,117,118]. In previous research, seat model B2 garnered more interest
among researchers compared to model B1. However, Wei and Garffin [119] conducted a
comparison between these two models and recommended using model B1 as it was found
to be more accurate.

Another seat model that considers the seat cushion effect, introduced by Wice [99], is
known as model B3. Wice [99] used this model to study slamming impacts and simulating
sea states, achieving good agreement with experimental results. As is shown in Table 4, the
active component force (fu), friction force, and also the pitch moment have been considered
in this model.

These 2DOFs seat models (B1 to B3) offer a more comprehensive representation of
shock-mitigation seat behavior, incorporating both cushion properties and seat characteris-
tics, thereby providing a more accurate understanding of the seat’s performance in various
dynamic conditions compared to seat model A.

Although vertical vibration is usually associated with the highest weighted acceler-
ation in HSPCs, longitudinal and lateral acceleration are also relevant and can influence
human health and comfort. Therefore, different directions of vibration should be ad-
dressed in designing and evaluating shock-mitigation seat performance. Seat model C1 is
a mathematical model developed by Maciejewski et al. [120] to investigate the effects of
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longitudinal acceleration on a seated person. However, this model cannot investigate the
effects of vertical vibrations.

Seat model C2, introduced by Choi et al. [121] considers two degrees of freedom
(2DOFs) for shock-mitigation seats. In this model, m1, m2, K1, K2, C1, and C2 are the
same as seat model B, and also, K3, C3, and u refer to seat properties defined by the
manufacturer. Although this seat model has been designed for trucks due to its high
vertical and horizontal accelerations, it can also be used for studying shock-mitigation seats
in marine environments, which have high accelerations in different directions, similarly to
trucks. This model is capable of mitigating both vertical and longitudinal acceleration as it
incorporates an x-direction component. In contrast, seat models A, B, and C (Table 4) are
free to move upward, and their travel length is not defined.

The travel length of shock-mitigation seats is an essential parameter for predicting the
occurrence of the “Bottom impact” phenomenon. A few previous studies have presented
the maximum displacement obtained during their research to predict the possibility of
bottom impact, such as Olausson and Garme [108]. However, other studies on shock-
mitigation seats on trucks, roads, and off-road vehicles have preferred to use seat models
D1 to D3, which are limited in travel length, to avoid bottom impact. By incorporating
these limitations, seat models D1 to D3 provide a more accurate representation of the seat’s
behavior during extreme dynamic events, particularly when the seat might reach its travel
limit and experience bottom impacts. These seat models can also be used for HSPCs that
have a high possibility of bottom impact.

The choice of seat model depends on the research objectives and the specific scenario
being studied. Models with limited travel length are especially useful for simulating harsh
impacts and avoiding the potential risks associated with bottom impacts.

Rebelle [122,123] proposed the simplest seat model, considering vertical motion with
restrictive components, which was initially designed as a lift truck seat model. This
basic concept was further developed into the D2 model in [124–126]. Model D2 not only
incorporates longitudinal components but also has a limitation on vertical motion.

In response to the limitations of D2, Gunston et al. [107] decided to use seat model
D3, which includes restrictive components in both the x- and z-directions. By adding
restrictions in two directions, model D3 provides a more comprehensive representation
of shock-mitigation seat behavior, particularly in situations involving multi-directional
impacts and dynamic forces.

These seat models (D1 to D3) with restrictive components are especially valuable
for studying shock mitigation in extreme conditions where the seat’s motion may be
constrained, providing insights into the seat’s performance under challenging dynamic
events and helping to ensure passenger safety in high-speed marine operations. It is worth
mentioning that these seat types have not been employed on board marine vehicles so far.

Table 4. Various mathematical models for shock-mitigation seats.

Seat Model Modeling Schematic Description References
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Once the most suitable seat model is selected for mathematical simulation, seat com-
ponent parameters such as stiffness, damping coefficient, mass, etc., can be determined
through laboratory tests, as demonstrated in [99,105,128]. These laboratory tests provide
valuable data to accurately represent the behavior and response of the shock-mitigation
seat under different dynamic conditions.

To study more about human safety on board HSPCs, the results of the seat’s per-
formance in mitigating vibrations can then be utilized in a biodynamic study to predict
the potential for human injuries. By considering the interactions between the seat and
the human body, the biodynamic study helps assess the seat’s effectiveness in reducing
vibration-related health risks for onboard crews during high-speed marine operations.

The integration of mathematical modeling, laboratory tests, and biodynamic stud-
ies forms a comprehensive approach to designing and evaluating shock-mitigation seats,
ultimately leading to improved passenger safety and reduced risks of injury during ma-
rine operations.

6. Gaps and Challenges

This paper has addressed the current standards related to human safety in vibrated
environments and analyzed the safety of HSPCs regarding these safety standards. Safety
evaluations of HSPCs demonstrate the high possibility of safety risks though safety im-
provement devices can efficiently improve human safety. Therefore, the efficiency of motion-
reduction devices (such as trim tabs and interceptors) and vibration/shock-reduction de-
vices (shock-mitigation seats) in reducing hull acceleration has been investigated. During
this systematic review of current studies, many gaps and challenges in the safety assess-
ment of HSPC occupants and safety improvement devices have been identified that are
required to be addressed in future studies:

Identified Gaps and Challenges

1. Current information on the effects of vibrations in different directions is limited.
Measuring vibration in all directions during sea trial tests of HSPCs and considering
all directions of vibration in safety evaluations is required to evaluate the effect
of fore-and-aft and lateral vibrations on human safety. In addition to the sea trial
tests, numerical approaches might be applicable in predicting impact shocks in other
directions, as [19] demonstrate their capability in predicting vertical impact shocks.
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2. Current information on motion-reduction devices’ performance in reducing fore-
and-aft and lateral acceleration is limited. Therefore, it is required to investigate the
efficiency of trim tabs and interceptors in reducing lateral and fore-and-aft accelera-
tions, as well as the effect of their dimensions. This study could be useful to implement
them more efficiently, with the aim of improving the safety of HSPC occupants.

3. Although numerous studies confirm the efficiency of using active control systems to
improve the efficiency of motion-reduction devices, current information is still limited.
Therefore, more research is needed to optimize the design and efficiency of active
control systems for motion-reduction devices in HSPCs, especially in wave conditions.

4. There are some studies that show promise in reducing hull motions and acceleration
using combined motion-reduction devices, for instance, interceptor–trim tab, but there
are few published studies, and their performance in waves and lateral acceleration
reduction requires exploration. Combined motion-reduction devices can be studied
in future work using mathematical models, CFDs, and experimental approaches.

5. Existing studies on shock-mitigation seats mainly focus on vertical motion and over-
look the effects of lateral and fore-and-aft accelerations, which are significant factors
for occupants’ safety. Although there are some new types of shock-mitigation seats
that manufacturers believe are effective in reducing vibrations in other directions,
there are no academic publications to confirm this. Future studies can provide an
important step toward improving seated human safety by studying the efficiency of
these seat models in mitigating vibrations in other directions.

6. There are numerous studies that demonstrate the effects of footrests on transmitted
vibrations to the human body in other vehicles. However, in most of the current
studies on safety evaluations and shock-mitigation seat performance for HSPCs, the
effect of footrests has been ignored. In addition, the seat backrest is also effective in
mitigating fore-and-aft acceleration and rotational vibrations, which are ignored in
current studies. Therefore, it is required to develop the current mathematical seat
models to consider the effect of backrests and footrests in future studies.

7. There is a lack of appropriate human models for HSPC occupants. Numerous studies
have simulated the seated human body using a system of masses, springs, and
dampers. These studies are useful to predict the transmitted vibrations to each part
of the human body and estimate the probability of injury to that part. These models
can also be employed for a standing position, which is a common work position
on HSPCs.

7. Summary and Future Outlook

This paper addressed the current standards related to human safety in vibrated en-
vironments and safety improvement methods for reducing HSPC motions (trim tab and
interceptor) and reducing vibration/shock transmitted to seated humans (shock-mitigation
seat). Reviewing published documents is an efficient way to determine the safety status
of HSPCs, safety improvement device performance, and existing gaps and challenges in
current information. As an example, most studies on safety evaluations of HSPCs and
motion-reduction devices have focused on reducing vertical motions, with limited informa-
tion on their effectiveness in reducing other directions of motion. In addition, active control
systems for these devices have been proposed as a superior solution, but more research is
needed to optimize their design and efficiency, especially in wave conditions.

Regarding shock-mitigation seats, numerous studies have evaluated their performance
in absorbing vibrations for various vehicles. However, the use of CFD models for shock-
mitigation seat studies in HSPCs is still limited. Additionally, existing studies have mainly
focused on vertical motion and neglected the effects of other motions, such as lateral and
fore-and-aft accelerations. The consideration of seat backrests, footrests, and buffers to
control bottom impacts is also lacking in current seat models.
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Future Outlook

To address the identified gaps and challenges in safety improvement devices and
implement them more efficiently, future research should focus on developing a criterion to
assess the effects of vibration in different directions on motion sickness (see Section 3.3).
This criterion can be achieved through statistical investigations in various sea states that
measure vibration in different directions and human responses to the vibration. Moreover,
epidemiologic research on the effects of vibration direction, magnitude, and duration can
provide the necessary information for defining this criterion (see [43]). These epidemiologic
studies can also assist in predicting the type of human injury and its location by installing
sensors on different parts of the human body affected by WBVs and presenting the critical
vibration that causes injuries in each part. Afterward, in marine environments, mathemati-
cal modeling of the human body can be employed to predict the vibration transmitted to
each part of the human body, such as the pelvis, back, and legs, and compare the results
against the provided criteria to estimate the most vulnerable part of the human body to
injury. Some mathematical modeling of the human body can be found in [129–133].

In the safety improvement strategies, the effects of trim tabs and interceptors (passive,
controllable, and active systems) in reducing hull motions in different directions should be
explored during sea trial tests, towing tank tests, numerical simulation, or mathematical
modeling. This is an important subject to address in designing motion-reduction devices
to improve human safety, because most human injuries are caused by lateral and forward
impacts. Furthermore, shock-mitigation seats for HSPCs should mitigate vibrations in more
than one direction. Although there are some new types of shock-mitigation seats for HSPCs
with new configurations to absorb forward and lateral vibrations, there is no published
evidence regarding their efficiency in safety improvement compared to the previous seat
models. Therefore, future studies on these types of shock-mitigation seats by measuring
and comparing vibration in different directions on the deck and seat through sea trial tests
are required to investigate their efficiency. This investigation can also be achieved using
mathematical modeling of these kinds of seats.

By addressing these gaps and challenges, the future outlook for human safety in
vibrated environments, particularly HSPCs, will be significantly improved. This will
lead to more effective design strategies, optimized motion-reduction devices, and safer
conditions for occupants during high-speed marine operations.
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